
Chapter 9

Deep Generative Models

The traditional graph generation approaches discussed in the previous chapter
are useful in many settings. They can be used to e�ciently generate synthetic
graphs that have certain properties, and they can be used to give us insight
into how certain graph structures might arise in the real world. However, a key
limitation of those traditional approaches is that they rely on a fixed, hand-
crafted generation process. In short, the traditional approaches can generate
graphs, but they lack the ability to learn a generative model from data.

In this chapter, we will introduce various approaches that address exactly
this challenge. These approaches will seek to learn a generative model of graphs
based on a set of training graphs. These approaches avoid hand-coding par-
ticular properties—such as community structure or degree distributions—into
a generative model. Instead, the goal of these approaches is to design models
that can observe a set of graphs {G1, ...,Gn} and learn to generate graphs with
similar characteristics as this training set.

We will introduce a series of basic deep generative models for graphs. These
models will adapt three of the most popular approaches to building general
deep generative models: variational autoencoders (VAEs), generative adversar-
ial networks (GANs), and autoregressive models. We will focus on the simple
and general variants of these models, emphasizing the high-level details and
providing pointers to the literature where necessary. Moreover, while these
generative techniques can in principle be combined with one another—for ex-
ample, VAEs are often combined with autoregressive approaches—we will not
discuss such combinations in detail here. Instead, we will begin with a dis-
cussion of basic VAE models for graphs, where we seek to generate an entire
graph all-at-once in an autoencoder style. Following this, we will discuss how
GAN-based objectives can be used in lieu of variational losses, but still in the
setting where the graphs are generated all-at-once. These all-at-once genera-
tive models are analogous to the ER and SBM generative models from the last
chapter, in that we sample all edges in the graph simultaneously. Finally, the
chapter will close with a discussion of autoregressive approaches, which allow
one to generate a graph incrementally instead of all-at-once (e.g., generating a

108

9.1. VARIATIONAL AUTOENCODER APPROACHES 109

Figure 9.1: Illustration of a standard VAE model applied to the graph setting.
An encoder neural network maps the input graph G = (A,X) to a posterior
distribution q�(Z|G) over latent variables Z. Given a sample from this posterior,
the decoder model p✓(A|Z) attempts to reconstruct the adjacency matrix.

graph node-by-node). These autoregressive approaches bear similarities to the
preferential attachment model from the previous chapter in that the probability
of adding an edge at each step during generation depends on what edges were
previously added to the graph.

For simplicity, all the methods we discuss will only focus on generating graph
structures (i.e., adjacency matrices) and not on generating node or edge features.
This chapter assumes a basic familiarity with VAEs, GANs, and autoregressive
generative models, such as LSTM-based language models. We refer the reader
to Goodfellow et al. [2016] for background reading in these areas.

Of all the topics in this book, deep generative models of graphs are both the
most technically involved and the most nascent in their development. Thus, our
goal in this chapter is to introduce the key methodological frameworks that have
inspired the early research in this area, while also highlighting a few influential
models. As a consequence, we will often eschew low-level details in favor of a
more high-level tour of this nascent sub-area.

9.1 Variational Autoencoder Approaches

Variational autoencoders (VAEs) are one of the most popular approaches to
develop deep generative models [Kingma and Welling, 2013]. The theory and
motivation of VAEs is deeply rooted in the statistical domain of variational in-
ference, which we briefly touched upon in Chapter 7. However, for the purposes
of this book, the key idea behind applying a VAE to graphs can be summa-
rized as follows (Figure 9.1): our goal is to train a probabilistic decoder model
p✓(A|Z), from which we can sample realistic graphs (i.e., adjacency matrices)
Â ⇠ p✓(A|Z) by conditioning on a latent variable Z. In a probabilistic sense,
we aim to learn a conditional distribution over adjacency matrices (with the
distribution being conditioned on some latent variable).

In order to train a VAE, we combine the probabilistic decoder with a prob-

110 CHAPTER 9. DEEP GENERATIVE MODELS

abilistic encoder model q✓(Z|G). This encoder model maps an input graph G to
a posterior distribution over the latent variable Z. The idea is that we jointly
train the encoder and decoder so that the decoder is able to reconstruct training
graphs given a latent variable Z ⇠ q✓(Z|G) sampled from the encoder. Then,
after training, we can discard the encoder and generate new graphs by sam-
pling latent variables Z ⇠ p(Z) from some (unconditional) prior distribution
and feeding these sampled latents to the decoder.

