
Chapter 7

Theoretical Motivations

In this chapter, we will visit some of the theoretical underpinnings of graph neu-
ral networks (GNNs). One of the most intriguing aspects of GNNs is that they
were independently developed from distinct theoretical motivations. From one
perspective, GNNs were developed based on the theory of graph signal process-
ing, as a generalization of Euclidean convolutions to the non-Euclidean graph
domain [Bruna et al., 2014]. At the same time, however, neural message passing
approaches—which form the basis of most modern GNNs—were proposed by
analogy to message passing algorithms for probabilistic inference in graphical
models [Dai et al., 2016]. And lastly, GNNs have been motivated in several
works based on their connection to the Weisfeiler-Lehman graph isomorphism
test [Hamilton et al., 2017b].

This convergence of three disparate areas into a single algorithm framework
is remarkable. That said, each of these three theoretical motivations comes with
its own intuitions and history, and the perspective one adopts can have a sub-
stantial impact on model development. Indeed, it is no accident that we deferred
the description of these theoretical motivations until after the introduction of
the GNN model itself. In this chapter, our goal is to introduce the key ideas
underlying these di↵erent theoretical motivations, so that an interested reader
is free to explore and combine these intuitions and motivations as they see fit.

7.1 GNNs and Graph Convolutions

In terms of research interest and attention, the derivation of GNNs based on
connections to graph convolutions is the dominant theoretical paradigm. In this
perspective, GNNs arise from the question: How can we generalize the notion
of convolutions to general graph-structured data?
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7.1.1 Convolutions and the Fourier Transform

In order to generalize the notion of a convolution to graphs, we first must define
what we wish to generalize and provide some brief background details. Let
f and h be two functions. We can define the general continuous convolution
operation ? as

(f ? h)(x) =

Z

Rd

f(y)h(x� y)dy. (7.1)

One critical aspect of the convolution operation is that it can be computed by
an element-wise product of the Fourier transforms of the two functions:

(f ? h)(x) = F�1 (F(f(x)) � F(h(x))) , (7.2)

where

F(f(x)) = f̂(s) =

Z

Rd

f(x)e�2⇡x>si
dx (7.3)

is the Fourier transform of f(x) and its inverse Fourier transform is defined as

F�1(f̂(s)) =

Z

Rd

f̂(s)e2⇡x
>si

ds. (7.4)

In the simple case of univariate discrete data over a finite domain t 2
{0, .., N � 1} (i.e., restricting to finite impulse response filters) we can simplify
these operations to a discrete circular convolution1

(f ?N h)(t) =
N�1X

⌧=0

f(⌧)h((t� ⌧)mod N ) (7.5)

and a discrete Fourier transform (DFT)

sk =
1p
N

N�1X

t=0

f(xt)e
� i2⇡

N kt (7.6)

=
1p
N

N�1X

t=0

f(xt)

✓
cos

✓
2⇡

N
kt

◆
� isin

✓
2⇡

N
kt

◆◆
(7.7)

where sk 2 {s0..., sN�1} is the Fourier coe�cient corresponding to the se-
quence (f(x0), f(x1), ..., f(xN�1)). In Equation (7.5) we use the notation ?N

to emphasize that this is a circular convolution defined over the finite domain
{0, ..., N � 1}, but we will often omit this subscript for notational simplicity.

Interpreting the (discrete) Fourier transform The Fourier trans-
form essentially tells us how to represent our input signal as a weighted
sum of (complex) sinusoidal waves. If we assume that both the input data

1For simplicity, we limit ourselves to finite support for both f and h and define the boundary
condition using a modulus operator and circular convolution.
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and its Fourier transform are real-valued, we can interpret the sequence
[s0, s1, ..., sN�1] as the coe�cients of a Fourier series. In this view, sk tells
us the amplitude of the complex sinusoidal component e

� i2⇡
N k, which has

frequency 2⇡k
N (in radians). Often we will discuss high-frequency components

that have a large k and vary quickly as well as low-frequency components
that have k << N and vary more slowly. This notion of low and high
frequency components will also have an analog in the graph domain, where
we will consider signals propagating between nodes in the graph.

In terms of signal processing, we can view the discrete convolution f ?h as a
filtering operation of the series (f(x1), f(x2), ..., f(xN )) by a filter h. Generally,
we view the series as corresponding to the values of the signal throughout time,
and the convolution operator applies some filter (e.g., a band-pass filter) to
modulate this time-varying signal.

One critical property of convolutions, which we will rely on below, is the fact
that they are translation (or shift) equivariant:

f(t+ a) ? g(t) = f(t) ? g(t+ a) = (f ? g)(t+ a). (7.8)

This property means that translating a signal and then convolving it by a filter
is equivalent to convolving the signal and then translating the result. Note that
as a corollary convolutions are also equivariant to the di↵erence operation:

�f(t) ? g(t) = f(t) ?�g(t) = �(f ? g)(t), (7.9)

where
�f(t) = f(t+ 1)� f(t) (7.10)

is the Laplace (i.e., di↵erence) operator on discrete univariate signals.
These notions of filtering and translation equivariance are central to digital

signal processing (DSP) and also underlie the intuition of convolutional neu-
ral networks (CNNs), which utilize a discrete convolution on two-dimensional
data. We will not attempt to cover even a small fraction of the fields of digital
signal processing, Fourier analysis, and harmonic analysis here, and we point
the reader to various textbooks on these subjects [Grafakos, 2004, Katznelson,
2004, Oppenheim et al., 1999, Rabiner and Gold, 1975].

7.1.2 From Time Signals to Graph Signals

In the previous section, we (briefly) introduced the notions of filtering and con-
volutions with respect to discrete time-varying signals. We now discuss how we
can connect discrete time-varying signals with signals on a graph. Suppose we
have a discrete time-varying signal f(t0), f(t2), ..., f(tN�1). One way of viewing
this signal is as corresponding to a chain (or cycle) graph (Figure 7.1), where
each point in time t is represented as a node and each function value f(t) rep-
resents the signal value at that time/node. Taking this view, it is convenient to
represent the signal as a vector f 2 RN , with each dimension corresponding to
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0
…

1 N-2 N-1
Figure 7.1: Representation of a (cyclic) time-series as a chain graph.

a di↵erent node in the chain graph. In other words, we have that f [t] = f(t)
(as a slight abuse of notation). The edges in the graph thus represent how the
signal propagates; i.e., the signal propagates forward in time.2

One interesting aspect of viewing a time-varying signal as a chain graph is
that we can represent operations, such as time-shifts, using the adjacency and
Laplacian matrices of the graph. In particular, the adjacency matrix for this
chain graph corresponds to the circulant matrix Ac with

Ac[i, j] =

(
1 if j = (i+ 1)mod N

0 otherwise,
(7.11)

and the (unnormalized) Laplacian Lc for this graph can be defined as

Lc = I�Ac. (7.12)

We can then represent time shifts as multiplications by the adjacency matrix,

(Acf)[t] = f [(t+ 1)mod N ], (7.13)

and the di↵erence operation by multiplication by the Laplacian,

(Lcf)[t] = f [t]� f [(t+ 1)mod N ]. (7.14)

In this way, we can see that there is a close connection between the adjacency
and Laplacian matrices of a graph, and the notions of shifts and di↵erences
for a signal. Multiplying a signal by the adjacency matrix propagates signals
from node to node, and multiplication by the Laplacian computes the di↵erence
between a signal at each node and its immediate neighbors.

