
Chapter 5

The Graph Neural Network
Model

The first part of this book discussed approaches for learning low-dimensional
embeddings of the nodes in a graph. The node embedding approaches we dis-
cussed used a shallow embedding approach to generate representations of nodes,
where we simply optimized a unique embedding vector for each node. In this
chapter, we turn our focus to more complex encoder models. We will introduce
the graph neural network (GNN) formalism, which is a general framework for
defining deep neural networks on graph data. The key idea is that we want to
generate representations of nodes that actually depend on the structure of the
graph, as well as any feature information we might have.

The primary challenge in developing complex encoders for graph-structured
data is that our usual deep learning toolbox does not apply. For example,
convolutional neural networks (CNNs) are well-defined only over grid-structured
inputs (e.g., images), while recurrent neural networks (RNNs) are well-defined
only over sequences (e.g., text). To define a deep neural network over general
graphs, we need to define a new kind of deep learning architecture.

Permutation invariance and equivariance One reasonable idea for
defining a deep neural network over graphs would be to simply use the
adjacency matrix as input to a deep neural network. For example, to gen-
erate an embedding of an entire graph we could simply flatten the adjacency
matrix and feed the result to a multi-layer perceptron (MLP):

zG = MLP(A[1]�A[2]� ...�A[|V|]), (5.1)

where A[i] 2 R|V| denotes a row of the adjacency matrix and we use � to
denote vector concatenation.

The issue with this approach is that it depends on the arbitrary order-
ing of nodes that we used in the adjacency matrix. In other words, such a
model is not permutation invariant, and a key desideratum for designing

47

48 CHAPTER 5. THE GRAPH NEURAL NETWORK MODEL

neural networks over graphs is that they should permutation invariant (or
equivariant). In mathematical terms, any function f that takes an adja-
cency matrix A as input should ideally satisfy one of the two following
properties:

f(PAP>) = f(A) (Permutation Invariance) (5.2)

f(PAP>) = Pf(A) (Permutation Equivariance), (5.3)

where P is a permutation matrix. Permutation invariance means that the
function does not depend on the arbitrary ordering of the rows/columns in
the adjacency matrix, while permutation equivariance means that the out-
put of f is permuted in an consistent way when we permute the adjacency
matrix. (The shallow encoders we discussed in Part I are an example of
permutation equivariant functions.) Ensuring invariance or equivariance is
a key challenge when we are learning over graphs, and we will revisit issues
surrounding permutation equivariance and invariance often in the ensuing
chapters.

5.1 Neural Message Passing

The basic graph neural network (GNN) model can be motivated in a variety of
ways. The same fundamental GNN model has been derived as a generalization
of convolutions to non-Euclidean data [Bruna et al., 2014], as a di↵erentiable
variant of belief propagation [Dai et al., 2016], as well as by analogy to classic
graph isomorphism tests [Hamilton et al., 2017b]. Regardless of the motivation,
the defining feature of a GNN is that it uses a form of neural message passing in
which vector messages are exchanged between nodes and updated using neural
networks [Gilmer et al., 2017].

In the rest of this chapter, we will detail the foundations of this neural
message passing framework. We will focus on the message passing framework
itself and defer discussions of training and optimizing GNN models to Chapter 6.
The bulk of this chapter will describe how we can take an input graph G = (V, E),
along with a set of node features X 2 Rd⇥|V|, and use this information to
generate node embeddings zu, 8u 2 V. However, we will also discuss how the
GNN framework can be used to generate embeddings for subgraphs and entire
graphs.

5.1.1 Overview of the Message Passing Framework

During each message-passing iteration in a GNN, a hidden embedding h(k)
u cor-

responding to each node u 2 V is updated according to information aggregated
from u’s graph neighborhood N (u) (Figure 5.1). This message-passing update

5.1. NEURAL MESSAGE PASSING 49

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

A

A

A

C

F

B

E

A

D

B

Caggregate

Figure 5.1: Overview of how a single node aggregates messages from its local
neighborhood. The model aggregates messages from A’s local graph neighbors
(i.e., B, C, and D), and in turn, the messages coming from these neighbors are
based on information aggregated from their respective neighborhoods, and so on.
This visualization shows a two-layer version of a message-passing model. Notice
that the computation graph of the GNN forms a tree structure by unfolding the
neighborhood around the target node.

can be expressed as follows:

h(k+1)

u = UPDATE
(k)
⇣
h(k)
u , AGGREGATE

(k)({h(k)
v , 8v 2 N (u)})

⌘
(5.4)

= UPDATE
(k)
⇣
h(k)
u ,m(k)

N (u)

⌘
, (5.5)

where UPDATE and AGGREGATE are arbitrary di↵erentiable functions (i.e., neu-
ral networks) and mN (u) is the “message” that is aggregated from u’s graph
neighborhood N (u). We use superscripts to distinguish the embeddings and
functions at di↵erent iterations of message passing.1

At each iteration k of the GNN, the AGGREGATE function takes as input the
set of embeddings of the nodes in u’s graph neighborhood N (u) and generates

a message m(k)
N (u) based on this aggregated neighborhood information. The

update function UPDATE then combines the message m(k)
N (u) with the previous

embedding h(k�1)

u of node u to generate the updated embedding h(k)
u . The

initial embeddings at k = 0 are set to the input features for all the nodes, i.e.,

h(0)

u = xu, 8u 2 V. After running K iterations of the GNN message passing, we
can use the output of the final layer to define the embeddings for each node,
i.e.,

zu = h(K)

u , 8u 2 V. (5.6)

Note that since the AGGREGATE function takes a set as input, GNNs defined in
this way are permutation equivariant by design.

1The di↵erent iterations of message passing are also sometimes known as the di↵erent
“layers” of the GNN.