In more formal and mathematical detail, to build a VAE for graphs we must
specify the following key components:

1. A probabilistic encoder model q�. In the case of graphs, the probabilistic
encoder model takes a graph G as input. From this input, q� then defines
a distribution q�(Z|G) over latent representations. Generally, in VAEs the
reparameterization trick with Gaussian random variables is used to design
a probabilistic q� function. That is, we specify the latent conditional dis-
tribution as Z ⇠ N (µ�(G),�(�(G)), where µ� and �� are neural networks
that generate the mean and variance parameters for a normal distribution,
from which we sample latent embeddings Z.

2. A probabilistic decodermodel p✓. The decoder takes a latent representation
Z as input and uses this input to specify a conditional distribution over
graphs. In this chapter, we will assume that p✓ defines a conditional
distribution over the entries of the adjacency matrix, i.e., we can compute
p✓(A[u, v] = 1|Z).

3. A prior distribution p(Z) over the latent space. In this chapter we will
adopt the standard Gaussian prior Z ⇠ N (0,1), which is commonly used
for VAEs.

Given these components and a set of training graphs {G1, ..,Gn}, we can
train a VAE model by minimizing the evidence likelihood lower bound (ELBO):

L =
X

Gi2{G1,...,Gn}

Eq✓(Z|Gi)
[p✓(Gi|Z)]�KL(q✓(Z|Gi)kp(Z)). (9.1)

The basic idea is that we seek to maximize the reconstruction ability of our
decoder—i.e., the likelihood term Eq✓(Z|Gi)

[p✓(Gi|Z)]—while minimizing the KL-
divergence between our posterior latent distribution q✓(Z|Gi) and the prior p(Z).

The motivation behind the ELBO loss function is rooted in the theory of
variational inference [Wainwright and Jordan, 2008]. However, the key intuition
is that we want to generate a distribution over latent representations so that
the following two (conflicting) goals are satisfied:

1. The sampled latent representations encode enough information to allow
our decoder to reconstruct the input.

2. The latent distribution is as close as possible to the prior.

9.1. VARIATIONAL AUTOENCODER APPROACHES 111

The first goal ensures that we learn to decode meaningful graphs from the
encoded latent representations, when we have training graphs as input. The
second goal acts as a regularizer and ensures that we can decode meaningful
graphs even when we sample latent representations from the prior p(Z). This
second goal is critically important if we want to generate new graphs after
training: we can generate new graphs by sampling from the prior and feeding
these latent embeddings to the decoder, and this process will only work if this
second goal is satisfied.

In the following sections, we will describe two di↵erent ways in which the
VAE idea can be instantiated for graphs. The approaches di↵er in how they
define the encoder, decoder, and the latent representations. However, they share
the overall idea of adapting the VAE model to graphs.

9.1.1 Node-level Latents

The first approach we will examine builds closely upon the idea of encoding and
decoding graphs based on node embeddings, which we introduced in Chapter
3. The key idea in this approach is that that the encoder generates latent
representations for each node in the graph. The decoder then takes pairs of
embeddings as input and uses these embeddings to predict the likelihood of an
edge occurring between the two nodes. This idea was first proposed by Kipf
and Welling [2016b] and termed the Variational Graph Autoencoder (VGAE).

Encoder model

The encoder model in this setup can be based on any of the GNN architectures
we discussed in Chapter 5. In particular, given an adjacency matrix A and node
features X as input, we use two separate GNNs to generate mean and variance
parameters, respectively, conditioned on this input:

µZ = GNNµ(A,X) log �Z = GNN�(A,X). (9.2)

Here, µZ is a |V| ⇥ d-dimensional matrix, which specifies a mean embedding
value for each node in the input graph. The log �Z 2 R|V |⇥d matrix similarly
specifies the log-variance for the latent embedding of each node.1

Given the encoded µZ and log �Z parameters, we can sample a set of latent
node embeddings by computing

Z = ✏ � exp (log(�Z)) + µZ, (9.3)

where ✏ ⇠ N (0,1) is a |V|⇥ d dimensional matrix with independently sampled
unit normal entries.