Given this graph-based view of transforming signals through matrix multi-
plication, we can similarly represent convolution by a filter h as matrix multi-
plication on the vector f :

(f ? h)(t) =
N�1X

⌧=0

f(⌧)h(⌧ � t) (7.15)

= Qhf , (7.16)

2Note that we add a connection between the last and first nodes in the chain as a boundary
condition to keep the domain finite.
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where Qh 2 RN⇥N is a matrix representation of the convolution operation by
filter function h and f = [f(t0), f(t2), ..., f(tN�1)]> is a vector representation
of the function f . Thus, in this view, we consider convolutions that can be
represented as a matrix transformation of the signal at each node in the graph.3

Of course, to have the equality between Equation (7.15) and Equation (7.16),
the matrix Qh must have some specific properties. In particular, we require
that multiplication by this matrix satisfies translation equivariance, which cor-
responds to commutativity with the circulant adjacency matrix Ac, i.e., we
require that

AcQh = QhAc. (7.17)

The equivariance to the di↵erence operator is similarly defined as

LcQh = QhLc. (7.18)

It can be shown that these requirements are satisfied for a real matrix Qh if

Qh = pN (Ac) =
N�1X

i=0

↵iA
i
c, (7.19)

i.e., if Qh is a polynomial function of the adjacency matrix Ac. In digital signal
processing terms, this is equivalent to the idea of representing general filters as
polynomial functions of the shift operator [Ortega et al., 2018].4

Generalizing to general graphs

We have now seen how shifts and convolutions on time-varying discrete signals
can be represented based on the adjacency matrix and Laplacian matrix of a
chain graph. Given this view, we can easily generalize these notions to more
general graphs.

In particular, we saw that a time-varying discrete signal corresponds to a
chain graph and that the notion of translation/di↵erence equivariance corre-
sponds to a commutativity property with adjacency/Laplacian of this chain
graph. Thus, we can generalize these notions beyond the chain graph by con-
sidering arbitrary adjacency matrices and Laplacians. While the signal simply
propagates forward in time in a chain graph, in an arbitrary graph we might have
multiple nodes propagating signals to each other, depending on the structure of
the adjacency matrix. Based on this idea, we can define convolutional filters on
general graphs as matrices Qh that commute with the adjacency matrix or the
Laplacian.

More precisely, for an arbitrary graph with adjacency matrix A, we can
represent convolutional filters as matrices of the following form:

Qh = ↵0I+ ↵1A+ ↵2A
2 + ...+ ↵NAN

. (7.20)

3This assumes a real-valued filter h.
4Note, however, that there are certain convolutional filters (e.g., complex-valued filters)

that cannot be represented in this way.
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Intuitively, this gives us a spatial construction of a convolutional filter on graphs.
In particular, if we multiply a node feature vector x 2 R|V | by such a convolution
matrix Qh, then we get

Qhx = ↵0Ix+ ↵1Ax+ ↵2A
2x+ ...+ ↵NANx, (7.21)

which means that the convolved signal Qhx[u] at each node u 2 V will corre-
spond to some mixture of the information in the node’s N -hop neighborhood,
with the ↵0, ...,↵N terms controlling the strength of the information coming
from di↵erent hops.

We can easily generalize this notion of a graph convolution to higher dimen-
sional node features. If we have a matrix of node features X 2 R|V|⇥m then we
can similarly apply the convolutional filter as

QhX = ↵0IX+ ↵1AX+ ↵2A
2X+ ...+ ↵NANX. (7.22)

From a signal processing perspective, we can view the di↵erent dimensions of
the node features as di↵erent “channels”.

Graph convolutions and message passing GNNs

Equation (7.22) also reveals the connection between the message passing GNN
model we introduced in Chapter 5 and graph convolutions. For example, in the
basic GNN approach (see Equation 6.5) each layer of message passing essentially
corresponds to an application of the simple convolutional filter

Qh = I+A (7.23)

combined with some learnable weight matrices and a non-linearity. In general,
each layer of message passing GNN architecture aggregates information from
a node’s local neighborhood and combines this information with the node’s
current representation (see Equation 5.4). We can view these message passing
layers as a generalization of the simple linear filter in Equation (7.23), where we
use more complex non-linear functions. Moreover, by stacking multiple message
passing layers, GNNs are able to implicitly operate on higher order polynomials
of the adjacency matrix.

The adjacency matrix, Laplacian, or a normalized variant? In
Equation (7.22) we defined a convolution matrix Qh for arbitrary graphs
as a polynomial of the adjacency matrix. Defining Qh in this way guar-
antees that our filter commutes with the adjacency matrix, satisfying a
generalized notion of translation equivariance. However, in general com-
mutativity with the adjacency matrix (i.e., translation equivariance) does
not necessarily imply commutativity with the Laplacian L = D�A (or any
of its normalized variants). In this special case of the chain graph, we were
able to define filter matrices Qh that simultaneously commute with both
A and L, but for more general graphs we have a choice to make in terms
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of whether we define convolutions based on the adjacency matrix or some
version of the Laplacian. Generally, there is no “right” decision in this case,
and there can be empirical trade-o↵s depending on the choice that is made.
Understanding the theoretical underpinnings of these trade-o↵s is an open
area of research [Ortega et al., 2018].

In practice researchers often use the symmetric normalized Laplacian
Lsym = D� 1

2LD� 1
2 or the symmetric normalized adjacency matrix Asym =

D� 1
2AD� 1

2 to define convolutional filters. There are two reasons why these
symmetric normalized matrices are desirable. First, both these matrices
have bounded spectrums, which gives them desirable numerical stability
properties. In addition—and perhaps more importantly—these two ma-
trices are simultaneously diagonalizable, which means that they share the
same eigenvectors. In fact, one can easily verify that there is a simple
relationship between their eigendecompositions, since

Lsym = I�Asym

)
Lsym = U⇤U> Asym = U(I�⇤)U>

, (7.24)

where U is the shared set of eigenvectors and ⇤ is the diagonal matrix
containing the Laplacian eigenvalues. This means that defining filters based
on one of these matrices implies commutativity with the other, which is a
very convenient and desirable property.

7.1.3 Spectral Graph Convolutions

We have seen how to generalize the notion of a signal and a convolution to the
graph domain. We did so by analogy to some important properties of discrete
convolutions (e.g., translation equivariance), and this discussion led us to the
idea of representing graph convolutions as polynomials of the adjacency matrix
(or the Laplacian). However, one key property of convolutions that we ignored
in the previous subsection is the relationship between convolutions and the
Fourier transform. In this section, we will thus consider the notion of a spectral
convolution on graphs, where we construct graph convolutions via an extension
of the Fourier transform to graphs. We will see that this spectral perspective
recovers many of the same results we previously discussed, while also revealing
some more general notions of a graph convolution.

The Fourier transform and the Laplace operator

To motivate the generalization of the Fourier transform to graphs, we rely on
the connection between the Fourier transform and the Laplace (i.e., di↵erence)
operator. We previously saw a definition of the Laplace operator � in the case
of a simple discrete time-varying signal (Equation 7.10) but this operator can
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be generalized to apply to arbitrary smooth functions f : Rd ! R as

�f(x) = r2
f(x) (7.25)

=
nX

i=1

@
2
f

@x2
. (7.26)

This operator computes the divergence r of the gradient rf(x). Intuitively, the
Laplace operator tells us the average di↵erence between the function value at a
point and function values in the neighboring regions surrounding this point.

In the discrete time setting, the Laplace operator simply corresponds to the
di↵erence operator (i.e., the di↵erence between consecutive time points). In
the setting of general discrete graphs, this notion corresponds to the Laplacian,
since by definition

(Lx)[i] =
X

j2V
A[i, j](x[i]� x[j]), (7.27)

which measures the di↵erence between the value of some signal x[i] at a node
i and the signal values of all of its neighbors. In this way, we can view the
Laplacian matrix as a discrete analog of the Laplace operator, since it allows us
to quantify the di↵erence between the value at a node and the values at that
node’s neighbors.

