
Chapter 3

Neighborhood
Reconstruction Methods

This part of the book is concerned with methods for learning node embeddings.
The goal of these methods is to encode nodes as low-dimensional vectors that
summarize their graph position and the structure of their local graph neigh-
borhood. In other words, we want to project nodes into a latent space, where
geometric relations in this latent space correspond to relationships (e.g., edges)
in the original graph or network [Ho↵ et al., 2002] (Figure 3.1).

In this chapter we will provide an overview of node embedding methods for
simple and weighted graphs. Chapter 4 will provide an overview of analogous
embedding approaches for multi-relational graphs.

Figure 3.1: Illustration of the node embedding problem. Our goal is to learn an
encoder (enc), which maps nodes to a low-dimensional embedding space. These
embeddings are optimized so that distances in the embedding space reflect the
relative positions of the nodes in the original graph.

29

30 CHAPTER 3. NEIGHBORHOOD RECONSTRUCTION METHODS

3.1 An Encoder-Decoder Perspective

We organize our discussion of node embeddings based upon the framework of
encoding and decoding graphs. This way of viewing graph representation learn-
ing will reoccur throughout the book, and our presentation of node embedding
methods based on this perspective closely follows Hamilton et al. [2017a].

In the encoder-decoder framework, we view the graph representation learning
problem as involving two key operations. First, an encoder model maps each
node in the graph into a low-dimensional vector or embedding. Next, a decoder
model takes the low-dimensional node embeddings and uses them to reconstruct
information about each node’s neighborhood in the original graph. This idea is
summarized in Figure 3.2.

3.1.1 The Encoder

Formally, the encoder is a function that maps nodes v 2 V to vector embeddings
zv 2 Rd (where zv corresponds to the embedding for node v 2 V). In the
simplest case, the encoder has the following signature:

enc : V ! Rd
, (3.1)

meaning that the encoder takes node IDs as input to generate the node em-
beddings. In most work on node embeddings, the encoder relies on what we
call the shallow embedding approach, where this encoder function is simply an
embedding lookup based on the node ID. In other words, we have that

enc(v) = Z[v], (3.2)

where Z 2 R|V|⇥d is a matrix containing the embedding vectors for all nodes
and Z[v] denotes the row of Z corresponding to node v.

Shallow embedding methods will be the focus of this chapter. However, we
note that the encoder can also be generalized beyond the shallow embedding

Figure 3.2: Overview of the encoder-decoder approach. The encoder maps
the node u to a low-dimensional embedding zu. The decoder then uses zu to
reconstruct u’s local neighborhood information.

3.1. AN ENCODER-DECODER PERSPECTIVE 31

approach. For instance, the encoder can use node features or the local graph
structure around each node as input to generate an embedding. These gener-
alized encoder architectures—often called graph neural networks (GNNs)—will
be the main focus of Part II of this book.

3.1.2 The Decoder

The role of the decoder is to reconstruct certain graph statistics from the node
embeddings that are generated by the encoder. For example, given a node
embedding zu of a node u, the decoder might attempt to predict u’s set of
neighbors N (u) or its row A[u] in the graph adjacency matrix.

While many decoders are possible, the standard practice is to define pairwise
decoders, which have the following signature:

dec : Rd ⇥ Rd ! R+
. (3.3)

Pairwise decoders can be interpreted as predicting the relationship or similarity
between pairs of nodes. For instance, a simple pairwise decoder could predict
whether two nodes are neighbors in the graph.

Applying the pairwise decoder to a pair of embeddings (zu,zv) results in the
reconstruction of the relationship between nodes u and v. The goal is optimize
the encoder and decoder to minimize the reconstruction loss so that

dec(enc(u), enc(v)) = dec(zu, zv) ⇡ S[u, v]. (3.4)

Here, we assume that S[u, v] is a graph-based similarity measure between nodes.
For example, the simple reconstruction objective of predicting whether two
nodes are neighbors would correspond to S[u, v] , A[u, v]. However, one can
define S[u, v] in more general ways as well, for example, by leveraging any of
the pairwise neighborhood overlap statistics discussed in Section 2.2.

3.1.3 Optimizing an Encoder-Decoder Model

To achieve the reconstruction objective (Equation 3.4), the standard practice is
to minimize an empirical reconstruction loss L over a set of training node pairs
D:

L =
X

(u,v)2D

` (dec(zu, zv),S[u, v]) , (3.5)

where ` : R ⇥ R ! R is a loss function measuring the discrepancy between
the decoded (i.e., estimated) similarity values dec(zu, zv) and the true values
S[u, v]. Depending on the definition of the decoder (dec) and similarity function
(S), the loss function ` might be a mean-squared error or even a classification
loss, such as cross entropy. Thus, the overall objective is to train the encoder and
the decoder so that pairwise node relationships can be e↵ectively reconstructed
on the training set D. Most approaches minimize the loss in Equation 3.5 using
stochastic gradient descent [Robbins and Monro, 1951], but there are certain
instances when more specialized optimization methods (e.g., based on matrix
factorization) can be used.

