
COMP 766 - Graph Representation Learning. Course Notes. Copyright
William L. Hamilton 2019

Chapter 1

Introduction and
motivations

Graphs are a ubiquitous data structure and a universal language for describing
complex systems. In the most general view, a graph is simply a collection of
objects (i.e., nodes), along with a set of interactions (i.e., edges) between pairs of
these objects. For example, to encode a social network as a graph we might use
nodes to represent individuals and use edges to represent that two individuals
are friends (Figure 1.1). In the biological domain we could use the nodes in a
graph to represent proteins, and use the edges to represent various biological
interactions, such as kinetic interactions between proteins (Figure 1.2).

The power of the graph formalism lies both in its focus on relationships

between points (rather than the properties of individual points), as well as in
its generality. The same graph formalism can be used to represent social net-
works, interactions between drugs and proteins, the interactions between atoms
in a molecule, or the connections between terminals in a telecommunications
network—to name just a few examples.

Graphs do more than just provide an elegant theoretical framework, how-
ever. They o↵er a mathematical foundation that we can build upon to analyze,
understand, and learn from real-world complex systems. In the last twenty-
five years, there has been an explosion in the quantity and quality of graph-
structured data that is available to researchers. With the advent of large-scale
social networking platforms, massive scientific initiatives to model the interac-
tome, food webs, databases of molecule graph structures, and billions of inter-
connected web-enabled devices, there is no shortage of meaningful graph data
for researchers to analyze. The challenge is unlocking the potential of this data.

This book is about how we can use machine learning to tackle this challenge.
Of course, machine learning is not the only possible way to analyze graph data.1

But given the ever-increasing scale and complexity of the graph datasets we

1The field of network analysis independent of machine learning is the subject of entire
textbooks and will not be covered in detail here Newman [2018].

1

2 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

Figure 1.1: The famous Zachary Karate Club Network represents the friendship
relationships between members of a karate club studied by Wayne W. Zachary
from 1970 to 1972. An edge connects two individuals if they socialized outside
of the club. During Zachary’s study, the club split into two factions—centered
around nodes 0 and 33—and Zachary was able to correctly predict which nodes
would fall into each faction based on the graph structure [Zachary, 1977].

seek to analyze, it is clear that machine learning will play an important role in
advancing our ability to model, analyze, and understand graph data.

1.1 What is a graph?

Before we discuss machine learning on graphs, it is necessary to give a bit more
formal description of what exactly we mean by “graph data”. Formally, a graph
G = (V, E) is defined by a set of nodes V and a set of edges E between these
nodes. We denote an edge going from node u 2 V to node v 2 V as (u, v) 2 E .
In many cases we will be concerned only with simple graphs, where there is at
most one edge between each pair of nodes, no edges between a node and itself,
and where the edges are all undirected, i.e., (u, v) 2 E $ (v, u) 2 E .

A convenient way to represent graphs is through an adjacency matrix A 2
R|V|⇥|V|. To represent a graph with an adjacency matrix, we order the nodes
in the graph so that every node indexes a particular row/column. We can then
represent the presence of edges as entries in this matrix: A[u, v] = 1 if (u, v) 2 E
and A[u, v] = 0 otherwise. If the graph contains only undirected edges then A
will be a symmetric matrix, but if the graph is directed (i.e., edge direction
matters) then A will not necessarily be symmetric. Some graphs can also have
weighted edges, where A 2 R|V|⇥|V| and the entries in the adjacency matrix
are arbitary real-values rather than {0, 1}. For instance, a weighted edge in a
protein-protein interaction graph might indicated the strength of the association
between two proteins.