Now, an extremely important property of the Laplace operator is that its
eigenfunctions correspond to the complex exponentials. That is,

��(e2⇡ist) = �@
2(e2⇡ist)

@t2
= (2⇡s)2e2⇡ist, (7.28)

so the eigenfunctions of � are the same complex exponentials that make up
the modes of the frequency domain in the Fourier transform (i.e., the sinu-
soidal plane waves), with the corresponding eigenvalue indicating the frequency.
In fact, one can even verify that the eigenvectors u1, ...,un of the circulant
Laplacian Lc 2 Rn⇥n for the chain graph are uj = 1p

n
[1,!j ,!

2

j , ...,!
n
j ] where

!j = e
2⇡j
n .

The graph Fourier transform

The connection between the eigenfunctions of the Laplace operator and the
Fourier transform allows us to generalize the Fourier transform to arbitrary
graphs. In particular, we can generalize the notion of a Fourier transform by
considering the eigendecomposition of the general graph Laplacian:

L = U⇤U>
, (7.29)

where we define the eigenvectors U to be the graph Fourier modes, as a graph-
based notion of Fourier modes. The matrix⇤ is assumed to have the correspond-
ing eigenvalues along the diagonal, and these eigenvalues provide a graph-based
notion of di↵erent frequency values. In other words, since the eigenfunctions of
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the general Laplace operator correspond to the Fourier modes—i.e., the com-
plex exponentials in the Fourier series—we define the Fourier modes for a general
graph based on the eigenvectors of the graph Laplacian.

Thus, the Fourier transform of signal (or function) f 2 R|V| on a graph can
be computed as

s = U>f (7.30)

and its inverse Fourier transform computed as

f = Us. (7.31)

Graph convolutions in the spectral domain are defined via point-wise products
in the transformed Fourier space. In other words, given the graph Fourier
coe�cients U>f of a signal f as well as the graph Fourier coe�cients U>h of
some filter h, we can compute a graph convolution via element-wise products
as

f ?G h = U
�
U>f �U>h

�
, (7.32)

where U is the matrix of eigenvectors of the Laplacian L and where we have
used ?G to denote that this convolution is specific to a graph G.

Based on Equation (7.32), we can represent convolutions in the spectral
domain based on the graph Fourier coe�cients ✓h = U>h 2 R|V| of the function
h. For example, we could learn a non-parametric filter by directly optimizing
✓h and defining the convolution as

f ?G h = U
�
U>f � ✓h

�
(7.33)

= (Udiag(✓h)U
>)f (7.34)

where diag(✓h) is matrix with the values of ✓h on the diagonal. However, a filter
defined in this non-parametric way has no real dependency on the structure
of the graph and may not satisfy many of the properties that we want from a
convolution. For example, such filters can be arbitrarily non-local.

To ensure that the spectral filter ✓h corresponds to a meaningful convolution
on the graph, a natural solution is to parameterize ✓h based on the eigenvalues
of the Laplacian. In particular, we can define the spectral filter as pN (⇤), so
that it is a degree N polynomial of the eigenvalues of the Laplacian. Defining
the spectral convolution in this way ensures our convolution commutes with the
Laplacian, since

f ?G h = (UpN (⇤)U>)f (7.35)

= pN (L)f . (7.36)

Moreover, this definition ensures a notion of locality. If we use a degree k

polynomial, then we ensure that the filtered signal at each node depends on
information in its k-hop neighborhood.

Thus, in the end, deriving graph convolutions from the spectral perspective,
we can recover the key idea that graph convolutions can be represented as
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polynomials of the Laplacian (or one of its normalized variants). However, the
spectral perspective also reveals more general strategies for defining convolutions
on graphs.

Interpreting the Laplacian eigenvectors as frequencies In the stan-
dard Fourier transform we can interpret the Fourier coe�cients as corre-
sponding to di↵erent frequencies. In the general graph case, we can no
longer interpret the graph Fourier transform in this way. However, we can
still make analogies to high frequency and low frequency components. In
particular, we can recall that the eigenvectors ui, i = 1, ..., |V| of the Lapla-
cian solve the minimization problem:

minui2R|V|:ui?uj8j<i
u>
i Lui

u>
i uj

(7.37)

by the Rayleigh-Ritz Theorem. And we have that

u>
i Lui =

1

2

X

u,v2V
A[u, v](ui[u]� ui[v])

2 (7.38)

by the properties of the Laplacian discussed in Chapter 1. Together these
facts imply that the smallest eigenvector of the Laplacian corresponds to a
signal that varies from node to node by the least amount on the graph, the
second smallest eigenvector corresponds to a signal that varies the second
smallest amount, and so on. Indeed, we leveraged these properties of the
Laplacian eigenvectors in Chapter 1 when we performed spectral clustering.
In that case, we showed that the Laplacian eigenvectors can be used to
assign nodes to communities so that we minimize the number of edges that
go between communities. We can now interpret this result from a signal
processing perspective: the Laplacian eigenvectors define signals that vary
in a smooth way across the graph, with the smoothest signals indicating
the coarse-grained community structure of the graph.

7.1.4 Convolution-Inspired GNNs

The previous subsections generalized the notion of convolutions to graphs. We
saw that basic convolutional filters on graphs can be represented as polynomials
of the (normalized) adjacency matrix or Laplacian. We saw both spatial and
spectral motivations of this fact, and we saw how the spectral perspective can
be used to define more general forms of graph convolutions based on the graph
Fourier transform. In this section, we will briefly review how di↵erent GNN
models have been developed and inspired based on these connections.
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Purely convolutional approaches

Some of the earliest work on GNNs can be directly mapped to the graph convo-
lution definitions of the previous subsections. The key idea in these approaches
is that they use either Equation (7.34) or Equation (7.35) to define a convo-
lutional layer, and a full model is defined by stacking and combining multiple
convolutional layers with non-linearities. For example, in early work Bruna
et al. [2014] experimented with the non-parametric spectral filter (Equation
7.34) as well as a parametric spectral filter (Equation 7.35), where they defined
the polynomial pN (⇤) via a cubic spline approach. Following on this work,
De↵errard et al. [2016] defined convolutions based on Equation 7.35 and defined
pN (L) using Chebyshev polynomials. This approach benefits from the fact that
Chebyshev polynomials have an e�cient recursive formulation and have various
properties that make them suitable for polynomial approximation [Mason and
Handscomb, 2002]. In a related approach, Liao et al. [2019b] learn polynomials
of the Laplacian based on the Lanczos algorithm.

There are also approaches that go beyond real-valued polynomials of the
Laplacian (or the adjacency matrix). For example, Levie et al. [2018] consider
Cayley polynomials of the Laplacian and Bianchi et al. [2019] consider ARMA
filters. Both of these approaches employ more general parametric rational com-
plex functions of the Laplacian (or the adjacency matrix).

Graph convolutional networks and connections to message passing

In their seminal work, Kipf and Welling [2016a] built o↵ the notion of graph
convolutions to define one of the most popular GNN architectures, commonly
known as the graph convolutional network (GCN). The key insight of the GCN
approach is that we can build powerful models by stacking very simple graph
convolutional layers. A basic GCN layer is defined in Kipf and Welling [2016a]
as

H(k) = �

⇣
ÃH(k�1)W(k)

⌘
, (7.39)

where Ã = (D+ I)�
1
2 (I+A)(D+ I)�

1
2 is a normalized variant of the adjacency

matrix (with self-loops) and W(k) is a learnable parameter matrix. This model
was initially motivated as a combination of a simple graph convolution (based
on the polynomial I+A), with a learnable weight matrix, and a non-linearity.