1Parameterizing the log-variance is often more stable than directly parameterizing the
variance.

112 CHAPTER 9. DEEP GENERATIVE MODELS

The decoder model

Given a matrix of sampled node embeddings Z 2 R|V |⇥d, the goal of the decoder
model is to predict the likelihood of all the edges in the graph. Formally, the
decoder must specify p✓(A|Z)—the posterior probability of the adjacency ma-
trix given the node embeddings. Again, here, many of the techniques we have
already discussed in this book can be employed, such as the various edge de-
coders introduced in Chapter 3. In the original VGAE paper, Kipf and Welling
[2016b] employ a simple dot-product decoder defined as follows:

p✓(A[u, v] = 1|zu, zv) = �(z>u zv), (9.4)

where � is used to denote the sigmoid function. Note, however, that a variety
of edge decoders could feasibly be employed, as long as these decoders generate
valid probability values.

To compute the reconstruction loss in Equation (9.1) using this approach,
we simply assume independence between edges and define the posterior p✓(G|Z)
over the full graph as follows:

p✓(G|Z) =
Y

(u,v)2V2

p✓(A[u, v] = 1|zu, zv), (9.5)

which corresponds to a binary cross-entropy loss over the edge probabilities.
To generate discrete graphs after training, we can sample edges based on the
posterior Bernoulli distributions in Equation (9.4).

Limitations

The basic VGAE model sketched in the previous sections defines a valid gen-
erative model for graphs. After training this model to reconstruct a set of
training graphs, we could sample node embeddings Z from a standard normal
distribution and use our decoder to generate a graph. However, the generative
capacity of this basic approach is extremely limited, especially when a simple
dot-product decoder is used. The main issue is that the decoder has no param-
eters, so the model is not able to generate non-trivial graph structures without
a training graph as input. Indeed, in their initial work on the subject, Kipf and
Welling [2016b] proposed the VGAE model as an approach to generate node
embeddings, but they did not intend it as a generative model to sample new
graphs.

Some papers have proposed to address the limitations of VGAE as a gener-
ative model by making the decoder more powerful. For example, Grover et al.
[2019] propose to augment the decoder with an “iterative” GNN-based decoder.
Nonetheless, the simple node-level VAE approach has not emerged as a suc-
cessful and useful approach for graph generation. It has achieved strong results
on reconstruction tasks and as an autoencoder framework, but as a generative
model, this simple approach is severely limited.

9.1. VARIATIONAL AUTOENCODER APPROACHES 113

9.1.2 Graph-level Latents

As an alternative to the node-level VGAE approach described in the previous
section, one can also define variational autoencoders based on graph-level latent
representations. In this approach, we again use the ELBO loss (Equation 9.1) to
train a VAE model. However, we modify the encoder and decoder functions to
work with graph-level latent representations zG . The graph-level VAE described
in this section was first proposed by Simonovsky and Komodakis [2018], under
the name GraphVAE.

Encoder model

The encoder model in a graph-level VAE approach can be an arbitrary GNN
model augmented with a pooling layer. In particular, we will let GNN : Z|V|⇥|V|⇥
R|V |⇥m ! R||V |⇥d denote any k-layer GNN, which outputs a matrix of node
embeddings, and we will use POOL : R||V |⇥d ! Rd to denote a pooling function
that maps a matrix of node embeddings Z 2 R|V |⇥d to a graph-level embedding
vector zG 2 Rd (as described in Chapter 5). Using this notation, we can define
the encoder for a graph-level VAE by the following equations:

µzG = POOLµ (GNNµ(A,X)) log �zG = POOL� (GNN�(A,X)) , (9.6)

where again we use two separate GNNs to parameterize the mean and variance of
a posterior normal distribution over latent variables. Note the critical di↵erence
between this graph-level encoder and the node-level encoder from the previous
section: here, we are generating a mean µzG 2 Rd and variance parameter
log �zG 2 Rd for a single graph-level embedding zG ⇠ N (µzG ,�zG), whereas in
the previous section we defined posterior distributions for each individual node.

