
Chapter 2

Neighborhood
reconstruction methods

This part of the book is concerned with methods for learning node embeddings.
The goal of these methods is to encode nodes as low-dimensional vectors that
summarize their graph position and the structure of their local graph neigh-
borhood. In other words, we want to project nodes into a latent space, where
geometric relations in this latent space correspond to relationships (e.g., edges)
in the original graph [Ho↵ et al., 2002]. Figure 2.1 visualizes an example embed-
ding of the famous Zachary Karate Club social network [Perozzi et al., 2014],
where two dimensional node embeddings capture the community structure im-
plicit in the social network.

A B

Figure 2.1: A, Visualization of the Zachary Karate Club network, where
nodes are colored according to the di↵erent underlying communities. B, Two-
dimensional visualization of node embeddings generated from this graph using
the DeepWalk method (Section 2.1) [Perozzi et al., 2014]. The distances be-
tween nodes in the embedding space reflect similarity in the original graph.
Image from from [Perozzi et al., 2014, Perozzi, 2016].

31

32 CHAPTER 2. NEIGHBORHOOD RECONSTRUCTION METHODS

In this chapter we will provide an overview of node embedding methods for
simple and weighted graphs. Chapter 3 will provide an overview of analogous
embedding approaches for multi-relational graphs.

An encoder-decoder perspective Recent years have seen a surge of re-
search on node embeddings, leading to a complicated diversity of notations,
motivations, and conceptual models. Thus, to organize our discussion we intro-
duce the notion of an encoder-decoder framework over graphs. In this frame-
work, we organize the various methods around two key mapping functions: an
encoder, which maps each node to a low-dimensional vector, or embedding, and
a decoder, which reconstructs information about a node’s neighborhood from
the learned embeddings (Figure 2.2).

Formally, the encoder is a function,

enc : V ! Rd
, (2.1)

that maps nodes to vector embeddings zv 2 Rd (where zv corresponds to the
embedding for node v 2 V). The decoder is a function that accepts a set of node
embeddings and decodes user-specified graph statistics from these embeddings.
For example, the decoder might measure the overlap in neighborhood between
two nodes. In principle, many decoders are possible; however, the vast majority
of works use a basic pairwise decoder,

dec : Rd ⇥ Rd ! R+
, (2.2)

that maps pairs of node embeddings to a real-valued node similarity measure,
which quantifies the similarity of the two nodes in the original graph.

When we apply the pairwise decoder to a pair of embeddings (zu,zv) we get
a reconstruction of the similarity between u and v in the original graph, and
the goal is optimize the encoder and decoder mappings to minimize the error,
or loss, in this reconstruction so that:

dec(enc(u), enc(v)) = dec(zu, zv) ⇡ S[u, v], (2.3)

where S[u, v] is a user-defined, graph-based similarity measure between nodes,
defined over the graph G. In other words, we want to optimize our encoder-
decoder model so that we can reconstruct neighborhood information from the
original graph. For example, one might set S[u, v] , A[u, v] and define nodes to
have a similarity of 1 if they are adjacent and 0 otherwise [Ahmed et al., 2013],
or one might define S[u, v] according to one of the more complex neighborhood
overlap statistics discussed in Chapter 1. In practice, most approaches realize
the reconstruction objective (Equation 2.3) by minimizing an empirical loss L
over a set of training node pairs D:

L =
X

(u,v)2D

` (dec(zu, zv),S[u, v]) , (2.4)

where ` : R ⇥ R ! R is a user-specified loss function, which measures the
discrepancy between the decoded (i.e., estimated) similarity values dec(zu, zv)

33

Figure 2.2: Overview of the encoder-decoder approach. First the encoder maps
the node, u, to a low-dimensional vector embedding, zu, based on the node’s
position in the graph, its local neighborhood structure, and/or its attributes.
Next, the decoder extracts user-specified information from the low-dimensional
embedding; this might be information about u’s local graph neighborhood (e.g.,
the identity of its neighbors) or a classification label associated with u (e.g., a
community label). By jointly optimizing the encoder and decoder, the system
learns to compress information about graph structure into the low-dimensional
embedding space.

and the true values S[u, v]. Once we have optimized the encoder-decoder system,
we can use the trained encoder to generate embeddings for nodes, which can
then be used as feature inputs for downstream machine learning tasks, such as
node classification, link prediction, and clustering.