As discussed in Chapter 5 we can also interpret the GCN model as a vari-
ation of the basic GNN message passing approach. In general, if we consider
combining a simple graph convolution defined via the polynomial I + A with
non-linearities and trainable weight matrices we recover the basic GNN:

H(k) = �

⇣
AH(k�1)W(k)

neigh
+H(k�1)W(k)

self

⌘
. (7.40)

In other words, a simple graph convolution based on I + A is equivalent to
aggregating information from neighbors and combining that with information
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from the node itself. Thus we can view the notion of message passing as cor-
responding to a simple form of graph convolutions combined with additional
trainable weights and non-linearities.

Over-smoothing as a low-pass convolutional filter In Chapter 5 we
introduced the problem of over-smoothing in GNNs. The intuitive idea
in over-smoothing is that after too many rounds of message passing, the
embeddings for all nodes begin to look identical and are relatively unin-
formative. Based on the connection between message-passing GNNs and
graph convolutions, we can now understand over-smoothing from the per-
spective of graph signal processing.

The key intuition is that stacking multiple rounds of message passing in
a basic GNN is analogous to applying a low-pass convolutional filter, which
produces a smoothed version of the input signal on the graph. In particular,
suppose we simplify a basic GNN (Equation 7.40) to the following update
equation:

H(k) = AsymH
(k�1)W(k)

. (7.41)

Compared to the basic GNN in Equation (7.40), we have simplified the
model by removing the non-linearity and removing addition of the “self”
embeddings at each message-passing step. For mathematical simplicity
and numerical stability, we will also assume that we are using the sym-
metric normalized adjacency matrix Asym = D� 1

2AD� 1
2 rather than the

unnormalized adjacency matrix. This model is similar to the simple GCN
approach proposed in Kipf and Welling [2016a] and essentially amounts to
taking the average over the neighbor embeddings at each round of message
passing.

Now, it is easy to see that after K rounds of message passing based on
Equation (7.41), we will end up with a representation that depends on the
Kth power of the adjacency matrix:

H(K) = AK
sym

XW, (7.42)

whereW is some linear operator andX is the matrix of input node features.
To understand the connection between over-smoothing and convolutional
filters, we just need to recognize that the multiplication AK

sym
X of the input

node features by a high power of the adjacency matrix can be interpreted
as convolutional filter based on the lowest-frequency signals of the graph
Laplacian.

For example, suppose we use a large enough value of K such that we
have reached the a fixed point of the following recurrence:

AsymH
(K) = H(K)

. (7.43)

One can verify that this fixed point is attainable when using the normalized
adjacency matrix, since the dominant eigenvalue of Asym is equal to one.
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We can see that at this fixed point, all the node features will have converged
to be completely defined by the dominant eigenvector of Asym, and more
generally, higher powers of Asym will emphasize the largest eigenvalues
of this matrix. Moreover, we know that the largest eigenvalues of Asym

correspond to the smallest eigenvalues of its counterpart, the symmetric
normalized Laplacian Lsym (e.g., see Equation 7.24). Together, these facts
imply that multiplying a signal by high powers of Asym corresponds to a
convolutional filter based on the lowest eigenvalues (or frequencies) of Lsym,
i.e., it produces a low-pass filter!

Thus, we can see from this simplified model that stacking many rounds
of message passing leads to convolutional filters that are low-pass, and—in
the worst case—these filters simply converge all the node representations
to constant values within connected components on the graph (i.e., the
“zero-frequency” of the Laplacian).

Of course, in practice we use more complicated forms of message pass-
ing, and this issue is partially alleviated by including each node’s previous
embedding in the message-passing update step. Nonetheless, it is instruc-
tive to understand how stacking “deeper” convolutions on graphs in a naive
way can actually lead to simpler, rather than more complex, convolutional
filters.

GNNs without message passing

Inspired by connections to graph convolutions, several recent works have also
proposed to simplify GNNs by removing the iterative message passing process.
In these approaches, the models are generally defined as

Z = MLP✓ (f(A)MLP�(X)) , (7.44)

where f : RV|⇥|V| ! RV|⇥|V| is some deterministic function of the adjacency ma-
trix A, MLP denotes a dense neural network, X 2 R|V|⇥m is the matrix of input
node features, and Z 2 R|V|⇥d is the matrix of learned node representations.
For example, in Wu et al. [2019], they define

f(A) = Ãk
, (7.45)

where Ã = (D+ I)�
1
2 (A+ I)(D+ I)�

1
2 is the symmetric normalized adjacency

matrix (with self-loops added). In a closely related work Klicpera et al. [2019]
defines f by analogy to the personalized PageRank algorithm as5

f(A) = ↵(I� (1� ↵)Ã)�1 (7.46)

= ↵

1X

k=0

⇣
I� ↵Ã

⌘k
. (7.47)

5Note that the equality between Equations (7.46) and (7.47) requires that the dominant
eigenvalue of (I � ↵A) is bounded above by 1. In practice, Klicpera et al. [2019] use power
iteration to approximate the inversion in Equation (7.46).
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The intuition behind these approaches is that we often do not need to interleave
trainable neural networks with graph convolution layers. Instead, we can simply
use neural networks to learn feature transformations at the beginning and end
of the model and apply a deterministic convolution layer to leverage the graph
structure. These simple models are able to outperform more heavily parameter-
ized message passing models (e.g., GATs or GraphSAGE) on many classification
benchmarks.

There is also increasing evidence that using the symmetric normalized ad-
jacency matrix with self-loops leads to e↵ective graph convolutions, especially
in this simplified setting without message passing. Both Wu et al. [2019] and
Klicpera et al. [2019] found that convolutions based on Ã achieved the best em-
pirical performance. Wu et al. [2019] also provide theoretical support for these
results. They prove that adding self-loops shrinks the spectrum of corresponding
graph Laplacian by reducing the magnitude of the dominant eigenvalue. Intu-
itively, adding self-loops decreases the influence of far-away nodes and makes
the filtered signal more dependent on local neighborhoods on the graph.

7.2 GNNs and Probabilistic Graphical Models

GNNs are well-understood and well-motivated as extensions of convolutions to
graph-structured data. However, there are alternative theoretical motivations
for the GNN framework that can provide interesting and novel perspectives.
One prominent example is the motivation of GNNs based on connections to
variational inference in probabilistic graphical models (PGMs).

In this probabilistic perspective, we view the embeddings zu, 8u 2 V for
each node as latent variables that we are attempting to infer. We assume that
we observe the graph structure (i.e., the adjacency matrix, A) and the input
node features, X, and our goal is to infer the underlying latent variables (i.e.,
the embeddings zv) that can explain this observed data. The message passing
operation that underlies GNNs can then be viewed as a neural network analogue
of certain message passing algorithms that are commonly used for variational
inference to infer distributions over latent variables. This connection was first
noted by Dai et al. [2016], and much of the proceeding discussions is based
closely on their work.

Note that the presentation in this section assumes a substantial background
in PGMs, and we recommend Wainwright and Jordan [2008] as a good resource
for the interested reader. However, we hope and expect that even a reader
without any knowledge of PGMS can glean useful insights from the following
discussions.

7.2.1 Hilbert Space Embeddings of Distributions

To understand the connection between GNNs and probabilistic inference, we
first (briefly) introduce the notion of embedding distributions in Hilbert spaces
[Smola et al., 2007]. Let p(x) denote a probability density function defined
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over the random variable x 2 Rm. Given an arbitrary (and possibly infinite
dimensional) feature map � : Rm ! R, we can represent the density p(x)
based on its expected value under this feature map:

µx =

Z

Rm

�(x)p(x)dx. (7.48)

The key idea with Hilbert space embeddings of distributions is that Equation
(7.48) will be injective, as long as a suitable feature map � is used. This means
that µx can serve as a su�cient statistic for p(x), and any computations we
want to perform on p(x) can be equivalently represented as functions of the
embedding µx. A well-known example of a feature map that would guarantee
this injective property is the feature map induced by the Gaussian radial basis
function (RBF) kernel [Smola et al., 2007].