Decoder model

The goal of the decoder model in a graph-level VAE is to define p✓(G|zG),
the posterior distribution of a particular graph structure given the graph-level
latent embedding. The original GraphVAE model proposed to address this
challenge by combining a basic multi-layer perceptron (MLP) with a Bernoulli
distributional assumption [Simonovsky and Komodakis, 2018]. In this approach,
we use an MLP to map the latent vector zG to a matrix Ã 2 [0, 1]|V|⇥|V| of edge
probabilities:

Ã = � (MLP(zG)) , (9.7)

where the sigmoid function � is used to guarantee entries in [0, 1]. In principle,
we can then define the posterior distribution in an analogous way as the node-
level case:

p✓(G|zG) =
Y

(u,v)2V

Ã[u, v]A[u, v] + (1� Ã[u, v])(1�A[u, v]), (9.8)

where A denotes the true adjacency matrix of graph G and Ã is our predicted
matrix of edge probabilities. In other words, we simply assume independent

114 CHAPTER 9. DEEP GENERATIVE MODELS

Bernoulli distributions for each edge, and the overall log-likelihood objective
is equivalent to set of independent binary cross-entropy loss function on each
edge. However, there are two key challenges in implementing Equation (9.8) in
practice:

1. First, if we are using an MLP as a decoder, then we need to assume
a fixed number of nodes. Generally, this problem is addressed by
assuming a maximum number of nodes and using a masking approach. In
particular, we can assume a maximum number of nodes nmax, which limits
the output dimension of the decoder MLP to matrices of size nmax⇥nmax.
To decode a graph with |V| < nmax nodes during training, we simply mask
(i.e., ignore) all entries in Ã with row or column indices greater than |V|.
To generate graphs of varying sizes after the model is trained, we can
specify a distribution p(n) over graph sizes with support {2, ..., nmax} and
sample from this distribution to determine the size of the generated graphs.
A simple strategy to specify p(n) is to use the empirical distribution of
graph sizes in the training data.

2. The second key challenge in applying Equation (9.8) in practice is that we
do not know the correct ordering of the rows and columns in Ã
when we are computing the reconstruction loss. The matrix Ã is
simply generated by an MLP, and when we want to use Ã to compute the
likelihood of a training graph, we need to implicitly assume some ordering
over the nodes (i.e., the rows and columns of Ã). Formally, the loss in
Equation (9.8) requires that we specify a node ordering ⇡ 2 ⇧ to order
the rows and columns in Ã.

This is important because if we simply ignore this issue, then the decoder
can overfit to the arbitrary node orderings used during training. There are
two popular strategies to address this issue. The first approach—proposed
by Simonovsky and Komodakis [2018]—is to apply a graph matching
heuristic to try to find the node ordering of Ã for each training graph
that gives the highest likelihood, which modifies the loss to

p✓(G|zG) = max
⇡2⇧

Y

(u,v)2V

Ã⇡[u, v]A[u, v]+(1�Ã⇡[u, v])(1�A[u, v]), (9.9)

where we use Ã⇡ to denote the predicted adjacency matrix under a specific
node ordering ⇡. Unfortunately, however, computing the maximum in
Equation (9.9)—even using heuristic approximations—is computationally
expensive, and models based on graph matching are unable to scale to
graphs with more than hundreds of nodes. More recently, authors have
tended to use heuristic node orderings. For example, we can order nodes
based on a depth-first or breadth-first search starting from the highest-
degree node. In this approach, we simply specify a particular ordering
function ⇡ and compute the loss with this ordering:

p✓(G|zG) ⇡
Y

(u,v)2V

Ã⇡[u, v]A[u, v] + (1� Ã⇡[u, v])(1�A[u, v]),

9.2. ADVERSARIAL APPROACHES 115

or we consider a small set of heuristic orderings ⇡1, ...,⇡n and average over
these orderings:

p✓(G|zG) ⇡
X

⇡i2{⇡1,...,⇡n}

Y

(u,v)2V

Ã⇡i [u, v]A[u, v]+(1�Ã⇡i [u, v])(1�A[u, v]).

These heuristic orderings do not solve the graph matching problem, but
they seem to work well in practice. Liao et al. [2019a] provides a detailed
discussion and comparison of these heuristic ordering approaches, as well
as an interpretation of this strategy as a variational approximation.