32 CHAPTER 3. NEIGHBORHOOD RECONSTRUCTION METHODS

3.1.4 Overview of the Encoder-Decoder Approach

Table 3.1 applies this encoder-decoder perspective to summarize several well-
known node embedding methods—all of which use the shallow encoding ap-
proach. The key benefit of the encoder-decoder framework is that it allows one
to succinctly define and compare di↵erent embedding methods based on (i) their
decoder function, (ii) their graph-based similarity measure, and (iii) their loss
function.

In the following sections, we will describe the representative node embed-
ding methods in Table 3.1 in more detail. We will begin with a discussion of
node embedding methods that are motivated by matrix factorization approaches
(Section 3.2) and that have close theoretical connections to spectral clustering
(see Chapter 1). Following this, we will discuss more recent methods based
on random walks (Section 3.3). These random walk approaches were initially
motivated by inspirations from natural language processing, but—as we will
discuss—they also share close theoretical ties to spectral graph theory.

Table 3.1: A summary of some well-known shallow embedding algorithms. Note
that the decoders and similarity functions for the random-walk based methods
are asymmetric, with the similarity function pG(v|u) corresponding to the prob-
ability of visiting v on a fixed-length random walk starting from u. Adapted
from Hamilton et al. [2017a].

Method Decoder Similarity measure Loss function

Lap. Eigenmaps kzu � zvk22 general dec(zu, zv) · S[u, v]
Graph Fact. z>u zv A[u, v] kdec(zu, zv)� S[u, v]k2

2

GraRep z>u zv A[u, v], ...,Ak[u, v] kdec(zu, zv)� S[u, v]k2
2

HOPE z>u zv general kdec(zu, zv)� S[u, v]k2
2

DeepWalk ez
>
u zv

P
k2V ez

>
u zk

pG(v|u) �S[u, v] log(dec(zu, zv))

node2vec ez
>
u zv

P
k2V ez

>
u zk

pG(v|u) (biased) �S[u, v] log(dec(zu, zv))

3.2 Factorization-based approaches

One way of viewing the encoder-decoder idea is from the perspective of matrix
factorization. Indeed, the challenge of decoding local neighborhood structure
from a node’s embedding is closely related to reconstructing entries in the graph
adjacency matrix. More generally, we can view this task as using matrix fac-
torization to learn a low-dimensional approximation of a node-node similarity
matrix S, where S generalizes the adjacency matrix and captures some user-
defined notion of node-node similarity (as discussed in Section 3.1.2) [Belkin
and Niyogi, 2002, Kruskal, 1964].

3.2. FACTORIZATION-BASED APPROACHES 33

Laplacian eigenmaps One of the earliest—and most influential—factorization-
based approaches is the Laplacian eigenmaps (LE) technique, which builds upon
the spectral clustering ideas discussed in Chapter 2 [Belkin and Niyogi, 2002].
In this approach, we define the decoder based on the L2-distance between the
node embeddings:

dec(zu, zv) = kzu � zvk22.

The loss function then weighs pairs of nodes according to their similarity in the
graph:

L =
X

(u,v)2D

dec(zu, zv) · S[u, v]. (3.6)

The intuition behind this approach is that Equation (3.6) penalizes the model
when very similar nodes have embeddings that are far apart.

If S is constructed so that it satisfies the properties of a Laplacian matrix,
then the node embeddings that minimize the loss in Equation (3.6) are identi-
cal to the solution for spectral clustering, which we discussed Section 2.3. In
particular, if we assume the embeddings zu are d-dimensional, then the optimal
solution that minimizes Equation (3.6) is given by the d smallest eigenvectors
of the Laplacian (excluding the eigenvector of all ones).

Inner-product methods Following on the Laplacian eigenmaps technique,
more recent work generally employs an inner-product based decoder, defined as
follows:

dec(zu, zv) = z>u zv. (3.7)

Here, we assume that the similarity between two nodes—e.g., the overlap be-
tween their local neighborhoods—is proportional to the dot product of their
embeddings.

Some examples of this style of node embedding algorithms include the Graph
Factorization (GF) approach1 [Ahmed et al., 2013], GraRep [Cao et al., 2015],
and HOPE [Ou et al., 2016]. All three of these methods combine the inner-
product decoder (Equation 3.7) with the following mean-squared error:

L =
X

(u,v)2D

kdec(zu, zv)� S[u, v]k2
2
. (3.8)

They di↵er primarily in how they define S[u, v], i.e., the notion of node-node
similarity or neighborhood overlap that they use. Whereas the GF approach
directly uses the adjacency matrix and sets S , A, the GraRep and HOPE
approaches employ more general strategies. In particular, GraRep defines S
based on powers of the adjacency matrix, while the HOPE algorithm supports
general neighborhood overlap measures (e.g., any neighborhood overlap measure
from Section 2.2).