The study of Hilbert space embeddings of distributions is a rich area of
statistics. In the context of the connection to GNNs, however, the key takeaway
is simply that we can represent distributions p(x) as embeddings µx in some
feature space. We will use this notion to motivate the GNN message passing
algorithm as a way of learning embeddings that represent the distribution over
node latents p(zv).

7.2.2 Graphs as Graphical Models

Taking a probabilistic view of graph data, we can assume that the graph struc-
ture we are given defines the dependencies between the di↵erent nodes. Of
course, we usually interpret graph data in this way. Nodes that are connected
in a graph are generally assumed to be related in some way. However, in the
probabilistic setting, we view this notion of dependence between nodes in a
formal, probabilistic way.

To be precise, we say that a graph G = (V, E) defines a Markov random field:

p({xv}, {zv}) /
Y

v2V

�(xv, zv)
Y

(u,v)2E

 (zu, zv), (7.49)

where � and  are non-negative potential functions, and where we use {xv} as
a shorthand for the set {xv, 8v 2 V}. Equation (7.49) says that the distribution
p({xv}, {zv}) over node features and node embeddings factorizes according to
the graph structure. Intuitively, �(xv, zv) indicates the likelihood of a node
feature vector xv given its latent node embedding zv, while  controls the de-
pendency between connected nodes. We thus assume that node features are
determined by their latent embeddings, and we assume that the latent embed-
dings for connected nodes are dependent on each other (e.g., connected nodes
might have similar embeddings).

In the standard probabilistic modeling setting, � and  are usually defined
as parametric functions based on domain knowledge, and, most often, these
functions are assumed to come from the exponential family to ensure tractability
[Wainwright and Jordan, 2008]. In our presentation, however, we are agnostic to
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the exact form of � and  , and we will seek to implicitly learn these functions by
leveraging the Hilbert space embedding idea discussed in the previous section.

7.2.3 Embedding mean-field inference

Given the Markov random field defined by Equation (7.49), our goal is to infer
the distribution of latent embeddings p(zv) for all the nodes v 2 V , while also
implicitly learning the potential functions � and  . In more intuitive terms our
goal is to infer latent representations for all the nodes in the graph that can
explain the dependencies between the observed node features.

In order to do so, a key step is computing the posterior p({zv}|{xv}),
i.e., computing the likelihood of a particular set of latent embeddings given
the observed features. In general, computing this posterior is computationally
intractable—even if � and  are known and well-defined—so we must resort to
approximate methods.

One popular approach—which we will leverage here—is to employ mean-field
variational inference, where we approximate the posterior using some functions
qv based on the assumption:

p({zv}|{xv}) ⇡ q({zv}) =
Y

v2V
qv(zv), (7.50)

where each qv is a valid density. The key intuition in mean-field inference is that
we assume that the posterior distribution over the latent variables factorizes into
V independent distributions, one per node.

To obtain approximating qv functions that are optimal in the mean-field
approximation, the standard approach is to minimize the Kullback–Leibler (KL)
divergence between the approximate posterior and the true posterior:

KL(q({zv})|{p({zv}|{xv}) =
Z

(Rd)V

Y

v2V
q({zv}) log

✓Q
v2V q({zv})

p({zv}|{xv})

◆ Y

v2V
dzv.

(7.51)
The KL divergence is one canonical way of measuring the distance between
probability distributions, so finding qv functions that minimize Equation (7.51)
gives an approximate posterior that is as close as possible to the true poste-
rior under the mean-field assumption. Of course, directly minimizing Equation
(7.51) is impossible, since evaluating the KL divergence requires knowledge of
the true posterior.

Luckily, however, techniques from variational inference can be used to show
that qv(zv) that minimize the KL must satisfy the following fixed point equa-
tions:

log(q(zv)) = cv + log(�(xv, zv)) +
X

u2N (v)

Z

Rd

qu(zu) log ( (zu, zv)) dzu,

(7.52)
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where cv is a constant that does not depend on qv(zv) or zv. In practice, we can

approximate this fixed point solution by initializing some initial guesses q(t)v to
valid probability distributions and iteratively computing

log
⇣
q
(t)
v (zv)

⌘
= cv + log(�(xv, zv)) +

X

u2N (v)

Z

Rd

q
(t�1)

u (zu) log ( (zu, zv)) dzu.

(7.53)
The justification behind Equation (7.52) is beyond the scope of this book. For
the purposes of this book, however, the essential ideas are the following:

1. We can approximate the true posterior p({zv}|{xv}) over the latent em-
beddings using the mean-field assumption, where we assume that the
posterior factorizes into |V| independent distributions p({zv}|{xv}) ⇡Q

v2V qv(zv).

2. The optimal approximation under the mean-field assumption is given by
the fixed point in Equation (7.52), where the approximate posterior qv(zv)
for each latent node embedding is a function of (i) the node’s feature zx and
(ii) the marginal distributions qu(z)u, 8u 2 N (v) of the node’s neighbors’
embeddings.

At this point the connection to GNNs begins to emerge. In particular, if we
examine the fixed point iteration in Equation (7.53), we see that the updated

marginal distribution q
(t)
v (zv) is a function of the node features xv (through

the potential function �) as well as function of the set of neighbor marginals

{q(t�1)

u (zu), 8u 2 N (v)} from the previous iteration (through the potential func-
tion  ). This form of message passing is highly analogous to the message passing
in GNNs! At each step, we are updating the values at each node based on the set
of values in the node’s neighborhood. The key distinction is that the mean-field
message passing equations operate over distributions rather than embeddings,
which are used in the standard GNN message passing.

We can make the connection between GNNs and mean-field inference even
tighter by leveraging the Hilbert space embeddings that we introduced in Section
7.2.1. Suppose we have some injective feature map � and can represent all the
marginals qv(zv) as embeddings

µv =

Z

Rd

qv(zv)�(zv)dzv 2 Rd
. (7.54)

With these representations, we can re-write the fixed point iteration in Equation
(7.52) as

µ
(t)
v = c+ f(µ(t�1)

v ,xv, {µu, 8u 2 N (v)} (7.55)

where f is a vector-valued function. Notice that f aggregates information from
the set of neighbor embeddings (i.e., {µu, 8u 2 N (v)} and updates the node’s

current representation (i.e., µ(t�1)

v ) using this aggregated data. In this way, we
can see that embedded mean-field inference exactly corresponds to a form of
neural message passing over a graph!
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Now, in the usual probabilistic modeling scenario, we would define the po-
tential functions � and  , as well as the feature map �, using some domain
knowledge. And given some �,  , and  we could then try to analytically
derive the f function in Equation (7.55) that would allow us to work with an
embedded version of mean field inference. However, as an alternative, we can
simply try to learn embeddings µv in and end-to-end fashion using some super-
vised signals, and we can define f to be an arbitrary neural network. In other
words, rather than specifying a concrete probabilistic model, we can simply
learn embeddings µv that could correspond to some probabilistic model. Based
on this idea, Dai et al. [2016] define f in an analogous manner to a basic GNN
as

µ
(t)
v = �

0

@W(t)
self

xv +W(t)
neigh

X

u2N (v)

µ
(t�1)

u

1

A . (7.56)

Thus, at each iteration, the updated Hilbert space embedding for node v is a
function of its neighbors’ embeddings as well as its feature inputs. And, as with

a basic GNN, the parameters W(t)
self

and W(t)
neigh

of the update process can be
trained via gradient descent on any arbitrary task loss.