50 CHAPTER 5. THE GRAPH NEURAL NETWORK MODEL

Node features Note that unlike the shallow embedding methods dis-
cussed in Part I of this book, the GNN framework requires that we have
node features xu, 8u 2 V as input to the model. In many graphs, we will
have rich node features to use (e.g., gene expression features in biological
networks or text features in social networks). However, in cases where no
node features are available, there are still several options. One option is
to use node statistics—such as those introduced in Section 2.1—to define
features. Another popular approach is to use identity features, where we as-
sociate each node with a one-hot indicator feature, which uniquely identifies
that node.a

aNote, however, that the using identity features makes the model transductive and
incapable of generalizing to unseen nodes.

5.1.2 Motivations and Intuitions

The basic intuition behind the GNN message-passing framework is straight-
forward: at each iteration, every node aggregates information from its local
neighborhood, and as these iterations progress each node embedding contains
more and more information from further reaches of the graph. To be precise:
after the first iteration (k = 1), every node embedding contains information
from its 1-hop neighborhood, i.e., every node embedding contains information
about the features of its immediate graph neighbors, which can be reached by
a path of length 1 in the graph; after the second iteration (k = 2) every node
embedding contains information from its 2-hop neighborhood; and in general,
after k iterations every node embedding contains information about its k-hop
neighborhood.

But what kind of “information” do these node embeddings actually encode?
Generally, this information comes in two forms. On the one hand there is struc-
tural information about the graph. For example, after k iterations of GNN

message passing, the embedding h(k)
u of node u might encode information about

the degrees of all the nodes in u’s k-hop neighborhood. This structural infor-
mation can be useful for many tasks. For instance, when analyzing molecular
graphs, we can use degree information to infer atom types and di↵erent struc-
tural motifs, such as benzene rings.

In addition to structural information, the other key kind of information
captured by GNN node embedding is feature-based. After k iterations of GNN
message passing, the embeddings for each node also encode information about
all the features in their k-hop neighborhood. This local feature-aggregation
behaviour of GNNs is analogous to the behavior of the convolutional kernels
in convolutional neural networks (CNNs). However, whereas CNNs aggregate
feature information from spatially-defined patches in an image, GNNs aggregate
information based on local graph neighborhoods. We will explore the connection
between GNNs and convolutions in more detail in Chapter 7.

5.1. NEURAL MESSAGE PASSING 51

5.1.3 The Basic GNN

So far, we have discussed the GNN framework in a relatively abstract fashion as
a series of message-passing iterations using UPDATE and AGGREGATE functions
(Equation 5.4). In order to translate the abstract GNN framework defined
in Equation (5.4) into something we can implement, we must give concrete
instantiations to these UPDATE and AGGREGATE functions. We begin here with
the most basic GNN framework, which is a simplification of the original GNN
models proposed by Merkwirth and Lengauer [2005] and Scarselli et al. [2009].

The basic GNN message passing is defined as

h(k)
u = �

0

@W(k)
self

h(k�1)

u +W(k)
neigh

X

v2N (u)

h(k�1)

v + b(k)

1

A , (5.7)

where W(k)
self

,W(k)
neigh

2 Rd(k)⇥d(k�1)

are trainable parameter matrices and �

denotes an elementwise non-linearity (e.g., a tanh or ReLU). The bias term

b(k) 2 Rd(k)

is often omitted for notational simplicity, but including the bias
term can be important to achieve strong performance. In this equation—and
throughout the remainder of the book—we use superscripts to di↵erentiate pa-
rameters, embeddings, and dimensionalities in di↵erent layers of the GNN.

The message passing in the basic GNN framework is analogous to a standard
multi-layer perceptron (MLP) or Elman-style recurrent neural network, i.e., El-
man RNN [Elman, 1990], as it relies on linear operations followed by a single
elementwise non-linearity. We first sum the messages incoming from the neigh-
bors; then, we combine the neighborhood information with the node’s previous
embedding using a linear combination; and finally, we apply an elementwise
non-linearity.

We can equivalently define the basic GNN through the UPDATE and AGGREGATE

functions:

mN (u) =
X

v2N (u)

hv, (5.8)

UPDATE(hu,mN (u)) = �
�
Wselfhu +WneighmN (u)

�
, (5.9)

where we recall that we use

mN (u) = AGGREGATE
(k)({h(k)

v , 8v 2 N (u)}) (5.10)

as a shorthand to denote the message that has been aggregated from u’s graph
neighborhood. Note also that we omitted the superscript denoting the iteration
in the above equations, which we will often do for notational brevity.2

2In general, the parameters Wself,Wneigh and b can be shared across the GNN message
passing iterations or trained separately for each layer.

52 CHAPTER 5. THE GRAPH NEURAL NETWORK MODEL

Node vs. graph-level equations In the description of the basic GNN
model above, we defined the core message-passing operations at the node
level. We will use this convention for the bulk of this chapter and this book
as a whole. However, it is important to note that many GNNs can also be
succinctly defined using graph-level equations. In the case of a basic GNN,
we can write the graph-level definition of the model as follows:

H(t) = �

⇣
AH(k�1)W(k)

neigh
+H(k�1)W(k)

self

⌘
, (5.11)

where H(k) 2 R|V |⇥d denotes the matrix of node representations at layer t
in the GNN (with each node corresponding to a row in the matrix), A is the
graph adjacency matrix, and we have omitted the bias term for notational
simplicity. While this graph-level representation is not easily applicable to
all GNN models—such as the attention-based models we discuss below—it
is often more succinct and also highlights how many GNNs can be e�ciently
implemented using a small number of sparse matrix operations.