1Of course, Ahmed et al. [Ahmed et al., 2013] were not the first researchers to propose
factorizing an adjacency matrix, but they were the first to present a scalable O(|E|) algorithm
for the purpose of generating node embeddings.

34 CHAPTER 3. NEIGHBORHOOD RECONSTRUCTION METHODS

These methods are referred to as matrix-factorization approaches, since their
loss functions can be minimized using factorization algorithms, such as the sin-
gular value decomposition (SVD). Indeed, by stacking the node embeddings
zu 2 Rd into a matrix Z 2 R|V|⇥d the reconstruction objective for these ap-
proaches can be written as

L ⇡ kZZ> � Sk2
2
, (3.9)

which corresponds to a low-dimensional factorization of the node-node similarity
matrix S. Intuitively, the goal of these methods is to learn embeddings for
each node such that the inner product between the learned embedding vectors
approximates some deterministic measure of node similarity.

3.3 Random walk embeddings

The inner-product methods discussed in the previous section all employ deter-
ministic measures of node similarity. They often define S as some polynomial
function of the adjacency matrix, and the node embeddings are optimized so
that z>u zv ⇡ S[u, v]. Building on these successes, recent years have seen a surge
in successful methods that adapt the inner-product approach to use stochastic
measures of neighborhood overlap. The key innovation in these approaches is
that node embeddings are optimized so that two nodes have similar embeddings
if they tend to co-occur on short random walks over the graph.

DeepWalk and node2vec Similar to the matrix factorization approaches
described above, DeepWalk and node2vec use a shallow embedding approach
and an inner-product decoder. The key distinction in these methods is in how
they define the notions of node similarity and neighborhood reconstruction. In-
stead of directly reconstructing the adjacency matrix A—or some deterministic
function of A—these approaches optimize embeddings to encode the statistics
of random walks. Mathematically, the goal is to learn embeddings so that the
following (roughly) holds:

dec(zu, zv) ,
e
z>
u zv

P
vk2V ez

>
u zk

(3.10)

⇡ pG,T (v|u),

where pG,T (v|u) is the probability of visiting v on a length-T random walk
starting at u, with T usually defined to be in the range T 2 {2, ..., 10}. Again, a
key di↵erence between Equation (3.10) and the factorization-based approaches
(e.g., Equation 3.8) is that the similarity measure in Equation (3.10) is both
stochastic and asymmetric.

To train random walk embeddings, the general strategy is to use the decoder
from Equation (3.10) and minimize the following cross-entropy loss:

L =
X

(u,v)2D

� log(dec(zu, zv)). (3.11)

3.3. RANDOM WALK EMBEDDINGS 35

Here, we use D to denote the training set of random walks, which is generated
by sampling random walks starting from each node. For example, we can as-
sume that N pairs of co-occurring nodes for each node u are sampled from the
distribution (u, v) ⇠ pG,T (v|u).

Unfortunately, however, naively evaluating the loss in Equation (3.11) can
be computationally expensive. Indeed, evaluating the denominator in Equation
(3.10) alone has time complexity O(|V|), which makes the overall time com-
plexity of evaluating the loss function O(|D||V|). There are di↵erent strategies
to overcome this computational challenge, and this is one of the essential dif-
ferences between the original DeepWalk and node2vec algorithms. DeepWalk
employs a hierarchical softmax to approximate Equation (3.10), which involves
leveraging a binary-tree structure to accelerate the computation [Perozzi et al.,
2014]. On the other hand, node2vec employs a noise contrastive approach to ap-
proximate Equation (3.11), where the normalizing factor is approximated using
negative samples in the following way [Grover and Leskovec, 2016]:

L =
X

(u,v)2D

� log(�(z>u zv))� �Evn⇠Pn(V)[log(��(z>u zvn))]. (3.12)

Here, we use � to denote the logistic function, Pn(V) to denote a distribution
over the set of nodes V, and we assume that � > 0 is a hyperparameter. In
practice Pn(V) is often defined to be a uniform distribution, and the expectation
is approximated using Monte Carlo sampling.

The node2vec approach also distinguishes itself from the earlier DeepWalk
algorithm by allowing for a more flexible definition of random walks. In par-
ticular, whereas DeepWalk simply employs uniformly random walks to define
pG,T (v|u), the node2vec approach introduces hyperparameters that allow the
random walk probabilities to smoothly interpolate between walks that are more
akin to breadth-first search or depth-first search over the graph.