7.2.4 GNNs and PGMs More Generally

In the previous subsection, we gave a brief introduction to how a basic GNN
model can be derived as an embedded form of mean field inference—a connec-
tion first outlined by Dai et al. [2016]. There are, however, further ways to
connect PGMs and GNNs. For example, di↵erent variants of message passing
can be derived based on di↵erent approximate inference algorithms (e.g., Bethe
approximations as discussed in Dai et al. [2016]), and there are also several
works which explore how GNNs can be integrated more generally into PGM
models [Qu et al., 2019, Zhang et al., 2020]. In general, the connections be-
tween GNNs and more traditional statistical relational learning is a rich area
with vast potential for new developments.

7.3 GNNs and Graph Isomorphism

We have now seen how GNNs can be motivated based on connections to graph
signal processing and probabilistic graphical models. In this section, we will
turn our attention to our third and final theoretical perspective on GNNs: the
motivation of GNNs based on connections to graph isomorphism testing.

As with the previous sections, here we will again see how the basic GNN
can be derived as a neural network variation of an existing algorithm—in this
case the Weisfieler-Lehman (WL) isomorphism algorithm. However, in addition
to motivating the GNN approach, connections to isomorphism testing will also
provide us with tools to analyze the power of GNNs in a formal way.
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7.3.1 Graph Isomorphism

Testing for graph isomorphism is one of the most fundamental and well-studied
tasks in graph theory. Given a pair of graphs G1 and G2, the goal of graph iso-
morphism testing is to declare whether or not these two graphs are isomorphic.
In an intuitive sense, two graphs being isomorphic means that they are essen-
tially identical. Isomorphic graphs represent the exact same graph structure,
but they might di↵er only in the ordering of the nodes in their corresponding
adjacency matrices. Formally, if we have two graphs with adjacency matrices
A1 and A2, as well as node features X1 and X2, we say that two graphs are
isomorphic if and only if there exists a permutation matrix P such that

PA1P
> = A2 and PX1 = X2. (7.57)

It is important to note that isomorphic graphs are really are identical in terms of
their underlying structure. The ordering of the nodes in the adjacency matrix is
an arbitrary decision we must make when we represent a graph using algebraic
objects (e.g., matrices), but this ordering has no bearing on the structure of the
underlying graph itself.

Despite its simple definition, testing for graph isomorphism is a fundamen-
tally hard problem. For instance, a naive approach to test for isomorphism
would involve the following optimization problem:

minP2PkPA1P
> �A2k+ kPX1 �X2k

?
= 0. (7.58)

This optimization requires searching over the full set of permutation matrices
P to evaluate whether or not there exists a single permutation matrix P that
leads to an equivalence between the two graphs. The computational complexity
of this naive approach is immense at O(|V |!), and in fact, no polynomial time
algorithm is known to correctly test isomorphism for general graphs.

Graph isomorphism testing is formally referred to as NP-indeterminate (NPI).
It is known to not be NP-complete, but no general polynomial time algorithms
are known for the problem. (Integer factorization is another well-known prob-
lem that is suspected to belong to the NPI class.) There are, however, many
practical algorithms for graph isomorphism testing that work on broad classes
of graphs, including the WL algorithm that we introduced briefly in Chapter 1.

7.3.2 Graph Isomorphism and Representational Capacity

The theory of graph isomorphism testing is particularly useful for graph repre-
sentation learning. It gives us a way to quantify the representational power of
di↵erent learning approaches. If we have an algorithm—for example, a GNN—
that can generate representations zG 2 Rd for graphs, then we can quantify
the power of this learning algorithm by asking how useful these representations
would be for testing graph isomorphism. In particular, given learned represen-
tations zG1 and zG2 for two graphs, a “perfect” learning algorithm would have
that

zG1 = zG2 if and only if G1 is isomorphic to G2. (7.59)
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1 3 2

11

A B C

DA

E F G

HE
1,{3}
⇢ A

1,{3}
⇢ A

3,{1,1,2} 
⇢ B

2,{3,1} 
⇢ C

2,{3,1} 
⇢ D

A,{B} 
⇢ E

A,{B} 
⇢ E

B,{A,A,C} 
⇢ F

C,{B,D} 
⇢ G

D,{C} 
⇢ H

Iteration 0 Iteration 1 Iteration 2

Figure 7.2: Example of the WL iterative labeling procedure on one graph.

A perfect learning algorithm would generate identical embeddings for two graphs
if and only if those two graphs were actually isomorphic.

Of course, in practice, no representation learning algorithm is going to be
“perfect” (unless P=NP). Nonetheless, quantifying the power of a representation
learning algorithm by connecting it to graph isomorphism testing is very useful.
Despite the fact that graph isomorphism testing is not solvable in general, we do
know several powerful and well-understood approaches for approximate isomor-
phism testing, and we can gain insight into the power of GNNs by comparing
them to these approaches.

7.3.3 The Weisfieler-Lehman Algorithm

The most natural way to connect GNNs to graph isomorphism testing is based
on connections to the family of Weisfieler-Lehman (WL) algorithms. In Chapter
1, we discussed the WL algorithm in the context of graph kernels. However, the
WL approach is more broadly known as one of the most successful and well-
understood frameworks for approximate isomorphism testing. The simplest
version of the WL algorithm—commonly known as the 1-WL—consists of the
following steps:

1. Given two graphs G1 and G2 we assign an initial label l(0)Gi
(v) to each node

in each graph. In most graphs, this label is simply the node degree, i.e.,
l
(0)(v) = dv 8v 2 V , but if we have discrete features (i.e., one hot features
xv) associated with the nodes, then we can use these features to define
the initial labels.

2. Next, we iteratively assign a new label to each node in each graph by
hashing the multi-set of the current labels within the node’s neighborhood,
as well as the node’s current label:

l
(i)
Gi
(v) = HASH(l(i�1)

Gi
(v), {{l(i�1)

Gi
(u) 8u 2 N (v)}}), (7.60)

where the double-braces are used to denote a multi-set and the HASH
function maps each unique multi-set to a unique new label.
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3. We repeat Step 2 until the labels for all nodes in both graphs converge, i.e.,

until we reach an iteration K where l
(K)

Gj
(v) = l

(K�1)

Gi
(v), 8v 2 Vj , j = 1, 2.

4. Finally, we construct multi-sets

LGj = {{l(i)Gj
(v), 8v 2 Vj , i = 0, ...,K � 1}}

summarizing all the node labels in each graph, and we declare G1 and G2

to be isomorphic if and only if the multi-sets for both graphs are identical,
i.e., if and only if LG1 = LG2 .

Figure 7.2 illustrates an example of the WL labeling process on one graph. At
each iteration, every node collects the multi-set of labels in its local neighbor-
hood, and updates its own label based on this multi-set. After K iterations
of this labeling process, every node has a label that summarizes the structure
of its K-hop neighborhood, and the collection of these labels can be used to
characterize the structure of an entire graph or subgraph.

The WL algorithm is known to converge in at most |V| iterations and is
known to known to successfully test isomorphism for a broad class of graphs
[Babai and Kucera, 1979]. There are, however, well known cases where the test
fails, such as the simple example illustrated in Figure 7.3.

Figure 7.3: Example of two graphs that cannot be distinguished by the basic
WL algorithm.

7.3.4 GNNs and the WL Algorithm

There are clear analogies between the WL algorithm and the neural message
passing GNN approach. In both approaches, we iteratively aggregate infor-
mation from local node neighborhoods and use this aggregated information to
update the representation of each node. The key distinction between the two
approaches is that the WL algorithm aggregates and updates discrete labels
(using a hash function) while GNN models aggregate and update node embed-
dings using neural networks. In fact, GNNs have been motivated and derived
as a continuous and di↵erentiable analog of the WL algorithm.