5.1.4 Message Passing with Self-loops

As a simplification of the neural message passing approach, it is common to add
self-loops to the input graph and omit the explicit update step. In this approach
we define the message passing simply as

h(k)
u = AGGREGATE({h(k�1)

v , 8v 2 N (u) [{u}}), (5.12)

where now the aggregation is taken over the set N (u) [{u}, i.e., the node’s
neighbors as well as the node itself. The benefit of this approach is that we
no longer need to define an explicit update function, as the update is implicitly
defined through the aggregation method. Simplifying the message passing in this
way can often alleviate overfitting, but it also severely limits the expressivity
of the GNN, as the information coming from the node’s neighbours cannot be
di↵erentiated from the information from the node itself.

In the case of the basic GNN, adding self-loops is equivalent to sharing
parameters between the Wself and Wneigh matrices, which gives the following
graph-level update:

H(t) = �

⇣
(A+ I)H(t�1)W(t)

⌘
. (5.13)

In the following chapters we will refer to this as the self-loop GNN approach.

5.2 Generalized Neighborhood Aggregation

The basic GNN model outlined in Equation (5.7) can achieve strong perfor-
mance, and its theoretical capacity is well-understood (see Chapter 7). However,

5.2. GENERALIZED NEIGHBORHOOD AGGREGATION 53

just like a simple MLP or Elman RNN, the basic GNN can be improved upon
and generalized in many ways. Here, we discuss how the AGGREGATE operator
can be generalized and improved upon, with the following section (Section 5.3)
providing an analogous discussion for the UPDATE operation.

5.2.1 Neighborhood Normalization

The most basic neighborhood aggregation operation (Equation 5.8) simply takes
the sum of the neighbor embeddings. One issue with this approach is that it can
be unstable and highly sensitive to node degrees. For instance, suppose node
u has 100⇥ as many neighbors as node u

0 (i.e., a much higher degree), then
we would reasonably expect that k

P
v2N (u) hvk >> k

P
v02N (u0) hv0k (for any

reasonable vector norm k · k). This drastic di↵erence in magnitude can lead to
numerical instabilities as well as di�culties for optimization.

One solution to this problem is to simply normalize the aggregation operation
based upon the degrees of the nodes involved. The simplest approach is to just
take an average rather than sum:

mN (u) =

P
v2N (u) hv

|N (u)| , (5.14)

but researchers have also found success with other normalization factors, such as
the following symmetric normalization employed by Kipf and Welling [2016a]:

mN (u) =
X

v2N (u)

hvp
|N (u)||N (v)|

. (5.15)

For example, in a citation graph—the kind of data that Kipf and Welling [2016a]
analyzed—information from very high-degree nodes (i.e., papers that are cited
many times) may not be very useful for inferring community membership in the
graph, since these papers can be cited thousands of times across diverse sub-
fields. Symmetric normalization can also be motivated based on spectral graph
theory. In particular, combining the symmetric-normalized aggregation (Equa-
tion 5.15) along with the basic GNN update function (Equation 5.9) results in
a first-order approximation of a spectral graph convolution, and we expand on
this connection in Chapter 7.

Graph convolutional networks (GCNs)

One of the most popular baseline graph neural network models—the graph
convolutional network (GCN)—employs the symmetric-normalized aggregation
as well as the self-loop update approach. The GCN model thus defines the
message passing function as

h(k)
u = �

0

@W(k)
X

v2N (u)[{u}

hvp
|N (u)||N (v)|

1

A . (5.16)

54 CHAPTER 5. THE GRAPH NEURAL NETWORK MODEL

This approach was first outlined by Kipf and Welling [2016a] and has proved to
be one of the most popular and e↵ective baseline GNN architectures.

To normalize or not to normalize? Proper normalization can be es-
sential to achieve stable and strong performance when using a GNN. It
is important to note, however, that normalization can also lead to a loss
of information. For example, after normalization, it can be hard (or even
impossible) to use the learned embeddings to distinguish between nodes
of di↵erent degrees, and various other structural graph features can be
obscured by normalization. In fact, a basic GNN using the normalized ag-
gregation operator in Equation (5.14) is provably less powerful than the
basic sum aggregator in Equation (5.8) (see Chapter 7). The use of nor-
malization is thus an application-specific question. Usually, normalization
is most helpful in tasks where node feature information is far more useful
than structural information, or where there is a very wide range of node
degrees that can lead to instabilities during optimization.

5.2.2 Set Aggregators

Neighborhood normalization can be a useful tool to improve GNN performance,
but can we do more to improve the AGGREGATE operator? Is there perhaps
something more sophisticated than just summing over the neighbor embeddings?

The neighborhood aggregation operation is fundamentally a set function.
We are given a set of neighbor embeddings {hv, 8v 2 N (u)} and must map this
set to a single vector mN (u). The fact that {hv, 8v 2 N (u)} is a set is in fact
quite important: there is no natural ordering of a nodes’ neighbors, and any
aggregation function we define must thus be permutation invariant.

Set pooling

One principled approach to define an aggregation function is based on the theory
of permutation invariant neural networks. For example, Zaheer et al. [2017] show
that an aggregation function with the following form is a universal set function
approximator:

mN (u) = MLP✓

0

@
X

v2N(u)

MLP�(hv)

1

A , (5.17)

where as usual we use MLP✓ to denote an arbitrarily deep multi-layer perceptron
parameterized by some trainable parameters ✓. In other words, the theoretical
results in Zaheer et al. [2017] show that any permutation-invariant function
that maps a set of embeddings to a single embedding can be approximated to
an arbitrary accuracy by a model following Equation (5.17).

Note that the theory presented in Zaheer et al. [2017] employs a sum of the
embeddings after applying the first MLP (as in Equation 5.17). However, it is
possible to replace the sum with an alternative reduction function, such as an

5.2. GENERALIZED NEIGHBORHOOD AGGREGATION 55

element-wise maximum or minimum, as in Qi et al. [2017], and it is also common
to combine models based on Equation (5.17) with the normalization approaches
discussed in Section 5.2.1, as in the GraphSAGE-pool approach [Hamilton et al.,
2017b].