Limitations

As with the node-level VAE approach, the basic graph-level framework has se-
rious limitations. Most prominently, using graph-level latent representations
introduces the issue of specifying node orderings, as discussed above. This
issue—together with the use of MLP decoders—currently limits the application
of the basic graph-level VAE to small graphs with hundreds of nodes or less.
However, the graph-level VAE framework can be combined with more e↵ective
decoders—including some of the autoregressive methods we discuss in Section
9.3—which can lead to stronger models. We will mention one prominent exam-
ple of such as approach in Section 9.5, when we highlight the specific task of
generating molecule graph structures.

9.2 Adversarial Approaches

Variational autoencoders (VAEs) are a popular framework for deep generative
models—not just for graphs, but for images, text, and a wide-variety of data
domains. VAEs have a well-defined probabilistic motivation, and there are many
works that leverage and analyze the structure of the latent spaces learned by
VAE models. However, VAEs are also known to su↵er from serious limitations—
such as the tendency for VAEs to produce blurry outputs in the image domain.
Many recent state-of-the-art generative models leverage alternative generative
frameworks, with generative adversarial networks (GANs) being one of the most
popular [Goodfellow et al., 2014].

The basic idea behind a general GAN-based generative models is as follows.
First, we define a trainable generator network g✓ : Rd ! X . This generator
network is trained to generate realistic (but fake) data samples x̃ 2 X by taking
a random seed z 2 Rd as input (e.g., a sample from a normal distribution).
At the same time, we define a discriminator network d� : X ! [0, 1]. The
goal of the discriminator is to distinguish between real data samples x 2 X
and samples generated by the generator x̃ 2 X . Here, we will assume that
discriminator outputs the probability that a given input is fake.

To train a GAN, both the generator and discriminator are optimized jointly
in an adversarial game:

min
✓

max
�

Ex⇠pdata(x)[log(1� d�(x))] + Ez⇠pseed(z)[log(d�(g✓(z))], (9.10)

116 CHAPTER 9. DEEP GENERATIVE MODELS

where pdata(x) denotes the empirical distribution of real data samples (e.g.,
a uniform sample over a training set) and pseed(z) denotes the random seed
distribution (e.g., a standard multivariate normal distribution). Equation (9.10)
represents a minimax optimization problem. The generator is attempting to
minimize the discriminatory power of the discriminator, while the discriminator
is attempting to maximize its ability to detect fake samples. The optimization of
the GAN minimax objective—as well as more recent variations—is challenging,
but there is a wealth of literature emerging on this subject [Brock et al., 2018,
Heusel et al., 2017, Mescheder et al., 2018].

A basic GAN approach to graph generation

In the context of graph generation, a GAN-based approach was first employed
in concurrent work by Bojchevski et al. [2018] and De Cao and Kipf [2018]. The
basic approach proposed by De Cao and Kipf [2018]—which we focus on here—is
similar to the graph-level VAE discussed in the previous section. For instance,
for the generator, we can employ a simple multi-layer perceptron (MLP) to
generate a matrix of edge probabilities given a seed vector z:

Ã = � (MLP(z)) , (9.11)

Given this matrix of edge probabilities, we can then generate a discrete adja-
cency matrix Â 2 Z|V|⇥|V| by sampling independent Bernoulli variables for each
edge, with probabilities given by the entries of Ã; i.e., Â[u, v] ⇠ Bernoulli(Ã[u, v]).
For the discriminator, we can employ any GNN-based graph classification model.
The generator model and the discriminator model can then be trained according
to Equation (9.10) using standard tools for GAN optimization.

Benefits and limitations of the GAN approach

As with the VAE approaches, the GAN framework for graph generation can be
extended in various ways. More powerful generator models can be employed—
for instance, leveraging the autoregressive techniques discussed in the next
section—and one can even incorporate node features into the generator and
discriminator models [De Cao and Kipf, 2018].

One important benefit of the GAN-based framework is that it removes the
complication of specifying a node ordering in the loss computation. As long as
the discriminator model is permutation invariant—which is the case for almost
every GNN—then the GAN approach does not require any node ordering to
be specified. The ordering of the adjacency matrix generated by the generator
is immaterial if the discriminator is permutation invariant. However, despite
this important benefit, GAN-based approaches to graph generation have so far
received less attention and success than their variational counterparts. This is
likely due to the di�culties involved in the minimax optimization that GAN-
based approaches require, and investigating the limits of GAN-based graph gen-
eration is currently an open problem.