The relationship between GNNs and the WL algorithm (described in Section
7.3.3) can be formalized in the following theorem:
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Theorem 4 ([Morris et al., 2019, Xu et al., 2019]). Define a message-passing
GNN (MP-GNN) to be any GNN that consists of K message-passing layers of
the following form:

h(k+1)

u = UPDATE
(k)

⇣
h(k)
u , AGGREGATE

(k)({h(k)
v , 8v 2 N (u)})

⌘
, (7.61)

where AGGREGATE is a di↵erentiable permutation invariant function and UPDATE

is a di↵erentiable function. Further, suppose that we have only discrete feature

inputs at the initial layer, i.e., h(0)

u = xu 2 Zd
, 8u 2 V. Then we have that

h(K)

u 6= h(K)

v only if the nodes u and v have di↵erent labels after K iterations
of the WL algorithm.

In intuitive terms, Theorem 7.3.4 states that GNNs are no more powerful than
the WL algorithm when we have discrete information as node features. If the WL
algorithm assigns the same label to two nodes, then any message-passing GNN
will also assign the same embedding to these two nodes. This result on node
labeling also extends to isomorphism testing. If the WL test cannot distinguish
between two graphs, then a MP-GNN is also incapable of distinguishing between
these two graphs. We can also show a more positive result in the other direction:

Theorem 5 ([Morris et al., 2019, Xu et al., 2019]). There exists a MP-GNN

such that h(K)

u = h(K)

v if and only if the two nodes u and v have the same label
after K iterations of the WL algorithm.

This theorem states that there exist message-passing GNNs that are as powerful
as the WL test.

Which MP-GNNs are most powerful? The two theorems above state
that message-passing GNNs are at most as powerful as the WL algorithm
and that there exist message-passing GNNs that are as powerful as the WL
algorithm. So which GNNs actually obtain this theoretical upper bound?
Interestingly, the basic GNN that we introduced at the beginning of Chap-
ter 5 is su�cient to satisfy this theory. In particular, if we define the
message passing updates as follows:

h(k)
u = �

0

@W(k)
self

h(k�1)

u +W(k)
neigh

X

v2N (u)

h(k�1)

v + b(k)

1

A , (7.62)

then this GNN is su�cient to match the power of the WL algorithm [Morris
et al., 2019].

However, most of the other GNN models discussed in Chapter 5 are
not as powerful as the WL algorithm. Formally, to be as powerful as the
WL algorithm, the AGGREGATE and UPDATE functions need to be injective
[Xu et al., 2019]. This means that the AGGREGATE and UPDATE operators
need to be map every unique input to a unique output value, which is not
the case for many of the models we discussed. For example, AGGREGATE

functions that use a (weighted) average of the neighbor embeddings are not
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injective; if all the neighbors have the same embedding then a (weighted)
average will not be able to distinguish between input sets of di↵erent sizes.

Xu et al. [2019] provide a detailed discussion of the relative power of
various GNN architectures. They also define a “minimal” GNN model,
which has few parameters but is still as powerful as the WL algorithm.
They term this model the Graph Isomorphism Network (GIN), and it is
defined by the following update:

h(k)
u = MLP

(k)

0

@(1 + ✏
(k))h(k�1)

u +
X

v2N (u)

h(k�1)

v

1

A , (7.63)

where ✏(k) is a trainable parameter.

7.3.5 Beyond the WL Algorithm

The previous subsection highlighted an important negative result regarding
message-passing GNNs (MP-GNNs): these models are no more powerful than
the WL algorithm. However, despite this negative result, investigating how we
can make GNNs that are provably more powerful than the WL algorithm is an
active area of research.

Relational pooling

One way to motivate provably more powerful GNNs is by considering the failure
cases of the WL algorithm. For example, we can see in Figure 7.3 that the WL
algorithm—and thus all MP-GNNs—cannot distinguish between a connected
6-cycle and a set of two triangles. From the perspective of message passing,
this limitation stems from the fact that AGGREGATE and UPDATE operations are
unable to detect when two nodes share a neighbor. In the example in Figure
7.3, each node can infer from the message passing operations that they have
two degree-2 neighbors, but this information is not su�cient to detect whether
a node’s neighbors are connected to one another. This limitation is not simply
a corner case illustrated in Figure 7.3. Message passing approaches generally
fail to identify closed triangles in a graph, which is a critical limitation.

To address this limitation, Murphy et al. [2019] consider augmenting MP-
GNNs with unique node ID features. If we use MP-GNN(A,X) to denote an
arbitrary MP-GNN on input adjacency matrix A and node features X, then
adding node IDs is equivalent to modifying the MP-GNN to the following:

MP-GNN(A,X� I), (7.64)

where I is the d ⇥ d-dimensional identity matrix and � denotes column-wise
matrix concatenation. In other words, we simply add a unique, one-hot indicator
feature for each node. In the case of Figure 7.3, adding unique node IDs would
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allow a MP-GNN to identify when two nodes share a neighbor, which would
make the two graphs distinguishable.

Unfortunately, however, this idea of adding node IDs does not solve the
problem. In fact, by adding unique node IDs we have actually introduced a
new and equally problematic issue: the MP-GNN is no longer permutation
equivariant. For a standard MP-GNN we have that

P(MP-GNN(A,X)) = MP-GNN(PAP>
,PX), (7.65)

where P 2 P is an arbitrary permutation matrix. This means that standard
MP-GNNs are permutation equivariant. If we permute the adjacency matrix
and node features, then the resulting node embeddings are simply permuted
in an equivalent way. However, MP-GNNs with node IDs are not permutation
invariant since in general

P(MP-GNN(A,X� I)) 6= MP-GNN(PAP>
, (PX)� I). (7.66)

The key issue is that assigning a unique ID to each node fixes a particular node
ordering for the graph, which breaks the permutation equivariance.

To alleviate this issue, Murphy et al. [2019] propose the Relational Pooling
(RP) approach, which involves marginalizing over all possible node permuta-
tions. Given any MP-GNN the RP extension of this GNN is given by

RP-GNN(A,X) =
X

P2P
MP-GNN(PAP>

, (PX)� I). (7.67)

Summing over all possible permutation matrices P 2 P recovers the permuta-
tion invariance, and we retain the extra representational power of adding unique
node IDs. In fact, Murphy et al. [2019] prove that the RP extension of a MP-
GNN can distinguish graphs that are indistinguishable by the WL algorithm.

The limitation of the RP approach is in its computational complexity. Naively
evaluating Equation (7.67) has a time complexity of O(|V|!), which is infeasible
in practice. Despite this limitation, however, Murphy et al. [2019] show that
the RP approach can achieve strong results using various approximations to
decrease the computation cost (e.g., sampling a subset of permutations).

The k-WL test and k-GNNs

The Relational Pooling (RP) approach discussed above can produce GNN mod-
els that are provably more powerful than the WL algorithm. However, the RP
approach has two key limitations:

1. The full algorithm is computationally intractable.

2. We know that RP-GNNs are more powerful than the WL test, but we
have no way to characterize how much more powerful they are.

To address these limitations, several approaches have considered improving
GNNs by adapting generalizations of the WL algorithm.
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The WL algorithm we introduced in Section 7.3.3 is in fact just the simplest
of what is known as the family of k-WL algorithms. In fact, the WL algorithm
we introduced previously is often referred to as the 1-WL algorithm, and it
can be generalized to the k-WL algorithm for k > 1. The key idea behind the
k-WL algorithms is that we label subgraphs of size k rather than individual
nodes. The k-WL algorithm generates representation of a graph G through the
following steps:

1. Let s = (u1, u2, ..., uk) 2 Vk be a tuple defining a subgraph of size k, where

u1 6= u2 6= ... 6= uk. Define the initial label l(0)G (s) for each subgraph by
the isomorphism class of this subgraph (i.e., two subgraphs get the same
label if and only if they are isomorphic).