Set pooling approaches based on Equation (5.17) often lead to small increases
in performance, though they also introduce an increased risk of overfitting,
depending on the depth of the MLPs used. If set pooling is used, it is common to
use MLPs that have only a single hidden layer, since these models are su�cient
to satisfy the theory, but are not so overparameterized so as to risk catastrophic
overfitting.

Janossy pooling

Set pooling approaches to neighborhood aggregation essentially just add extra
layers of MLPs on top of the more basic aggregation architectures discussed
in Section 5.1.3. This idea is simple, but is known to increase the theoretical
capacity of GNNs. However, there is another alternative approach, termed
Janossy pooling, that is also provably more powerful than simply taking a sum
or mean of the neighbor embeddings [Murphy et al., 2018].

Recall that the challenge of neighborhood aggregation is that we must use
a permutation-invariant function, since there is no natural ordering of a node’s
neighbors. In the set pooling approach (Equation 5.17), we achieved this permu-
tation invariance by relying on a sum, mean, or element-wise max to reduce the
set of embeddings to a single vector. We made the model more powerful by com-
bining this reduction with feed-forward neural networks (i.e., MLPs). Janossy
pooling employs a di↵erent approach entirely: instead of using a permutation-
invariant reduction (e.g., a sum or mean), we apply a permutation-sensitive
function and average the result over many possible permutations.

Let ⇡i 2 ⇧ denote a permutation function that maps the set {hv, 8v 2 N (u)}
to a specific sequence (hv1 ,hv2 , ...,hv|N(u)|)⇡i . In other words, ⇡i takes the
unordered set of neighbor embeddings and places these embeddings in a sequence
based on some arbitrary ordering. The Janossy pooling approach then performs
neighborhood aggregation by

mN (u) = MLP✓

1

|⇧|
X

⇡2⇧

⇢�

�
hv1 ,hv2 , ...,hv|N(u)|

�
⇡i

!
, (5.18)

where ⇧ denotes a set of permutations and ⇢� is a permutation-sensitive func-
tion, e.g., a neural network that operates on sequences. In practice ⇢� is usually
defined to be an LSTM [Hochreiter and Schmidhuber, 1997], since LSTMs are
known to be a powerful neural network architecture for sequences.

If the set of permutations ⇧ in Equation (5.18) is equal to all possible per-
mutations, then the aggregator in Equation (5.18) is also a universal function
approximator for sets, like Equation (5.17). However, summing over all pos-
sible permutations is generally intractable. Thus, in practice, Janossy pooling
employs one of two approaches:

56 CHAPTER 5. THE GRAPH NEURAL NETWORK MODEL

1. Sample a random subset of possible permutations during each application
of the aggregator, and only sum over that random subset.

2. Employ a canonical ordering of the nodes in the neighborhood set; e.g.,
order the nodes in descending order according to their degree, with ties
broken randomly.

Murphy et al. [2018] include a detailed discussion and empirical comparison of
these two approaches, as well as other approximation techniques (e.g., truncat-
ing the length of sequence), and their results indicate that Janossy-style pooling
can improve upon set pooling in a number of synthetic evaluation setups.

5.2.3 Neighborhood Attention

In addition to more general forms of set aggregation, a popular strategy for
improving the aggregation layer in GNNs is to apply attention [Bahdanau et al.,
2015]. The basic idea is to assign an attention weight or importance to each
neighbor, which is used to weigh this neighbor’s influence during the aggregation
step. The first GNN model to apply this style of attention was Veličković et al.
[2018]’s Graph Attention Network (GAT), which uses attention weights to define
a weighted sum of the neighbors:

mN (u) =
X

v2N (u)

↵u,vhv, (5.19)

where ↵u,v denotes the attention on neighbor v 2 N (u) when we are aggregating
information at node u. In the original GAT paper, the attention weights are
defined as

↵u,v =
exp

�
a>[Whu �Whv]

�
P

v02N (u) exp (a
>[Whu �Whv0])

, (5.20)

where a is a trainable attention vector, W is a trainable matrix, and � denotes
the concatenation operation.

The GAT-style attention computation is known to work well with graph
data. However, in principle any standard attention model from the deep learning
literature at large can be used [Bahdanau et al., 2015]. Popular variants of
attention include the bilinear attention model

↵u,v =
exp

�
h>
uWhv

�
P

v02N (u) exp (h
>
uWhv0)

, (5.21)

as well as variations of attention layers using MLPs, e.g.,

↵u,v =
exp (MLP(hu,hv))P

v02N (u) exp (MLP(hu,hv0))
, (5.22)

where the MLP is restricted to a scalar output.
In addition, while it is less common in the GNN literature, it is also possi-

ble to add multiple attention “heads”, in the style of the popular transformer

5.2. GENERALIZED NEIGHBORHOOD AGGREGATION 57

architecture [Vaswani et al., 2017]. In this approach, one computes K distinct
attention weights ↵u,v,k, using independently parameterized attention layers.
The messages aggregated using the di↵erent attention weights are then trans-
formed and combined in the aggregation step, usually with a linear projection
followed by a concatenation operation, e.g.,

mN (u) = [a1 � a2 � ...� aK] (5.23)

ak = Wk

X

v2N (u)

↵u,v,khv (5.24)

where the attention weights ↵u,v,k for each of the K attention heads can be
computed using any of the above attention mechanisms.