9.3. AUTOREGRESSIVE METHODS 117

9.3 Autoregressive Methods

The previous two sections detailed how the ideas of variational autoencoding
(VAEs) and generative adversarial networks (GANs) can be applied to graph
generation. However, both the basic GAN and VAE-based approaches that we
discussed used simple multi-layer perceptrons (MLPs) to generate adjacency
matrices. In this section, we will introduce more sophisticated autoregressive
methods that can decode graph structures from latent representations. The
methods that we introduce in this section can be combined with the GAN and
VAE frameworks that we introduced previously, but they can also be trained as
standalone generative models.

9.3.1 Modeling Edge Dependencies

The simple generative models discussed in the previous sections assumed that
edges were generated independently. From a probabilistic perspective, we de-
fined the likelihood of a graph given a latent representation z by decomposing
the overall likelihood into a set of independent edge likelihoods as follows:

P (G|z) =
Y

(u,v)2V2

P (A[u, v]|z). (9.12)

Assuming independence between edges is convenient, as it simplifies the likeli-
hood model and allows for e�cient computations. However, it is a strong and
limiting assumption, since real-world graphs exhibit many complex dependen-
cies between edges. For example, the tendency for real-world graphs to have high
clustering coe�cients is di�cult to capture in an edge-independent model. To
alleviate this issue—while still maintaining tractability—autoregressive model
relax the assumption of edge independence.

Instead, in the autoregressive approach, we assume that edges are generated
sequentially and that the likelihood of each edge can be conditioned on the edges
that have been previously generated. To make this idea precise, we will use L
to denote the lower-triangular portion of the adjacency matrix A. Assuming we
are working with simple graphs, A and L contain exactly the same information,
but it will be convenient to work with L in the following equations. We will then
use the notation L[v1, :] to denote the row of L corresponding to node v1, and we
will assume that the rows of L are indexed by nodes v1, ..., v|V|. Note that due to
the lower-triangular nature of L, we will have that L[vi, vj] = 0, 8j > i, meaning
that we only need to be concerned with generating the first i entries for any
row L[vi, :]; the rest can simply be padded with zeros. Given this notation, the
autoregressive approach amounts to the following decomposition of the overall
graph likelihood:

P (G|z) =
|V|Y

i=1

P (L[vi, :]|L[v1, :], ...,L[vi�1, :], z). (9.13)

In other words, when we generate row L[vi, :], we condition on all the previous
generated rows L[vj , :] with j < i.

118 CHAPTER 9. DEEP GENERATIVE MODELS

9.3.2 Recurrent Models for Graph Generation

We will now discuss two concrete instantiations of the autoregressive generation
idea. These two approaches build upon ideas first proposed in Li et al. [2018]
and are generally indicative of the strategies that one could employ for this
task. In the first model we will review—called GraphRNN [You et al., 2018]—we
model autoregressive dependencies using a recurrent neural network (RNN). In
the second approach—called graph recurrent attention network (GRAN) [Liao
et al., 2019a]—we generate graphs by using a GNN to condition on the adjacency
matrix that has been generated so far.

GraphRNN

The first model to employ this autoregressive generation approach was GraphRNN
[You et al., 2018]. The basic idea in the GraphRNN approach is to use a hier-
archical RNN to model the edge dependencies in Equation (9.13).

The first RNN in the hierarchical model—termed the graph-level RNN—is
used to model the state of the graph that has been generated so far. Formally,
the graph-level RNN maintains a hidden state hi, which is updated after gen-
erating each row of the adjacency matrix L[vi, :]:

hi+1 = RNNgraph(hi,L[vi, L]), (9.14)

where we use RNNgraph to denote a generic RNN state update with hi cor-
responding to the hidden state and L[vi, L] to the observation.2 In You et al.
[2018]’s original formulation, a fixed initial hidden state h0 = 0 is used to initial-
ize the graph-level RNN, but in principle this initial hidden state could also be
learned by a graph encoder model or sampled from a latent space in a VAE-style
approach.

