
Note on the bipartite matchings

We start with a well known theorem characterizing bipartite graphs with perfect matching.

Definition 1. A perfect matching in a graph G is a matching M where all vertices of G are incident to some
edge of M .

Theorem 1. Hall’s theorem Let G be a bipartite graph with parts A and B. G contains a perfect matching

if and only if |A| = |B| and for all S ⊆ A, |S| ≤ |N(S)|.

Proof. First, we see that the two conditions are necessary for G to contain a perfect matching.
Since G is bipartite, every edge of a matching matches a vertex in A to a vertex in B. Therefore,

|M | ≤ min(|A|, |B|) for all matchings M .
Similarly, if |S| > |N(S)| for some subset S of A then not all of S can be matched since each edge of a

matching with one end in S has the other end in N(S). But each vertex of N(S) can be incident to at most
one edge of any matching.

Now for the more difficult direction. That is, the two conditions are sufficient.

Claim 1. For all bipartite graphs G, if |A| = |B| and for all S ⊆ A, |S| ≤ |N(S)| then G contains a perfect

matching.

Proof. Suppose the claim is false. Let G be a counter-example which minimizes |V (G)|. Since G is a counter-
example, G is bipartite with parts A and B, |A| = |B|, for all S ⊆ A, |S| ≤ |N(S)| and G does not contain
a perfect matching.

G contains at least one vertex as otherwise, the empty matching is a perfect matching in G.
G contains at least one edge since |N(v)| = 0 for any vertex v ∈ A but |{v}| = 1 > 0.
Let e = (u, v) ∈ G with (up to relabelling u and v) u ∈ A and v ∈ B.
Let H be the graph obtain from G by deleting u and v. That is, H = G − {u, v}. H is bipartite with

parts A ∩ V (H) and B ∩ V (H). Note that these parts have the same size since |A ∩ V (H)| = |A \ {u}| =
|A| − 1 = |B| − 1 = |B \ {v}| = |B ∩ V (H)|.

We will now use the minimality of G. The graph we apply minimality to depends on if H satisfies the
hypothesis in the claim.

If H satisfies the hypothesis in the claim. That is, for all S ⊆ A ∩ V (H), |S| ≤ |NH(S)|. Here, we write
NH instead of N to emphasize the fact that we are looking at the neighbours of S in H rather than G.
Then, by minimality, H contains a perfect matching M1. Adding e = (u, v) to M1 gives a perfect matching
M in G. Contradiction to G being a counter-example.

If H does not satisfy the hypothesis, there exists S ⊆ A ∩ V (H) with |S| > |NH(S)|. Since G satisfies
the hypothesis, for the same set S, |S| ≤ |NG(S)| ≤ |NH(S)| − 1 (G only has one more vertex than H in B,
namely, v). So |S| = |NG(S)|.

Let H1 be the subgraph with vertex set S ∪NG(S) with all edges of G between S and NG(S) (i.e., H1 is
the subgraph of G induced by S ∪NG(S)). Let H2 be the subgraph of G with vertex set V (G)\ (S ∪NG(S))
(i.e., H1 is the subgraph of G induced by V (G) \ (S ∪NG(S))).

We claim that H1 satisfies the hypothesis of the claim. Indeed, if not, there is a subset S′ ⊆ S with
|S′| > |NH1

(S′)|. But S′ ⊆ S ⊆ A and NH1
(S′) = NG(S′) (since N(S′) ⊆ N(S)). So |S′| > |NG(S′)|. This

contradicts the fact that G satisfies the hypothesis of the claim.
We claim that H2 also satisfies the hypothesis of the claim with the two parts switched. Indeed, if not,

there is a subset S′ ⊆ B \ N(S) with |S′| > |NH2
(S′)|. But S′ ⊆ B \ N(S) ⊆ B and NH2

(S′) = NG(S′)
(since there are no edges from B \N(S) to S by definition of N(S)). So |A\N(S′)| > |NG(A\N(S′))| (since
|A| = |B|). This contradicts the fact that G satisfies the hypothesis of the claim.

Thus, both H1 and H2 satisfy the hypothesis in the claim. Furthermore, both H1 and H2 have fewer
vertices than G (for example, u is not in H1 and v is not in H2). Therefore, by minimality of G, H1 contains
a perfect matching in M1 and H2 contains a perfect matching in M2. But the union of M1 and M2 is a
perfect matching in G. Contradiction to G being a counter-example.
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Based, on Hall’s theorem, we can design an algorithm for finding augmenting paths in graphs with perfect
matchings.

Algorithm 1. Input: A bipartite graph G = (V, E) with parts A and B, a matching M in G, the set of
unmatched vertices U of A and the set of unmatched vertex W of B.

Output: Either

1. An M -augmenting path in G, or

2. A subset S of A with |S| > |N(S)|.

Initialize an array prev of pointers
S ← U

T ← ∅
For s ∈ S, set prev[s]←null
While true

If ∃e = (u, v) ∈ E with u ∈ S and v 6∈ T then prev[v]← u

If v ∈W then
return the path from v following prev pointers. T ← T ∪ {v}

w ← the vertex matched to v in M

S ← S ∪ {w}
prev[w]← v

Else
return S

Remark 1. At the beginning of every iteration,

• |T | < |S|

• T ⊆ N(S)

• No edge (u, v) with u ∈ S, v 6∈ T exists only if T = N(S).

A similar algorithm for finding an M -augmenting path regardless of whether G contains a perfect match-
ing.

Algorithm 2. Input: A bipartite graph G = (V, E) with parts A and B, a matching M in G, the set of
unmatched vertices U of A and the set of unmatched vertex W of B.

Output: Either

1. An M -augmenting path in G, or

2. “An M -augmenting path does not exist in G.”

Build a digraph H with vertex set A and directed edges {(u, v)|∃v ∈ B, (u, v) 6∈M, (v, w) ∈M}.
Run a graph search algorithm (e.g., DFS or BFS) in H starting from U and see if we can reach a vertex in N(W ).
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