Beyond the distinction between undirected, directed and weighted edges,
we will also consider graphs that have di↵erent types of edges. For instance,
in graph representing drug-drug interactions, we might want di↵erent edges to

1.1. WHAT IS A GRAPH? 3

Figure 1.2: Each of the four subfigures illustrates a subset of the protein-protein
interactions (PPI) known to occur in the human interactome. The bolded edges
indicate interactions that are correlated with a specific disease, deficiency, or
syndrome [Agrawal et al., 2018].

correspond to di↵erent side-e↵ects that can occur when you take a pair of drugs
at the same time. In these cases we can extend the edge notation to include
an edge or relation type ⌧ , e.g., (u, ⌧, v) 2 E , and we can define one adjacency
matrix A⌧ per edge type. We call such graphs multi-relational, and the entire
graph can be summarized by an adjacency tensor A 2 R|V|⇥|R⇥||V|, where R is
the set of relations. Two important subsets of multi-relational graphs are often
known as heterogeneous graphs and multi-layer graphs:

• In hetereogenous graphs, nodes are also imbued with types, meaning that
we can partition the set of nodes into disjoint sets V = V1 [V2 [... [Vk

where Vi \Vj = ;, 8i 6= j. Edges in heterogeneous graphs generally satisfy
constraints according to the node types, most commonly the constraint
that certain edges only connect nodes of certain types, i.e., (u, ⌧i, v) 2
E ! u 2 Vj , v 2 Vk. For example, in a heterogeneous biomedical graph,
there might be one type of node representing proteins, one type of rep-
resenting drugs, and one type representing diseases. Edges representing
“treatments” would only occur between drug nodes and disease nodes.
Similarly, edges representing “polypharmacy side-e↵ects ” would only oc-
cur between two drug nodes. Note that in general hetergeneous graphs
edges can connect two nodes that have the same type. Multipartite graphs
are a well-known special case where edges can only connect nodes that have
di↵erent types, i.e., (u, ⌧i, v) 2 E ! u 2 Vj , v 2 Vk ^ j 6= k.

• In multi-layer graphs we assume that the graph can be decomposed in
a set of k layers. Every node is assumed to belong to every layer, and
each layer corresponds to a unique relation, representing the intra-layer

edge type for that layer. We also assume that inter-layer edges types can
exist, which connect the same node across layers. Multi-layer networks
are best understood via examples. For instance, in a multi-layer trans-
portation network, each node might represent a city and each layer might
represent a di↵erent type of mode transportation (e.g., air travel or train
travel). Intra-layer edges would then represent cities that are connected

4 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

Figure 1.3: Illustration of two multi-layer graphs. The image on the left rep-
resents the network of connections between airports with the di↵erent layers
representing di↵erent airlines. The image on the right represents a small social
network, with the di↵erent edges representing di↵erent types of interpersonal
relationships. Illustration taken from Porter [2018].

by di↵erent modes of transportation, while inter-layer edges represent the
possibility of switching modes of transportation. Figure 1.3 illustrates two
examples of multi-layer networks.

Lastly, in many cases we also have attribute or feature information associated
with a graph (e.g., a profile picture associated with a user in a social network).
Most often these are node-level attributes that we represent using a real-valued
matrix X 2 R|V |⇥m, where we assume that the ordering of the nodes is con-
sistent with the ordering in the adjacency matrix. In heteregenous graphs we
generally assume that each di↵erent type of node has its own distinct type of
attributes. In rare cases we will also consider graphs that have real-valued edge
features in addition to discrete edge types, and in some cases we even associate
real-valued features with entire graphs.

Graph or network? We use the term “graph” in this book, but you will
see many other resources use the term “network” to describe the same kind
of data. In some places, we will use both terms (e.g., for social or biological
networks). So which term is correct? In many ways, this terminological
di↵erence is a historical and cultural one: the term “graph” appears to
be more prevalent in machine learning communitya, but “network” has
historically been popular in the data mining and (unsurprisingly) network
science communities. We use both terms in this book, but we also make
a distinction between the usage of these terms. We use the term graph to
describe the abstract data structure that is the focus of this book, but we
will also often use the term network to describe specific, real-world instan-

1.2. MACHINE LEARNING ON GRAPHS 5

tiations of this data structure (e.g., social networks). This terminological
distinction is fitting with their current popular usages of these terms. Net-

work analysis is generally concerned with the properties of real-world data,
whereas graph theory is concerned with the theoretical properties of the
mathematical graph abstraction.

aPerhaps in some part due to the terminological clash with “neural networks.”