Graph attention and transformers GNN models with multi-headed
attention (Equation 5.23) are closely related to the transformer architecture
[Vaswani et al., 2017]. Transformers are a popular architecture for both
natural language processing (NLP) and computer vision, and—in the case
of NLP—they have been an important driver behind large state-of-the-art
NLP systems, such as BERT [Devlin et al., 2018] and XLNet [Yang et al.,
2019]. The basic idea behind transformers is to define neural network layers
entirely based on the attention operation. At each layer in a transformer,
a new hidden representation is generated for every position in the input
data (e.g., every word in a sentence) by using multiple attention heads to
compute attention weights between all pairs of positions in the input, which
are then aggregated with weighted sums based on these attention weights
(in a manner analogous to Equation 5.23). In fact, the basic transformer
layer is exactly equivalent to a GNN layer using multi-headed attention
(i.e., Equation 5.23) if we assume that the GNN receives a fully-connected
graph as input.

This connection between GNNs and transformers has been exploited in
numerous works. For example, one implementation strategy for designing
GNNs is to simply start with a transformer model and then apply a bi-
nary adjacency mask on the attention layer to ensure that information is
only aggregated between nodes that are actually connected in the graph.
This style of GNN implementation can benefit from the numerous well-
engineered libraries for transformer architectures that exist. However, a
downside of this approach, is that transformers must compute the pair-
wise attention between all positions/nodes in the input, which leads to a
quadratic O(|V|2) time complexity to aggregate messages for all nodes in
the graph, compared to a O(|V||E|) time complexity for a more standard
GNN implementation.

Adding attention is a useful strategy for increasing the representational ca-
pacity of a GNN model, especially in cases where you have prior knowledge
to indicate that some neighbors might be more informative than others. For
example, consider the case of classifying papers into topical categories based

58 CHAPTER 5. THE GRAPH NEURAL NETWORK MODEL

on citation networks. Often there are papers that span topical boundaries, or
that are highly cited across various di↵erent fields. Ideally, an attention-based
GNN would learn to ignore these papers in the neural message passing, as such
promiscuous neighbors would likely be uninformative when trying to identify
the topical category of a particular node. In Chapter 7, we will discuss how
attention can influence the inductive bias of GNNs from a signal processing
perspective.

5.3 Generalized Update Methods

The AGGREGATE operator in GNN models has generally received the most atten-
tion from researchers—in terms of proposing novel architectures and variations.
This was especially the case after the introduction of the GraphSAGE framework,
which introduced the idea of generalized neighbourhood aggregation [Hamilton
et al., 2017b]. However, GNN message passing involves two key steps: aggre-
gation and updating, and in many ways the UPDATE operator plays an equally
important role in defining the power and inductive bias of the GNN model.

So far, we have seen the basic GNN approach—where the update operation
involves a linear combination of the node’s current embedding with the message
from its neighbors—as well as the self-loop approach, which simply involves
adding a self-loop to the graph before performing neighborhood aggregation. In
this section, we turn our attention to more diverse generalizations of the UPDATE

operator.

Over-smoothing and neighbourhood influence One common issue
with GNNs—which generalized update methods can help to address—is
known as over-smoothing. The essential idea of over-smoothing is that after
several iterations of GNN message passing, the representations for all the
nodes in the graph can become very similar to one another. This tendency is
especially common in basic GNN models and models that employ the self-
loop update approach. Over-smoothing is problematic because it makes
it impossible to build deeper GNN models—which leverage longer-term
dependencies in the graph—since these deep GNN models tend to just
generate over-smoothed embeddings.

This issue of over-smoothing in GNNs can be formalized by defining the

influence of each node’s input feature h(0)

u = xu on the final layer embedding

of all the other nodes in the graph, i.e, h(K)

v , 8v 2 V. In particular, for any
pair of nodes u and v we can quantify the influence of node u on node v

in the GNN by examining the magnitude of the corresponding Jacobian
matrix [Xu et al., 2018]:

IK(u, v) = 1>

@h(K)

v

@h(0)

u

!
1, (5.25)

where 1 is a vector of all ones. The IK(u, v) value uses the sum of the

5.3. GENERALIZED UPDATE METHODS 59

entries in the Jacobian matrix @h(K)
v

@h(0)
u

as a measure of how much the initial

embedding of node u influences the final embedding of node v in the GNN.
Given this definition of influence, Xu et al. [2018] prove the following:

Theorem 3. For any GNN model using a self-loop update approach and
an aggregation function of the form

AGGREGATE({hv, 8v 2 N (u) [{u}}) = 1

fn(|N (u) [{u}|)
X

v2N (u)[{u}

hv,

(5.26)
where f : R+ ! R+ is an arbitrary di↵erentiable normalization function,
we have that

IK(u, v) / pG,K(u|v), (5.27)

where pG,K(u|v) denotes the probability of visiting node v on a length-K
random walk starting from node u.

This theorem is a direct consequence of Theorem 1 in Xu et al. [2018].
It states that when we are using a K-layer GCN-style model, the influ-
ence of node u and node v is proportional the probability of reaching node
v on a K-step random walk starting from node u. An important conse-
quence of this, however, is that as K ! 1 the influence of every node
approaches the stationary distribution of random walks over the graph,
meaning that local neighborhood information is lost. Moreover, in many
real-world graphs—which contain high-degree nodes and resemble so-called
“expander” graphs—it only takes k = O(log(|V|) steps for the random
walk starting from any node to converge to an almost-uniform distribution
[Hoory et al., 2006].

Theorem 3 applies directly to models using a self-loop update approach,
but the result can also be extended in asympotic sense for the basic GNN

update (i.e., Equation 5.9) as long as kW(k)
self

k < kW(k)
neigh

k at each layer
k. Thus, when using simple GNN models—and especially those with the
self-loop update approach—building deeper models can actually hurt per-
formance. As more layers are added we lose information about local neigh-
borhood structures and our learned embeddings become over-smoothed,
approaching an almost-uniform distribution.