Large-scale information network embeddings (LINE) In addition to
DeepWalk and node2vec, Tang et al. [2015]’s LINE algorithm is often discussed
within the context of random-walk approaches. The LINE approach does not
explicitly leverage random walks, but it shares conceptual motivations with
DeepWalk and node2vec. The basic idea in LINE is to combine two encoder-
decoder objectives. The first objective aims to encode first-order adjacency
information and uses the following decoder:

dec(zu, zv) =
1

1 + e�z>
u zv

, (3.13)

with an adjacency-based similarity measure (i.e., S[u, v] = A[u, v]). The second
objective is more similar to the random walk approaches. It is the same decoder
as Equation (3.10), but it is trained using the KL-divergence to encode two-hop
adjacency information (i.e., the information in A2). Thus, LINE is conceptu-
ally related to node2vec and DeepWalk. It uses a probabilistic decoder and
probabilistic loss function (based on the KL-divergence). However, instead of

36 CHAPTER 3. NEIGHBORHOOD RECONSTRUCTION METHODS

sampling random walks, it explicitly reconstructs first- and second-order neigh-
borhood information.

Additional variants of the random-walk idea One benefit of the random
walk approach is that it can be extended and modified by biasing or modi-
fying the random walks. For example, Perozzi et al. [2016] consider random
walks that “skip” over nodes, which generates a similarity measure similar to
GraRep (discussed in Section 3.2), and Ribeiro et al. [2017] define random walks
based on the structural relationships between nodes—rather than neighborhood
information—which generates node embeddings that encode structural roles in
the graph.

3.3.1 Random walk methods and matrix factorization

It can be shown that random walk methods are actually closely related to matrix
factorization approaches [Qiu et al., 2018]. Suppose we define the following
matrix of node-node similarity values:

SDW = log

vol(V)

T

TX

t=1

Pt

!
D�1

!
� log(b), (3.14)

where b is a constant and P = D�1A. In this case, Qiu et al. [2018] show that
the embeddings Z learned by DeepWalk satisfy:

Z>Z ⇡ SDW. (3.15)

Interestingly, we can also decompose the interior part of Equation (3.14) as

TX

t=1

Pt

!
D�1 = D� 1

2

U

TX

t=1

⇤t

!
U>

!
D� 1

2 , (3.16)

where U⇤U> = Lsym is the eigendecomposition of the symmetric normalized
Laplacian. This reveals that the embeddings learned by DeepWalk are in fact
closely related to the spectral clustering embeddings discussed in Part I of this
book. The key di↵erence is that the DeepWalk embeddings control the influence
of di↵erent eigenvalues through T , i.e., the length of the random walk. Qiu et al.
[2018] derive similar connections to matrix factorization for node2vec and discuss
other related factorization-based approaches inspired by this connection.

3.4 Limitations of Shallow Embeddings

This focus of this chapter—and this part of book more generally—has been on
shallow embedding methods. In these approaches, the encoder model that maps
nodes to embeddings is simply an embedding lookup (Equation 3.2), which
trains a unique embedding for each node in the graph. This approach has

3.4. LIMITATIONS OF SHALLOW EMBEDDINGS 37

achieved many successes in the past decade, and in the next chapter we will
discuss how this shallow approach can be generalized to multi-relational graphs.
However, it is also important to note that shallow embedding approaches su↵er
from some important drawbacks:

1. The first issue is that shallow embedding methods do not share any param-
eters between nodes in the encoder, since the encoder directly optimizes a
unique embedding vector for each node. This lack of parameter sharing is
both statistically and computationally ine�cient. From a statistical per-
spective, parameter sharing can improve the e�ciency of learning and also
act as a powerful form of regularization. From the computational perspec-
tive, the lack of parameter sharing means that the number of parameters
in shallow embedding methods necessarily grows as O(|V|), which can be
intractable in massive graphs.

2. A second key issue with shallow embedding approaches is that they do
not leverage node features in the encoder. Many graph datasets have
rich feature information, which could potentially be informative in the
encoding process.

3. Lastly—and perhaps most importantly–shallow embedding methods are
inherently transductive [Hamilton et al., 2017b]. These methods can only
generate embeddings for nodes that were present during the training phase.
Generating embeddings for new nodes—which are observed after the train-
ing phase—is not possible unless additional optimizations are performed
to learn the embeddings for these nodes. This restriction prevents shal-
low embedding methods from being used on inductive applications, which
involve generalizing to unseen nodes after training.

To alleviate these limitations, shallow encoders can be replaced with more
sophisticated encoders that depend more generally on the structure and at-
tributes of the graph. We will discuss the most popular paradigm to define such
encoders—i.e.., graph neural networks (GNNs)—in Part II of this book.