The second RNN—termed the node-level RNN or RNNnode—generates the
entries of L[vi, :] in an autoregressive manner. RNNnode takes the graph-level
hidden state hi as an initial input and then sequentially generates the binary
values of L[vi, ;], assuming a conditional Bernoulli distribution for each entry.
The overall GraphRNN approach is called hierarchical because the node-level
RNN is initialized at each time-step with the current hidden state of the graph-
level RNN.

Both the graph-level RNNgraph and the node-level RNNnode can be opti-
mized to maximize the likelihood the training graphs (Equation 9.13) using the
teaching forcing strategy [Williams and Zipser, 1989], meaning that the ground
truth values of L are always used to update the RNNs during training. To
control the size of the generated graphs, the RNNs are also trained to output
end-of-sequence tokens, which are used to specify the end of the generation pro-
cess. Note that—as with the graph-level VAE approaches discussed in Section
9.1—computing the likelihood in Equation (9.13) requires that we assume a
particular ordering over the generated nodes.

2You et al. [2018] use GRU-style RNNs but in principle LSTMs or other RNN architecture
could be employed.

9.3. AUTOREGRESSIVE METHODS 119

Figure 9.2: Illustration of the GRAN generation approach [Liao et al., 2019a].

After training to maximize the likelihood of the training graphs (Equation
9.13), the GraphRNN model can be used to generate graphs at test time by
simply running the hierarchical RNN starting from the fixed, initial hidden
state h0. Since the edge-level RNN involves a stochastic sampling process to
generate the discrete edges, the GraphRNN model is able to generate diverse
samples of graphs even when a fixed initial embedding is used. However—
as mentioned above—the GraphRNN model could, in principle, be used as a
decoder or generator within a VAE or GAN framework, respectively.

Graph Recurrent Attention Networks (GRAN)

The key benefit of the GraphRNN approach—discussed above—is that it mod-
els dependencies between edges. Using an autoregressive modeling assumption
(Equation 9.13), GraphRNN can condition the generation of edges at generation
step i based on the state of the graph that has already been generated during
generation steps 1, ...i � 1. Conditioning in this way makes it much easier to
generate complex motifs and regular graph structures, such as grids. For ex-
ample, in Figure 9.3, we can see that GraphRNN is more capable of generating
grid-like structures, compared to the basic graph-level VAE (Section 9.1). How-
ever, the GraphRNN approach still has serious limitations. As we can see in
Figure 9.3, the GraphRNN model still generates unrealistic artifacts (e.g., long
chains) when trained on samples of grids. Moreover, GraphRNN can be di�cult
to train and scale to large graphs due to the need to backpropagate through
many steps of RNN recurrence.

To address some of the limitations of the GraphRNN approach, Liao et al.
[2019a] proposed the GRAN model. GRAN—which stands for graph recurrent
attention networks—maintains the autoregressive decomposition of the gener-
ation process. However, instead of using RNNs to model the autoregressive
generation process, GRAN uses GNNs. The key idea in GRAN is that we
can model the conditional distribution of each row of the adjacency matrix by
running a GNN on the graph that has been generated so far (Figure 9.2):

P (L[vi, :]|L[v1, :], ...,L[vi�1, :], z) ⇡ GNN(L[v1 : vi�1, :], X̃). (9.15)

120 CHAPTER 9. DEEP GENERATIVE MODELS

Here, we use L[v1 : vi�1, :] to denote the lower-triangular adjacency matrix of the
graph that has been generated up to generation step i. The GNN in Equation
(9.15) can be instantiated in many ways, but the crucial requirement is that
it generates a vector of edge probabilities L[vi, :], from which we can sample
discrete edge realizations during generation. For example, Liao et al. [2019a]
use a variation of the graph attention network (GAT) model (see Chapter 5) to
define this GNN. Finally, since there are no node attributes associated with the
generated nodes, the input feature matrix X̃ to the GNN can simply contain
randomly sampled vectors (which are useful to distinguish between nodes).