5.3.1 Concatenation and Skip-Connections

As discussed above, over-smoothing is a core issue in GNNs. Over-smoothing
occurs when node-specific information becomes “washed out” or “lost” after
several iterations of GNN message passing. Intuitively, we can expect over-
smoothing in cases where the information being aggregated from the node
neighbors during message passing begins to dominate the updated node rep-

resentations. In these cases, the updated node representations (i.e., the h(k+1)

u

60 CHAPTER 5. THE GRAPH NEURAL NETWORK MODEL

vectors) will depend too strongly on the incoming message aggregated from the
neighbors (i.e., the mN (u) vectors) at the expense of the node representations

from the previous layers (i.e., the h(k)
u vectors). A natural way to alleviate this

issue is to use vector concatenations or skip connections, which try to directly
preserve information from previous rounds of message passing during the update
step.

These concatenation and skip-connection methods can be used in conjunc-
tion with most other GNN update approaches. Thus, for the sake of generality,
we will use UPDATEbase to denote the base update function that we are building
upon (e.g., we can assume that UPDATEbase is given by Equation 5.9), and we
will define various skip-connection updates on top of this base function.

One of the simplest skip connection updates employs a concatenation to
preserve more node-level information during message passing:

UPDATEconcat(hu,mN (u)) = [UPDATEbase(hu,mN (u))� hu], (5.28)

where we simply concatenate the output of the base update function with
the node’s previous-layer representation. Again, the key intuition here is that
we encourage the model to disentangle information during message passing—
separating the information coming from the neighbors (i.e., mN (u)) from the
current representation of each node (i.e., hu).

The concatenation-based skip connection was proposed in the GraphSAGE
framework, which was one of the first works to highlight the possible benefits
of these kinds of modifications to the update function [Hamilton et al., 2017a].
However, in addition to concatenation, we can also employ other forms of skip-
connections, such as the linear interpolation method proposed by Pham et al.
[2017]:

UPDATEinterpolate(hu,mN (u)) = ↵1 � UPDATEbase(hu,mN (u)) +↵2 �hu, (5.29)

where ↵1,↵2 2 [0, 1]d are gating vectors with ↵2 = 1 � ↵1 and � denotes el-
ementwise multiplication. In this approach, the final updated representation
is a linear interpolation between the previous representation and the represen-
tation that was updated based on the neighborhood information. The gating
parameters ↵1 can be learned jointly with the model in a variety of ways. For
example, Pham et al. [2017] generate ↵1 as the output of a separate single-layer
GNN, which takes the current hidden-layer representations as features. How-
ever, other simpler approaches could also be employed, such as simply directly
learning ↵1 parameters for each message passing layer or using an MLP on the
current node representations to generate these gating parameters.

In general, these concatenation and residual connections are simple strate-
gies that can help to alleviate the over-smoothing issue in GNNs, while also
improving the numerical stability of optimization. Indeed, similar to the util-
ity of residual connections in convolutional neural networks (CNNs) [He et al.,
2016], applying these approaches to GNNs can facilitate the training of much
deeper models. In practice these techniques tend to be most useful for node

5.3. GENERALIZED UPDATE METHODS 61

classification tasks with moderately deep GNNs (e.g., 2-5 layers), and they ex-
cel on tasks that exhibit homophily, i.e., where the prediction for each node is
strongly related to the features of its local neighborhood.

5.3.2 Gated Updates

In the previous section we discussed skip-connection and residual connection
approaches that bear strong analogy to techniques used in computer vision to
build deeper CNN architectures. In a parallel line of work, researchers have also
drawn inspiration from the gating methods used to improve the stability and
learning ability of recurrent neural networks (RNNs). In particular, one way
to view the GNN message passing algorithm is that the aggregation function
is receiving an observation from the neighbors, which is then used to update
the hidden state of each node. In this view, we can directly apply methods
used to update the hidden state of RNN architectures based on observations.
For instance, one of the earliest GNN architectures [Li et al., 2015] defines the
update function as

h(k)
u = GRU(h(k�1)

u ,m(k)
N (u)), (5.30)

where GRU denotes the update equation of the gated recurrent unit (GRU)
cell [Cho et al., 2014]. Other approaches have employed updates based on the
LSTM architecture [Selsam et al., 2019].

In general, any update function defined for RNNs can be employed in the
context of GNNs. We simply replace the hidden state argument of the RNN
update function (usually denoted h(t)) with the node’s hidden state, and we re-
place the observation vector (usually denoted x(t)) with the message aggregated
from the local neighborhood. Importantly, the parameters of this RNN-style up-
date are always shared across nodes (i.e., we use the same LSTM or GRU cell
to update each node). In practice, researchers usually share the parameters of
the update function across the message-passing layers of the GNN as well.

These gated updates are very e↵ective at facilitating deep GNN architectures
(e.g., more than 10 layers) and preventing over-smoothing. Generally, they are
most useful for GNN applications where the prediction task requires complex
reasoning over the global structure of the graph, such as applications for program
analysis [Li et al., 2015] or combinatorial optimization [Selsam et al., 2019].

5.3.3 Jumping Knowledge Connections

In the preceding sections, we have been implicitly assuming that we are using
the output of the final layer of the GNN. In other words, we have been assuming
that the node representations zu that we use in a downstream task are equal to
final layer node embeddings in the GNN:

zu = h(K)

u , 8u 2 V. (5.31)

This assumption is made by many GNN approaches, and the limitations of this
strategy motivated much of the need for residual and gated updates to limit
over-smoothing.

62 CHAPTER 5. THE GRAPH NEURAL NETWORK MODEL

However, a complimentary strategy to improve the quality of the final node
representations is to simply leverage the representations at each layer of message
passing, rather than only using the final layer output. In this approach we define
the final node representations zu as

zu = fJK(h
(0)

u � h(1)

u � ...� h(K)

u), (5.32)

where fJK is an arbitrary di↵erentiable function. This strategy is known as
adding jumping knowledge (JK) connections and was first proposed and ana-
lyzed by Xu et al. [2018]. In many applications the function fJK can simply
be defined as the identity function, meaning that we just concatenate the node
embeddings from each layer, but Xu et al. [2018] also explore other options
such as max-pooling approaches and LSTM attention layers. This approach
often leads to consistent improvements across a wide-variety of tasks and is a
generally useful strategy to employ.