Adopting this encoder-decoder view, we organize our discussion along the
following four methodological components:

1. A pairwise similarity function (or matrix) S[u, v] : V ⇥ V ! R+,
defined over the graph G, which measures the similarity between nodes.

2. An encoder function, enc, that generates the node embeddings. This
function contains a number of trainable parameters that are optimized
during the training phase.

3. A decoder function, dec, which reconstructs pairwise similarity val-
ues from the generated embeddings. This function usually contains no
trainable parameters.

4. A loss function, `, which determines how the quality of the pairwise re-
constructions is evaluated in order to train the model, i.e., how dec(zu, zu)
is compared to the true S[u, v] values.

As we will show, the primary methodological distinctions between the various
node embedding approaches are in how they define these four components.

34 CHAPTER 2. NEIGHBORHOOD RECONSTRUCTION METHODS

Table 2.1: A summary of some well-known shallow embedding embedding al-
gorithms. Note that the decoders and similarity functions for the random-walk
based methods are asymmetric, with the similarity function pG(v|u) correspond-
ing to the probability of visiting v on a fixed-length random walk starting from
u.

Method Decoder Similarity measure Loss function (`)

Lap. Eigenmaps kzu � zvk22 general dec(zu, zv) · S[u, v]
Graph Fact. z>u zv A[u, v] kdec(zu, zv)� S[u, v]k22
GraRep z>u zv A[u, v], ...,Ak[u, v] kdec(zu, zv)� S[u, v]k22
HOPE z>u zv general kdec(zu, zv)� S[u, v]k22

DeepWalk ez
>
u zv

P
k2V ez

>
u zk

pG(v|u) �S[u, v] log(dec(zu, zv))

node2vec ez
>
u zv

P
k2V ez

>
u zk

pG(v|u) (biased) �S[u, v] log(dec(zu, zv))

2.1 Shallow embedding approaches

The majority of node embedding algorithms rely on what we call shallow em-

bedding. For these shallow embedding approaches, the encoder function—which
maps nodes to vector embeddings—is simply an “embedding lookup”:

enc(v) = Z[v] (2.5)

where Z 2 R|V|⇥d is a matrix containing the embedding vectors for all nodes
and Z[v] denotes the row of Z corresponding to node v. The set of trainable
parameters for shallow embedding methods is simply ⇥enc = {Z}, i.e., the
embedding matrix Z is optimized directly.

Table 2.1 summarizes some well-known shallow embedding methods within
the encoder-decoder framework. Table 2.1 highlights how these methods can
be succinctly described according to (i) their decoder function, (ii) their graph-
based similarity measure, and (iii) their loss function. The following two sec-
tions describe these methods in more detail, distinguishing between matrix
factorization-based approaches (Section 2.1) and more recent approaches based
on random walks (Section 2.1).

Factorization-based approaches

Early methods for learning representations for nodes largely focused on matrix-
factorization approaches, which are directly inspired by classic techniques for
dimensionality reduction [Belkin and Niyogi, 2002, Kruskal, 1964].

Laplacian eigenmaps One of the earliest, and most well-known instances, is
the Laplacian eigenmaps (LE) technique [Belkin and Niyogi, 2002], which we can
view within the encoder-decoder framework as a shallow embedding approach
in which the decoder is defined as

dec(zu, zv) = kzu � zvk2
2

2.1. SHALLOW EMBEDDING APPROACHES 35

and where the loss function weights pairs of nodes according to their similarity
in the graph:

L =
X

(u,v)2D

dec(zu, zv) · S[u, v]. (2.6)

The optimal solution to Equation 2.6 is identical to the solution for spectral
clustering (Section 1.3.3). If we assume the embeddings zu are d-dimensional,
then the optimal solution to Equation 2.6 is given by the d smallest eigenvectors
of the Laplacian (excluding the eigenvector of all ones).

Inner-product methods Following on the Laplacian eigenmaps technique,
there are a large number of recent embedding methodologies based on a pairwise,
inner-product decoder:

dec(zu, zv) = z>
u zv, (2.7)

where the strength of the relationship between two nodes is proportional to the
dot product of their embeddings. In these approaches the dot product can be
viewed as a measure of neighborhood overlap between nodes.