2. Next, we iteratively assign a new label to each subgraph by hashing the
multi-set of the current labels within this subgraph’s neighborhood:

l
(i)
G (s) = HASH({{l(i�1)

G (s0), 8s0 2 Nj(s), j = 1, ..., k}}, l(i�1)

G (s)),

where the jth subgraph neighborhood is defined as

Nj(s) = {{(u1, ..., uj�1, v, uj+1, ..., uk), 8v 2 V}}. (7.68)

3. We repeat Step 2 until the labels for all subgraphs converge, i.e., until we

reach an iteration K where l
(K)

G (s) = l
(K�1)

G (s) for every k-tuple of nodes
s 2 Vk.

4. Finally, we construct a multi-set

LG = {{l(i)G (v), 8s 2 Vk
, i = 0, ...,K � 1}}

summarizing all the subgraph labels in the graph.

As with the 1-WL algorithm, the summary LG multi-set generated by the k-WL
algorithm can be used to test graph isomorphism by comparing the multi-sets
for two graphs. There are also graph kernel methods based on the k-WL test
[Morris et al., 2019], which are analogous to the WL-kernel introduced that was
in Chapter 1.

An important fact about the k-WL algorithm is that it introduces a hierarchy
of representational capacity. For any k � 2 we have that the (k+1)-WL test is
strictly more powerful than the k-WL test.6 Thus, a natural question to ask is
whether we can design GNNs that are as powerful as the k-WL test for k > 2,
and, of course, a natural design principle would be to design GNNs by analogy
to the k-WL algorithm.

Morris et al. [2019] attempt exactly this: they develop a k-GNN approach
that is a di↵erentiable and continuous analog of the k-WL algorithm. k-GNNs

6However, note that running the k-WL requires solving graph isomorphism for graphs
of size k, since Step 1 in the k-WL algorithm requires labeling graphs according to their
isomorphism type. Thus, running the k-WL for k > 3 is generally computationally intractable.
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learn embeddings associated with subgraphs—rather than nodes—and the mes-
sage passing occurs according to subgraph neighborhoods (e.g., as defined in
Equation 7.68). Morris et al. [2019] prove that k-GNNs can be as expressive as
the k-WL algorithm. However, there are also serious computational concerns for
both the k-WL test and k-GNNs, as the time complexity of the message passing
explodes combinatorially as k increases. These computational concerns necessi-
tate various approximations to make k-GNNs tractable in practice [Morris et al.,
2019].

Invariant and equivariant k-order GNNs

Another line of work that is motivated by the idea of building GNNs that are
as powerful as the k-WL test are the invariant and equivariant GNNs proposed
by Maron et al. [2019]. A crucial aspect of message-passing GNNs (MP-GNNs;
as defined in Theorem 7.3.4) is that they are equivariant to node permutations,
meaning that

P(MP-GNN(A,X)) = MP-GNN(PAP>
,PX). (7.69)

for any permutation matrix P 2 P. This equality says that that permuting the
input to an MP-GNN simply results in the matrix of output node embeddings
being permuted in an analogous way.

In addition to this notion of equivariance, we can also define a similar notion
of permutation invariance for MP-GNNs at the graph level. In particular, MP-
GNNs can be extended with a POOL : R|V|⇥d ! R function (see Chapter 5),
which maps the matrix of learned node embeddings Z 2 R|V|⇥d to an embedding
zG 2 Rd of the entire graph. In this graph-level setting we have that MP-GNNs
are permutation invariant, i.e.

POOL
�
MP-GNN(PAP>

,PX)
�
= POOL (MP-GNN(A,X)) , (7.70)

meaning that the pooled graph-level embedding does not change when di↵erent
node orderings are used.

Based on this idea of invariance and equivariance, Maron et al. [2019] propose
a general form of GNN-like models based on permutation equivariant/invariant

tensor operations. Suppose we have an order-(k+1) tensor X 2 R|V|k⇥d, where
we assume that the first k channels/modes of this tensor are indexed by the
nodes of the graph. We use the notation P ? X to denote the operation where
we permute the first k channels of this tensor according the node permutation
matrix P. We can then define an linear equivariant layer as a linear operator
(i.e., a tensor) L : R|V|k1⇥d1 ! R|V|k2⇥d2 :

L⇥ (P ? X ) = P ? (L⇥ X ), 8P 2 P, (7.71)

where we use ⇥ to denote a generalized tensor product. Invariant linear opera-
tors can be similarly defined as tensors L that satisfy the following equality:

L⇥ (P ? X ) = L⇥ X , 8P 2 P. (7.72)
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Note that both equivariant and invariant linear operators can be represented
as tensors, but they have di↵erent structure. In particular, an equivariant oper-
ator L : R|V|k⇥d1 ! R|V|k⇥d2 corresponds to a tensor L 2 R|V|2k⇥d1⇥d2 , which
has 2k channels indexed by nodes (i.e., twice as many node channels as the in-

put). On the other hand, an invariant operator L : R|V|k⇥d1 ! Rd2 corresponds

to a tensor L 2 R|V|k⇥d1⇥d2 , which has k channels indexed by nodes (i.e., the
same number as the input). Interestingly, taking this tensor view of the linear
operators, the equivariant (Equation 7.71) and invariant (Equation 7.72) prop-
erties for can be combined into a single requirement that the L tensor is a fixed
point under node permutations:

P ? L = L, 8P 2 P. (7.73)

In other words, for a given input X 2 R|V |k⇥d, both equivariant and invariant
linear operators on this input will correspond to tensors that satisfy the fixed
point in Equation (7.73), but the number of channels in the tensor will di↵er
depending on whether it is an equivariant or invariant operator.

Maron et al. [2019] show that tensors satisfying the the fixed point in Equa-
tion (7.73) can be constructed as a linear combination of a set of fixed basis
elements. In particular, any order-l tensor L that satisfies Equation (7.73) can
be written as

L = �1B1 + �2 + ...+ �b(l)Bb(l), (7.74)

where Bi are a set of fixed basis tensors, �i 2 R are real-valued weights, and b(l)
is the lth Bell number. The construction and derivation of these basis tensors
is mathematically involved and is closely related to the theory of Bell numbers
from combinatorics. However, a key fact and challenge is that the number of
basis tensors needed grows with lth Bell number, which is an exponentially
increasing series.

Using these linear equivariant and invariant layers, Maron et al. [2019] de-
fine their invariant k-order GNN model based on the following composition of
functions:

MLP � L0 � � � L1 � �L2 · · ·� � Lm ⇥ X . (7.75)

In this composition, we apply m equivariant linear layers L1, ...,Lm, where
Li : L : R|V|ki⇥d1 ! R|V|ki+1⇥d2 with maxi ki = k and k1 = 2. Between each
of these linear equivariant layers an element-wise non-linearity, denoted by �,
is applied. The penultimate function in the composition, is an invariant linear
layer, L0, which is followed by a multi-layer perceptron (MLP) as the final
function in the composition. The input to the k-order invariant GNN is the
tensor X 2 R|V|2⇥d, where the first two channels correspond to the adjacency
matrix and the remaining channels encode the initial node features/labels.

This approach is called k-order because the equivariant linear layers involve
tensors that have up to k di↵erent channels. Most importantly, however, Maron
et al. [2019] prove that k-order models following Equation 7.75 are equally pow-
erful as the k-WL algorithm. As with the k-GNNs discussed in the previous
section, however, constructing k-order invariant models for k > 3 is generally
computationally intractable.