5.4 Edge Features and Multi-relational GNNs

So far our discussion of GNNs and neural message passing has implicitly assumed
that we have simple graphs. However, there are many applications where the
graphs in question are multi-relational or otherwise heterogenous (e.g., knowl-
edge graphs). In this section, we review some of the most popular strategies
that have been developed to accommodate such data.

5.4.1 Relational Graph Neural Networks

The first approach proposed to address this problem is commonly known as
the Relational Graph Convolutional Network (RGCN) approach [Schlichtkrull
et al., 2017]. In this approach we augment the aggregation function to accom-
modate multiple relation types by specifying a separate transformation matrix
per relation type:

mN (u) =
X

⌧2R

X

v2N⌧ (u)

W⌧hv

fn(N (u),N (v))
, (5.33)

where fn is a normalization function that can depend on both the neighborhood
of the node u as well as the neighbor v being aggregated over. Schlichtkrull et al.
[2017] discuss several normalization strategies to define fn that are analagous
to those discussed in Section 5.2.1. Overall, the multi-relational aggregation in
RGCN is thus analagous to the basic a GNN approach with normalization, but
we separately aggregate information across di↵erent edge types.

Parameter sharing

One drawback of the naive RGCN approach is the drastic increase in the number
of parameters, as now we have one trainable matrix per relation type. In cer-
tain applications—such as applications on knowledge graphs with many distinct

5.4. EDGE FEATURES AND MULTI-RELATIONAL GNNS 63

relations—this increase in parameters can lead to overfitting and slow learning.
Schlichtkrull et al. [2017] propose a scheme to combat this issue by parameter
sharing with basis matrices, where

W⌧ =
bX

i=1

↵i,⌧Bi. (5.34)

In this basis matrix approach, all the relation matrices are defined as linear
combinations of b basis matrices B1, ...,Bb, and the only relation-specific pa-
rameters are the b combination weights ↵1,⌧ , ...,↵b,⌧ for each relation ⌧ . In this
basis sharing approach, we can thus rewrite the full aggregation function as

mN (u) =
X

⌧2R

X

v2N⌧ (u)

↵⌧ ⇥1 B ⇥2 hv

fn(N (u),N (v))
, (5.35)

where B = (B1, ...,Bb) is a tensor formed by stacking the basis matrices, ↵⌧ =
(↵1,⌧ , ...,↵b,⌧) is a vector containing the basis combination weights for relation
⌧ , and ⇥i denotes a tensor product along mode i. Thus, an alternative view of
the parameter sharing RGCN approach is that we are learning an embedding
for each relation, as well a tensor that is shared across all relations.

Extensions and variations

The RGCN architecture can be extended in many ways, and in general, we
refer to approaches that define separate aggregation matrices per relation as
relational graph neural networks. For example, a variation of this approach
without parameter sharing is deployed by Zitnik et al. [2018] to model a multi-
relational dataset relating drugs, diseases and proteins, and a similar strategy
is leveraged by Marcheggiani and Titov [2017] to analyze linguistic dependency
graphs. Other works have found success combining the RGCN-style aggregation
with attention [Teru et al., 2020].

5.4.2 Attention and Feature Concatenation

The relational GNN approach, where we define a separate aggregation param-
eter per relation, is applicable for multi-relational graphs and cases where we
have discrete edge features. To accommodate cases where we have more general
forms of edge features, we can leverage these features in attention or by concate-
nating this information with the neighbor embeddings during message passing.
For example, given any base aggregation approach AGGREGATEbase one simple
strategy to leverage edge features is to define a new aggregation function as

mN (u) = AGGREGATEbase({hv � e(u,⌧,v), 8v 2 N (u)}), (5.36)

where e(u,⌧,v) denotes an arbitrary vector-valued feature for the edge (u, ⌧, v).
This approach is simple and general, and has seen recent success with attention-
based approaches as the base aggregation function [Sinha et al., 2019].

64 CHAPTER 5. THE GRAPH NEURAL NETWORK MODEL

5.5 Graph Pooling

The neural message passing approach produces a set of node embeddings, but
what if we want to make predictions at the graph level? In other words, we
have been assuming that the goal is to learn node representations zu, 8u 2 V ,
but what if we to learn an embedding zG for the entire graph G? This task is
often referred to as graph pooling, since our goal is to pool together the node
embeddings in order to learn an embedding of the entire graph.

Set pooling approaches

Similar to the AGGREGATE operator, the task of graph pooling can be viewed
as a problem of learning over sets. We want to design a pooling function fp,
which maps a set of node embeddings {z1, ..., z|V |} to an embedding zG that
represents the full graph. Indeed, any of the approaches discussed in Section
5.2.2 for learning over sets of neighbor embeddings can also be employed for
pooling at the graph level.

In practice, there are two approaches that are most commonly applied for
learning graph-level embeddings via set pooling. The first approach is simply
to take a sum (or mean) of the node embeddings:

zG =

P
v2V zu

fn(|V|)
, (5.37)

where fn is some normalizing function (e.g., the identity function). While quite
simple, pooling based on the sum or mean of the node embeddings is often
su�cient for applications involving small graphs.