The Graph Factorization (GF) algorithm1 [Ahmed et al., 2013], GraRep
[Cao et al., 2015], and HOPE [Ou et al., 2016] all fall firmly within this class.
In particular, all three of these methods use an inner-product decoder, a mean-
squared-error (MSE) loss,

L =
X

(u,v)2D

kdec(zu, zv) � S[u, v]k2
2
, (2.8)

and they di↵er primarily in the node similarity measure used, i.e. how they
define S[u, v]. The Graph Factorization algorithm defines node similarity di-
rectly based on the adjacency matrix (i.e., S[u, v] , A[u, v]); GraRep considers
various powers of the adjacency matrix (e.g., S[u, v] , A2[u, v]) in order to cap-
ture higher-order node similarity; and the HOPE algorithm supports general
neighborhood overlap measures (e.g., any neighborhood overlap measure from
Chapter 1).

We refer to these methods as matrix-factorization approaches because, av-
eraging over all nodes, they optimize loss functions (roughly) of the form:

L ⇡ kZZ> � Sk2
2
, (2.9)

where S is the matrix containing the pairwise node-node similarity measures
and Z is the matrix of node embeddings. Intuitively, the goal of these methods
is simply to learn embeddings for each node such that the inner product between
the learned embedding vectors approximates some deterministic measure of node
similarity.

36 CHAPTER 2. NEIGHBORHOOD RECONSTRUCTION METHODS

1. Run random walks to obtain co-occurrence statistics. 2. Optimize embeddings based on
co-occurrence statistics.

✓

zi

zj

/pG(vj |vi) pG(vj |vi)
vi

vj

Figure 2.3: The random-walk based methods sample a large number of fixed-
length random walks starting from each node, u. The embedding vectors are
then optimized so that the dot-product, or angle, between two embeddings, zu

and zv, is (roughly) proportional to the probability of visiting v on a fixed-length
random walk starting from u.

Random walk approaches

Many recent successful methods learn node embeddings based on random walk
statistics. Their key innovation is optimizing the node embeddings so that
nodes have similar embeddings if they tend to co-occur on short random walks
over the graph (Figure 2.3). Thus, instead of using a deterministic measure
of node similarity, like the methods of Section 2.1, these random walk methods
employ a flexible, stochastic measure of node similarity, which has led to superior
performance in a number of settings [Goyal and Ferrara, 2017].

DeepWalk and node2vec Like the matrix factorization approaches described
above, DeepWalk and node2vec rely on shallow embedding and use a decoder
based on the inner product. However, instead of trying to decode a determin-
istic node similarity measure, these approaches optimize embeddings to encode
the statistics of random walks. The basic idea behind these approaches is to
learn embeddings so that (roughly):

dec(zu, zv) , e
z>
u zv

P
vk2V ez

>
u zk

(2.10)

⇡ pG,T (v|u),

where pG,T (v|u) is the probability of visiting v on a length-T random walk
starting at u, with T usually defined to be in the range T 2 {2, ..., 10}. Note
that unlike the similarity measures in Section 2.1, pG,T (v|u) is both stochastic
and asymmetric.

More formally, these approaches attempt to minimize the following cross-

1Of course, Ahmed et al. [Ahmed et al., 2013] were not the first researchers to propose
factorizing an adjacency matrix, but they were the first to present a scalable O(|E|) algorithm
for the purpose of generating node embeddings.

2.1. SHALLOW EMBEDDING APPROACHES 37

entropy loss:

L =
X

(u,v)2D

� log(dec(zu, zv)), (2.11)

where the training set D is generated by sampling random walks starting from
each node (i.e., where N pairs for each node u are sampled from the distribution
(u, v) ⇠ pG,T (v|v)). However, naively evaluating the loss in Equation (2.11) is
prohibitively expensive—in particular, O(|D||V|)—since evaluating the denom-
inator of Equation (2.10) has time complexity O(|V|). Thus, DeepWalk and
node2vec use di↵erent optimizations and approximations to compute the loss
in Equation (2.11). DeepWalk employs a “hierarchical softmax” technique to
compute the normalizing factor, using a binary-tree structure to accelerate the
computation [Perozzi et al., 2014]. In contrast, node2vec approximates Equation
(2.11) using “negative sampling”: instead of normalizing over the full vertex set,
node2vec approximates the normalizing factor using a set of random “negative
samples”:

L =
X

(u,v)2D

� log(�(z>
u zv)) � �Evn⇠Pn(V)[log(��(z>

u zvn))], (2.12)

where � denotes the logistic function, Pn(V) denotes a distribution over the
set of nodes V and � > 0 is a hyperparameter. In practice Pn(V) is often
defined to be a uniform distribution. In other cases it is defined so that a node’s
sampling probability is a sub-linear function of its degree. The expectation in
Equation 2.12 is evaluated via Monte-Carlo sampling by drawing K nodes from
the distribution Pn(V).2

Another key distinction between node2vec and DeepWalk is that node2vec
allows for a flexible definition of random walks, whereas DeepWalk uses simple
unbiased random walks over the graph. By introducing these hyperparameters,
node2vec is able to smoothly interpolate between walks that are more akin to
breadth-first or depth-first search, which led to increased performance on some
benchmarks Grover and Leskovec [2016].