1.2 Machine learning on graphs

Machine learning is inherently a problem-driven discipline. We seek to build
models that can learn from data in order to solve particular tasks, and machine
learning models are often categorized according to the type of task they seek to
solve: Is it a supervised task, where the goal is to predict a target output given an
input datapoint? Is it an unsupervised task, where the goal is to infer patterns,
such as clusters of points, in the data? Or perhaps it is a reinforcement learning

task, where the goal is for the model to learn how to act in an environment to
maximize some return of rewards.

Machine learning with graphs is no di↵erent, but the usual categories of
supervised, unsupervised, and reinforcement learning are not necessarily the
most informative or useful when it comes to graphs. In this section we provide a
brief overview of the most important and well-studied machine learning tasks on
graph data. As we will see, “supervised” problems are popular with graph data,
but machine learning problems on graphs often blur the boundaries between
these di↵erent categories—especially supervised and unsupervised learning.

Node classification

Suppose we are given a large social network dataset with millions of users, but
we know that a significant number of these users are actually bots. Identifying
these bots could be important for many reasons: a company might not want to
advertise to bots or bots may actually be in violation of the social network’s
terms of service. Manually examining every user to determine if they are a bot
would be prohibitively expensive, so ideally we would like to have a model that
could classify users as a bot (or not) given only a small number of manually
labeled examples.

This is a classic example of node classification, where the goal is to predict
the label yu—which could be a type, category, or attribute—associated with all
the nodes u 2 V, when we are only given the true labels on a small training set

of nodes Vtrain ⇢ V. Node classification is perhaps the most popular machine
learning task on graph data, especially in recent years. Examples of node clas-
sification beyond social networks include classifying the function of proteins in
the interactome [Hamilton et al., 2017b] and classifying the topic of documents
based on hyperlink or citation graphs [Kipf and Welling, 2016].

6 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

At first glance, node classification appears to be a straightforward variation
of standard supervised classification, but there are in fact important di↵erences.
The most important di↵erence is that the nodes in a graph are not independent
and identically distributed (i.i.d.). Usually when we build supervised machine
learning models we assume that each datapoint is statistically independent from
all the other datapoints—otherwise, we might need to model the dependencies
between all our input points—and we also assume that the datapoints are iden-

tically distributed—otherwise, we have no way of guaranteeing that our model
will generalize to new datapoints. Node classification completely breaks this
i.i.d. assumption. Rather than modeling a set of i.i.d. datapoints, we are
instead modeling a set nodes that are interconnected with each other.

In fact, the key insight behind many of the most successful node classifica-
tion approaches is to explicitly leverage the connections between nodes. One
particularly popular idea is to exploit homophily, which is the tendency for
nodes to share attributes with their neighbors in the graph [McPherson et al.,
2001]. For example, people tend to form friendships with others who share
the same interests or demographics. Based on the notion of homophily we can
build machine learning models that try to assign similar labels to neighboring
nodes in a graph [Zhou et al., 2004]. Beyond homophily there are also concepts
such as structural equivalence [Donnat et al., 2018], which is the idea that nodes
with similar local neighborhood structures will have similar labels, as well as
monophily, which presumes that nodes will be preferentially connected to nodes
with di↵erent labels.2 When we build node classification models we want to
exploit these concepts and model the relationships between nodes, rather than
simply treating nodes as independent datapoints.

Supervised or semi-supervised? Due to the atypical nature of node
classification, researchers often refer to it as semi-supervised [Yang et al.,
2016]. This terminology is used because when we are training node classi-
fication models, we usually have access to the full graph, including all the
unlabeled (e.g., test) nodes. The only thing we are missing is the labels of
test nodes, but we can still use information about these test nodes (e.g.,
knowledge of their neighborhood in the graph) to improve our model dur-
ing traing. This is another di↵erence from the usual supervised setting, in
which unlabeled datapoints are completely unobserved during training.

