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Background and Motivation
- Over the past decade, several algorithms have 

been proposed to learn network embeddings: 
Dense, latent representations that summarize the 
structural properties of vertices in a network.

- DeepWalk (2014)
- LINE (2015)
- PTE (2015)
- node2vec (2016)

- As we have seen in the case of DeepWalk, many 
of these algorithms are inspired by the Skip 
Gram model from NLP.

Credit: Perozzi et al. (2014)



The Central Questions
Given the empirical success of these Graph Representation Learning algorithms, 
Qiu et al. set out to address the following questions:

1. What are the theoretical underpinnings of these different models?
2. Given this theoretical understanding, how are the algorithms related to 

each other (if at all)?
3. Can this unified theoretical model give us some hints as to how we 

can improve/augment them?



Tracing the Line of Discovery 
- The DeepWalk model was inspired by the 

work of Mikolov et al. (2013) for learning 
word embeddings.

- In the same way, the paper by Qiu et al. is 
inspired by an earlier theoretical analysis by 
Levy and Goldberg (2014), in which they 
showed that the Skip Gram Model with 
Negative Sampling (SGNS) can be 
formalized as a matrix factorization 
algorithm.

SGNS
(Mikolov et al. 2013)

DeepWalk
(Perozzi et al. 2014)

SGNS as 
Implicit Matrix 
Factorization

(Levy and Goldberg 2014)

NetMF
(Qiu et al. 2018)



Brief Overview of Levy and Goldberg’s Analysis 
- Recall that the Skip Gram Model aims to learn continuous embeddings for 

words (w) by modeling the strength of their association with their contexts (c) 
in a certain text corpus (D).

- If we denote the probability of observing a (w,c) pair in a text corpus D as:

- Then we can frame the SGNS model as maximizing the following objective:

Sampling according to 
Unigram Distribution



Brief Overview of Levy and Goldberg’s Analysis (2) 
- This formulation of the SGNS model reveals that the model can be viewed as 

an (implicit) matrix factorization algorithm:

- The Implicit Matrix (M) that the model is factorizing can, under certain mild 
assumptions, be shown to have the following form: 



Concrete Question in the Graph Setting
- Given the insight from Levy and Goldberg’s analysis, the concrete question 

for Qiu et al. then becomes:

What is the Implicit Matrix in the 
Graph Representation Learning Algorithms?

- As we will see, the answer to this question will differ depending on how each 
algorithm defines the (positive and negative) “context” in the graph setting.



DeepWalk
- Recall that DeepWalk generates its “corpus” by performing random walks of length L on 

the graph. We have to use our knowledge of random walks on graphs to fill in the terms 
in Levy and Goldberg’s equation:

- Our first task is to figure out how often a pair of vertices (w, c) can be found together 
in these paths within a window of size T.



DeepWalk (Task 1)
- This task can be broken into 2 steps:

- (1) The probability of finding pairs (w,c) r steps away from each other:

- (2) The probability of finding pairs (w, c) within any number of steps in a 
window of size T:

Note:



DeepWalk (Task 2)
- Task 2 is finding the number of times each vertex occurs in the corpus, and then computing 

the entire term inside the log(.).
- The probability of finding a vertex in a random path can be approximated by the stationary 

distribution:

- Putting everything together, we show that DeepWalk is implicitly factorizing a matrix that has 
the following entries for each pair of vertices:



The DeepWalk Implicit Matrix
- In matrix form, it can be shown that DeepWalk is factorizing the following matrix:

- The matrix highlighted in red can be decomposed into a product of symmetric matrices:

- Very important insight: DeepWalk is in effect applying a transformation to the 
eigenvalues of the normalized Laplacian of the network:



Connection between DeepWalk and the Normalized Graph Laplacian

- The transformation that DeepWalk is applying to the Normalized Graph Laplacian is in 
effect a “filter”:

- It encodes a preference for large positive eigenvalues that gets stronger with the 
window size T.



Proposed Algorithm: NetMF
- This analysis motivates a natural extension to the DeepWalk model: The Network 

Matrix Factorization Model (NetMF), where we factorize the following matrix:

- Where b and T and hyperparameters that we can tuned.
- Computing M for large values of T can be computationally challenging. Therefore, they 

approximate it with the top h eigenpairs of the normalized Laplacian:



Experimental Results: Performance Comparison



Limitations
- Conceptual: Levy and Goldberg showed that the matrix factorization 

framework performs as well as the SGNS model on some tasks but not on 
others. A similar issue could be present in the graph setting. 

- Computational: An important advantage of the DeepWalk model is its 
scalability and parallelizability. It can even work with streaming data. The 
matrix factorization framework, on the other hand, faces some difficult 
computational challenges.



Future Directions
- Deriving implicit matrices for other algorithms that define clever ways to 

explore a node’s structural properties.
- Can we go the other way around? By analyzing important theoretical 

properties of the Graph Laplacian, can we derive efficient, parallelizable 
algorithms for node embedding?

- Given recent advances in tensor decomposition algorithms, one question 
that may be worth pursuing is whether learning representations for 
multi-relational graphs can be formalized as a tensor decomposition 
algorithm.



Appendix



LINE and PTE

- LINE is a GRL model that works with (un-)weighted and (un-)directed graph structures. 
Its initial formulation is very similar to Levy and Goldberg’s, where for a given pair of 
vertices (i,j) we maximize the objective:

- The implicit matrix for the LINE model depends on how we define the context (i.e. 1st 
vs. 2nd order proximity) and the way we sample negative contexts. If we assume that 
the sampling distribution is proportional to the out-degree of a vertex, then:



LINE and PTE (2)

- With these assumptions the authors show that the LINE model is implicitly factorizing 
the following matrix:

- PTE (Predictive Text Embedding) is an extension of the LINE model to graphs with 
multiple sub-networks (e.g. bipartite graphs). The authors show that it’s implicitly 
factorizing:



Node2Vec
- Node2Vec performs a 2nd order random 

walk to generate its corpus D.
- The corpus in this case is formed of 

triplets of nodes.
- Given this corpus, the authors show that 

it’s implicitly factorizing a matrix that has 
the following entries:


