
Note on shortest path

Problem 1. Input: A connected graph G = (V, E), weights we > 0 for each edge e ∈ E and two vertices
s, t ∈ V . Output: A minimum weight path from s to t in G.

Algorithm 1. (Simplified) Dijkstra’s algorithm
Initialize an array d, index by V , to some dummy value, say ∞.
Initialize an array prev, index by V , to some dummy value, say null.
d[s]← 0
S ← {s}
While t 6∈ S

Find e = (u, v) ∈ E with u ∈ S, v ∈ V \ S minimizing d[u] + w(u,v).
d[v]← d[u] + w(u,v)

prev[v]← u

S ← S ∪ {v}
Return d and prev

To obtain the path from the output, repeatedly follow the prev pointers, starting from t.

Lemma 1. Dijkstra’s algorithm assigns d values in a non-decreasing order.

Proof. Suppose not. Look at the first time we assign a value, say d[v], which is less than the previously
assigned value, say d[u].

If prev[v] is u then d[v] = d[u] + w(u,v) > d[u] (since all edges have positive weight). Contradiction.
If prev[v] is not u then prev[v] was in S when d[u] was assigned a value. In particular, we could have

chosen the edge (prev[v], v) in that iteration (instead of the edge with u as an endpoint). Contradiction (to
Dijkstra’s algorithm choosing the minimizing edge in that iteration).

Lemma 2. A subpath of a minimum weight path is a minimum weight path (between different endpoints).

Proof. See Assignment 4.

Theorem 1. The d values returned by Dijkstra’s algorithm corresponds to minimum weight distance from
s.

In other words, the minimum weight s to v path has weight d[v].

Proof. Suppose on some input graph G with weights w and vertices s, t, this is not the case. Let d∗[v] be
the minimum weight distances from s to v.

Choose v with d∗[v] < d[v] such that d∗[v] is minimized. Let P = s, p2, p3, . . . , pk−1, v be a minimum
weight path from s to v.

d∗[v] = d∗[pk−1] + w(u,v) by lemma 2. Since all weights are positive, d∗[pk−1] < d∗[v]. Therefore,
d∗[pk−1] = d[pk−1].

So prev[v] 6= pk−1 as otherwise, d[v] = d[pk−1]+w(u,v) = d∗[pk−1]+w(u,v) = d∗[v] contradicts d∗[v] < d[v].
When the edge (prev[v], v) was chosen by Dijkstra’s algorithm, pk−1 was not in S. Otherwise, we could

have picked (pk−1, v) so d[v] is at most d[pk−1] + w(u,v) = d∗[v] which again contradicts d∗[v] < d[v].
But this means d[pk−1] was set after d[v]. By lemma 1, d[pk−1] ≥ d[v], a contradiction to d[pk−1] =

d∗[pk−1] < d∗[v] < d[v].

Note. Dijkstra’s algorithm can be used to find the minimum weight path from s to all other vertices of
the graph (rather than just t). To do this, we just need to replace the stopping condition of our while loop
(currently, t 6 inS) by S 6= V . Or, more generally, while there is still an edge from S to V \ S.

1



Note. Normally, Dijkstra’s algorithm is shown using a priority queue so that the step where we need to
find the edge minimizing d[u] + w(u,v) is much faster. We would add all edges incident to a vertex v when
we add v to S and each edge (v, w) would have value d[v] + w(v,w) in the queue. Each iteration, we would
remove the minimum value edge from the queue until we found an edge with one endpoint in S and the
other endpoint in V \ S (i.e., not both endpoints in S).

However, priority queues are not part of this course.

Example 1. (from p.650 of Rosen’s book)
Suppose we wish to find the shortest path from a to z in the following graph (i.e., s = t).

c

d e

za

4

2

3

1

2

3

3b

Initially d[a] is set to 0.
The edge chosen in the first iteration is (a, d). d[d] is set to d[a] + w(a,d) = 0 + 2 = 2 and prev[d] is set

to a.
The edge chosen in the second iteration is (a, b). d[b] is set to d[a] + w(a,b) = 0 + 4 = 4 and prev[b] is set

to a.
The edge chosen in the third iteration is (d, e). d[e] is set to d[d] + w(d,e) = 2 + 3 = 5 and prev[e] is set

to d.
The edge chosen in the fourth iteration is (e, z). d[z] is set to d[z] + w(e,z) = 5 + 2 = 7 and prev[z] is set

to e.
So the length of the shortest path from a to z is 7. We can obtain this path (in reverse) by following

prev pointers in reverse. prev[z] = e, prev[e] = d, prev[d] = a so the path is a, d, e, z.
Here is the final “state” of the algorithm with selected edges highlighted.

c

d e

a

4

2

3

1

2

3

3b

prev[z]=e

prev[b]=a

d[b]=4

prev[d]=a

d[d]=2
prev[e]=d

d[e]=5

z
d[z]=7

d[a]=0

We could draw all of this in a more compact form by drawing an arrow from v to prev[v] (if prev[v] was
set to a non-null value).

2



c

d e

a

4

2

3

1

2

3

3b
d[b]=4

d[d]=2 d[e]=5

z
d[z]=7

d[a]=0

If we wanted to continue (e.g., if we wanted the shortest path from a to every other vertex), the next
edge we would selected is (b, c) and we would set

c

d e

a

4

2

3

1

2

3

3b
d[b]=4

d[d]=2 d[e]=5

z
d[z]=7

d[a]=0

d[c]=7

3