Large-scale information network embeddings (LINE) Another highly
successful node embedding approach, which is not based random walks but
is contemporaneous and often compared with DeepWalk and node2vec, is the
LINE method [Tang et al., 2015]. LINE combines two encoder-decoder ob-
jectives that optimize “first-order” and “second-order” node similarity, respec-
tively. The first-order objective uses a decoder based on the sigmoid function,

dec(zu, zv) =
1

1 + e�z>
u zv

, (2.13)

and an adjacency-based similarity measure (i.e., S[u, v] = A[u, v]). The second-
order encoder-decoder objective is similar but considers two-hop adjacency neigh-
borhoods and uses an encoder identical to Equation (2.10). Both the first-order

2It is also standard practice to set � = K.

38 CHAPTER 2. NEIGHBORHOOD RECONSTRUCTION METHODS

and second-order objectives are optimized using loss functions derived from
the KL-divergence metric. Thus, LINE is conceptually related to node2vec
and DeepWalk in that it uses a probabilistic decoder and loss, but it explic-
itly factorizes first- and second-order similarities, instead of combining them in
fixed-length random walks.

Additional variants of the random-walk idea There have also been a
number of further extensions of the random walk idea. For example, Perozzi
et al. [2016] extend the DeepWalk algorithm to learn embeddings using random
walks that “skip” or “hop” over multiple nodes at each step, resulting in a
similarity measure similar to GraRep [Cao et al., 2015], while Chamberlain
et al. [2017] modify the inner-product decoder of node2vec to use a hyperbolic,
rather than Euclidean, distance measure.

Connections between random walk methods and matrix factorization
Recent work has found that random walk methods are actually closely related
to matrix factorization approaches [Qiu et al., 2018]. Suppose we define the
following matrix of node-node similarity values:

SDW = log

vol(V)

T

TX

t=1

Pt

!
D�1

!
� log(b), (2.14)

where b is a constant and P = D�1A. In this case Qiu et al. [2018] show that
the embeddings Z learned by DeepWalk satisfy:

Z>Z ⇡ SDW. (2.15)

Interestingly, we can also decompose the interior part of Equation 2.14 as

TX

t=1

Pt

!
D�1 = D� 1

2

U

TX

t=1

⇤t

!
U>

!
D� 1

2 , (2.16)

where U⇤U> = Lsym is the eigendecomposition of the symmetric normalized
Laplacian. This reveals that the embeddings learned by DeepWalk are in fact
closely related to the spectral clustering embeddings discussed in Part I of this
book. The key di↵erence is that the DeepWalk embeddings control the influence
of di↵erent eigenvalues through T , i.e., the length of the random walk. Qiu et al.
[2018] derive similar connections to matrix factorization for node2vec and discuss
other related factorization-based approaches inspired by this connection.

2.2 Limitations and generalized encoder-decoders

So far all of the node embedding methods we have reviewed have been shal-
low embedding methods, where the encoder is simply an embedding lookup
(Equation 2.5). However, these shallow embedding approaches train unique
embedding vectors for each node independently, which leads to a number of
drawbacks:

2.2. LIMITATIONS AND GENERALIZED ENCODER-DECODERS 39

… …

si

zi

ŝi

vi

2. Compress si to low-dimensional embedding, zi

(using deep autoencoder)

(si 2 R|V| contains vi’s proximity to all other nodes)

1. Extract high-dimensional neighborhood vector

Figure 2.4: To generate an embedding for a node, u, the neighborhood autoen-
coder approaches first extract a high-dimensional neighborhood vector si 2 R|V|,
which summarizes u’s similarity to all other nodes in the graph. The si vector
is then fed through a deep autoencoder to reduce its dimensionality, producing
the low-dimensional zu embedding.

1. No parameters are shared between nodes in the encoder (i.e., the encoder
is simply an embedding lookup based on arbitrary node ids). This can be
statistically ine�cient, since parameter sharing can act as a powerful form
of regularization, and it is also computationally ine�cient, since it means
that the number of parameters in shallow embedding methods necessarily
grows as O(|V|).