The GRAN model can be trained in an analogous manner as GraphRNN
by maximizing the likelihood of training graphs (Equation 9.13) using teacher
forcing. Like the GraphRNN model, we must also specify an ordering over nodes
to compute the likelihood on training graphs, and Liao et al. [2019a] provides a
detailed discussion on this challenge. Lastly, like the GraphRNN model, we can
use GRAN as a generative model after training simply by running the stochastic
generation process (e.g., from a fixed initial state), but this model could also be
integrated into VAE or GAN-based frameworks.

The key benefit of the GRAN model—compared to GraphRNN—is that it
does not need to maintain a long and complex history in a graph-level RNN.
Instead, the GRAN model explicitly conditions on the already generated graph
using a GNN at each generation step. Liao et al. [2019a] also provide a de-
tailed discussion on how the GRAN model can be optimized to facilitate the
generation of large graphs with hundreds of thousands of nodes. For example,
one key performance improvement is the idea that multiple nodes can be added
simultaneously in a single block, rather than adding nodes one at a time. This
idea is illustrated in Figure 9.2.

9.4 Evaluating Graph Generation

The previous three sections introduced a series of increasingly sophisticated
graph generation approaches, based on VAEs, GANs, and autoregressive mod-
els. As we introduced these approaches, we hinted at the superiority of some
approaches over others. We also provided some examples of generated graphs
in Figure 9.3, which hint at the varying capabilities of the di↵erent approaches.
However, how do we actually quantitatively compare these di↵erent models?
How can we say that one graph generation approach is better than another?
Evaluating generative models is a challenging task, as there is no natural notion
of accuracy or error. For example, we could compare reconstruction losses or
model likelihoods on held out graphs, but this is complicated by the lack of a
uniform likelihood definition across di↵erent generation approaches.

In the case of general graph generation, the current practice is to analyze
di↵erent statistics of the generated graphs, and to compare the distribution of
statistics for the generated graphs to a test set [Liao et al., 2019a]. Formally,
assume we have set of graph statistics S = (s1, s2, ..., sn), where each of these
statistics si,G : R ! [0, 1] is assumed to define a univariate distribution over R

9.5. MOLECULE GENERATION 121

Figure 9.3: Examples of graphs generated by a basic graph-level VAE (Section
9.1), as well as the GraphRNN and GRAN models. Each row corresponds to
a di↵erent dataset. The first column shows an example of a real graph from
the dataset, while the other columns are randomly selected samples of graphs
generated by the corresponding model [Liao et al., 2019a].

for a given graph G. For example, for a given graph G, we can compute the degree
distribution, the distribution of clustering coe�cients, and the distribution of
di↵erent motifs or graphlets. Given a particular statistic si—computed on both
a test graph si,Gtest and a generated graph si,Ggen—we can compute the distance
between the statistic’s distribution on the test graph and generated graph using
a distributional measure, such as the total variation distance:

d(si,Gtest , si,Ggen) = sup
x2R

|si,Gtest(x)� si,Ggen(x)|. (9.16)

To get measure of performance, we can compute the average pairwise distribu-
tional distance between a set of generated graphs and graphs in a test set.

Existing works have used this strategy with graph statistics such as degree
distributions, graphlet counts, and spectral features, with distributional dis-
tances computed using variants of the total variation score and the first Wasser-
stein distance [Liao et al., 2019b, You et al., 2018].

9.5 Molecule Generation

All the graph generation approaches we introduced so far are useful for gen-
eral graph generation. The previous sections did not assume a particular data
domain, and our goal was simply to generate realistic graph structures (i.e.,

122 CHAPTER 9. DEEP GENERATIVE MODELS

adjacency matrices) based on a given training set of graphs. It is worth not-
ing, however, that many works within the general area of graph generation are
focused specifically on the task of molecule generation.

The goal of molecule generation is to generate molecular graph structures
that are both valid (e.g., chemically stable) and ideally have some desirable
properties (e.g., medicinal properties or solubility). Unlike the general graph
generation problem, research on molecule generation can benefit substantially
from domain-specific knowledge for both model design and evaluation strategies.
For example, Jin et al. [2018] propose an advanced variant of the graph-level
VAE approach (Section 9.1) that leverages knowledge about known molecular
motifs. Given the strong dependence on domain-specific knowledge and the
unique challenges of molecule generation compared to general graphs, we will
not review these approaches in detail here. Nonetheless, it is important to
highlight this domain as one of the fastest growing subareas of graph generation.