The second popular set-based approach uses a combination of LSTMs and
attention to pool the node embeddings, in a manner inspired by the work of
Vinyals et al. [2015]. In this pooling approach, we iterate a series of attention-
based aggregations defined by the following set of equations, which are iterated
for t = 1, ..., T steps:

qt = LSTM(ot�1,qt�1), (5.38)

ev,t = fa(zv,qt), 8v 2 V, (5.39)

av,t =
exp(ev,i)P

u2V exp(eu,t)
, 8v 2 V, (5.40)

ot =
X

v2V
av,tzv. (5.41)

In the above equations, the qt vector represents a query vector for the attention
at each iteration t. In Equation (5.39), the query vector is used to compute an
attention score over each node using an attention function fa : Rd ⇥ Rd ! R
(e.g., a dot product), and this attention score is then normalized in Equation
(5.40). Finally, in Equation (5.41) a weighted sum of the node embeddings is
computed based on the attention weights, and this weighted sum is used to

5.5. GRAPH POOLING 65

update the query vector using an LSTM update (Equation 5.38). Generally
the q0 and o0 vectors are initialized with all-zero values, and after iterating
Equations (5.38)-(5.41) for T iterations, an embedding for the full graph is
computed as

zG = o1 � o2 � ...� oT . (5.42)

This approach represents a sophisticated architecture for attention-based pool-
ing over a set, and it has become a popular pooling method in many graph-level
classification tasks.

Graph coarsening approaches

One limitation of the set pooling approaches is that they do not exploit the struc-
ture of the graph. While it is reasonable to consider the task of graph pooling
as simply a set learning problem, there can also be benefits from exploiting
the graph topology at the pooling stage. One popular strategy to accomplish
this is to perform graph clustering or coarsening as a means to pool the node
representations.

In these style of approaches, we assume that we have some clustering function

fc ! G ⇥ R|V |⇥d ! R+|V |⇥c
, (5.43)

which maps all the nodes in the graph to an assignment over c clusters. In
particular, we presume that this function outputs an assignment matrix S =
fc(G,Z), where S[u, i] 2 R+ denotes the strength of the association between
node u and cluster i. One simple example of an fc function would be spectral
clustering approach described in Chapter 1, where the cluster assignment is
based on the spectral decomposition of the graph adjacency matrix. In a more
complex definition of fc, one can actually employ another GNN to predict cluster
assignments [Ying et al., 2018b].

Regardless of the approach used to generate the cluster assignment matrix
S, the key idea of graph coarsening approaches is that we then use this matrix
to coarsen the graph. In particular, we use the assignment matrix S to compute
a new coarsened adjacency matrix

Anew = S>AS 2 R+c⇥c (5.44)

and a new set of node features

Xnew = S>X 2 Rc⇥d
. (5.45)

Thus, this new adjacency matrix now represents the strength of association
(i.e., the edges) between the clusters in the graph, and the new feature matrix
represents the aggregated embeddings for all the nodes assigned to each cluster.
We can then run a GNN on this coarsened graph and repeat the entire coarsening
process for a number of iterations, where the size of the graph is decreased at
each step. The final representation of the graph is then computed by a set
pooling over the embeddings of the nodes in a su�ciently coarsened graph.

66 CHAPTER 5. THE GRAPH NEURAL NETWORK MODEL

This coarsening based approach is inspired by the pooling approaches used
in convolutional neural networks (CNNs), and it relies on the intuition that we
can build hierarchical GNNs that operate on di↵erent granularities of the input
graph. In practice, these coarsening approaches can lead to strong performance,
but they can also be unstable and di�cult to train. For example, in order
to have the entire learning process be end-to-end di↵erentiable the clustering
functions fc must be di↵erentiable, which rules out most o↵-the-shelf clustering
algorithms such as spectral clustering. There are also approaches that coarsen
the graph by selecting a set of nodes to remove rather than pooling all nodes
into clusters, which can lead to benefits in terms of computational complexity
and speed [Cangea et al., 2018, Gao and Ji, 2019].

5.6 Generalized Message Passing

The presentation in this chapter so far has focused on the most popular style
of GNN message passing, which operates largely at the node level. However,
the GNN message passing approach can also be generalized to leverage edge
and graph-level information at each stage of message passing. For example, in
the more general approach proposed by Battaglia et al. [2018], we define each
iteration of message passing according to the following equations:

h(k)
(u,v) = UPDATEedge(h

(k�1)

(u,v) ,h
(k�1)

u ,h(k�1)

v ,h(k�1)

G) (5.46)

mN (u) = AGGREGATEnode({h(k)
(u,v)8v 2 N (u)}) (5.47)

h(k)
u = UPDATEnode(h

(k�1)

u ,mN (u),h
(k�1)

G) (5.48)

h(k)
G = UPDATEgraph(h

(k�1)

G , {h(k)
u , 8u 2 V}, {h(k)

(u,v)8(u, v) 2 E}). (5.49)

The important innovation in this generalized message passing framework is that,

during message passing, we generate hidden embeddings h(k)
(u,v) for each edge in

the graph, as well as an embedding h(k)
G corresponding to the entire graph. This

allows the message passing model to easily integrate edge and graph-level fea-
tures, and recent work has also shown this generalized message passing approach
to have benefits compared to a standard GNN in terms of logical expressiveness
[Barceló et al., 2020]. Generating embeddings for edges and the entire graph
during message passing also makes it trivial to define loss functions based on
graph or edge-level classification tasks.

In terms of the message-passing operations in this generalized message-
passing framework, we first update the edge embeddings based on the embed-
dings of their incident nodes (Equation 5.46). Next, we update the node embed-
dings by aggregating the edge embeddings for all their incident edges (Equations
5.47 and 5.48). The graph embedding is used in the update equation for both
node and edge representations, and the graph-level embedding itself is updated
by aggregating over all the node and edge embeddings at the end of each iter-
ation (Equation 5.49). All of the individual update and aggregation operations

5.6. GENERALIZED MESSAGE PASSING 67

in such a generalized message-passing framework can be implemented using the
techniques discussed in this chapter (e.g., using a pooling method to compute
the graph-level update).