2. Shallow embedding also fails to leverage node attributes during encoding.
In many large graphs nodes have attribute information (e.g., user profiles
on a social network) that is often highly informative with respect to the
node’s position and role in the graph.

3. Shallow embedding methods are inherently transductive [Hamilton et al.,
2017b], i.e., they can only generate embeddings for nodes that were present
during the training phase, and they cannot generate embeddings for previ-
ously unseen nodes unless additional rounds of optimization are performed
to optimize the embeddings for these nodes. This is highly problematic for
evolving graphs, massive graphs that cannot be fully stored in memory,
or domains that require generalizing to new graphs after training.

To alleviate these limitations we can use more complex encoders that depend
more generally on the structure and attributes of the graph. We close this
chapter with a brief discussion of one approach to generalize the encoder-decoder
paradigm using so-called neighborhood autoencoders. However, we will defer a
discussion of the other major paradigm for generalized encoder-decoders, graph
neural networks (GNNs), since Part II of this book will discuss GNNs in detail.

40 CHAPTER 2. NEIGHBORHOOD RECONSTRUCTION METHODS

Neighborhood autoencoder methods

Deep Neural Graph Representations (DNGR) [Cao et al., 2016] and Structural
Deep Network Embeddings (SDNE) [Wang et al., 2016] address the first lim-
itation of shallow embeddings outlined above: unlike the shallow embedding
methods, they directly incorporate graph structure into the encoder algorithm
using deep neural networks. The basic idea behind these approaches is that
they use autoencoders—a well known approach for deep learning [Hinton and
Salakhutdinov, 2006]—in order to compress information about a node’s local
neighborhood (Figure 2.4). DNGR and SDNE also di↵er from the previously
reviewed approaches in that they use a unary decoder instead of a pairwise one.

In these approaches, each node, v, is associated with a neighborhood vector,
sv 2 R|V|, which corresponds to v’s row in the matrix S (recall that S contains
the pairwise node similarities). The sv vector contains v’s similarity with all
other nodes in the graph and functions as a high-dimensional vector represen-
tation of v’s neighborhood. The autoencoder objective for DNGR and SDNE
is to embed nodes using the sv vectors such that the sv vectors can then be
reconstructed from these embeddings:

dec(enc(sv)) = dec(zv) ⇡ sv (2.17)

In other words, the loss for these methods takes the following form:

L =
X

u2V
kdec(zv) � svk2

2
. (2.18)

As with the pairwise decoder, we have that the dimension of the zv embeddings
is much smaller than |V| (the dimension of the sv vectors), so the goal is to com-
press the node’s neighborhood information into a low-dimensional vector. For
both SDNE and DNGR, the encoder and decoder functions consist of multiple
stacked neural network layers: each layer of the encoder reduces the dimension-
ality of its input, and each layer of the decoder increases the dimensionality of
its input (Figure 2.4; see Hinton and Salakhutdinov [2006] for an overview of
deep autoencoders).

SDNE and DNGR di↵er in the similarity functions they use to construct the
neighborhood vectors sv and also in the exact details of how the autoencoder is
optimized. DNGR defines sv according to the pointwise mutual information of
two nodes co-occurring on random walks, similar to DeepWalk and node2vec.
SDNE simply sets sv , Av, i.e., equal to v’s adjacency vector. SDNE also com-
bines the autoencoder objective (Equation 2.17) with the Laplacian eigenmaps
objective (Equation 2.6) [Wang et al., 2016].

Note that the encoder in Equation (2.17) depends on the input sv vector,
which contains information about v’s local graph neighborhood. This depen-
dency allows SDNE and DNGR to incorporate structural information about a
node’s local neighborhood directly into the encoder as a form of regularization,
which is not possible for the shallow embedding approaches (since their encoder
depends only on the node id). However, despite this improvement, the autoen-
coder approaches still su↵er from some serious limitations. Most prominently,

2.2. LIMITATIONS AND GENERALIZED ENCODER-DECODERS 41

the input dimension to the autoencoder is fixed at |V|, which can be extremely
costly and even intractable for graphs with millions of nodes. In addition, the
structure and size of the autoencoder is fixed, so SDNE and DNGR are strictly
transductive and cannot cope with evolving graphs, nor can they generalize
across graphs. The graph neural network (GNN) paradigm introduced in Part
II of this book will alleviate many of these shortcomings.