The general term used for models that combine labeled and unlabeled
data during traning is semi-supervised learning, so it is understandable
that this term is often used in reference to node classification tasks. It is
important to note, however, that standard formulations of semi-supervised
learning still require the i.i.d. assumption, which does not hold for node
classification. Machine learning tasks on graphs do not easily fit our stan-
dard categories!

2For example, gender is an attribute that exhibits monophily in many social networks.

1.2. MACHINE LEARNING ON GRAPHS 7

Relation prediction

Node classification is useful for inferring information about a node based on its
relationship with other nodes in the graph. But what about cases where we are
missing this relationship information? What if we know only some of protein-
protein interactions that are present in a given cell, but we want to make a good
guess about the interactions we are missing? Can we use machine learning to
infer the edges between nodes in a graph?

This task goes by many names, such as link prediction, graph completion,
and relational inference, depending on the specific application domain. We will
simply call it relation prediction here. Along with node classification, it is one
of the more popular machine learning tasks with graph data and has countless
real-world applications: recommending content to users in social platforms [Ying
et al., 2018a], predicting drug side-e↵ects [Zitnik et al., 2018], or inferring new
facts in a relational database [Bordes et al., 2013]—all of these tasks can be
viewed as special cases of relation prediction.

The standard setup for relation prediction is that we are given a set of nodes
V and an incomplete set of edges between these nodes Etrain ⇢ E . Our goal
is to use this partial information to infer the missing edges E \ Etrain. The
complexity of this task is highly dependent on the type of graph data we are
examining. For instance, in simple graphs, such as social networks that only
encode “friendship” relations, there are simple heuristics based on how many
neighbors two nodes share that can achieve strong performance [Lü and Zhou,
2011]. On the other hand, in more complex multi-relational graph datasets, such
as biomedical knowledge graphs that encode hundreds of di↵erent biological
interactions, relation prediction can require complex reasoning and inference
strategies [Nickel et al., 2016]. Like node classification, relation prediction blurs
the boundaries of traditional machine learning categories—often being referred
to as both supervised and unsupervised—and it requires inductive biases that
are specific to the graph domain.

Clustering and community detection

Both node classification and relation prediction require inferring missing infor-
mation about graph data, and in many ways, those two tasks are the graph
analogues of supervised learning. Community detection, on the other hand, is
the graph analogue of unsupervised clustering.

Suppose we have access to all the citation information in Google Scholar,
and we make a collaboration graph that connects two researchers if they have
co-authored a paper together. If we were to examine this network, would we
expect to find a dense “hairball” where everyone is equally likely to collaborate
with everyone else? It is more likely that the graph would segregate into di↵er-
ent clusters of nodes, grouped together by research area, institution, or other
demographic factors. In other words, we would expect this network—like many
real-world networks—to exhibit a community structure, where nodes are much
more likely to form edges with nodes that belong to the same community.

8 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

This is the general intuition underlying the task of community detection, and
the challenge is to infer such latent community structures given only the input
graph G = (V, E). The many real-world applications of community detection
include uncovering functional modules in genetic interaction networks [Agrawal
et al., 2018] and uncovering fraudulent groups of users in financial transaction
networks [Pandit et al., 2007].

Graph classification (and clustering)

The final class of popular machine learning applications on graph data involve
classification (or clustering) problems over entire graphs. For instance, given a
graph representing the structure of a molecule, we might want to build a model
that could predict that molecule’s toxicity or solubility [Gilmer et al., 2017]. Or,
we might want to detect whether a computer program is malicious by analyzing
a graph-based representation of its syntax and data flow [Li et al., 2019]. In these
graph classification applications, we seek to learn over graph data, but instead
of making predictions over the individual components of a single graph (i.e., the
nodes and the edges), we are instead given a dataset of multiple di↵erent graphs

and our goal is to make independent predictions specific to each graph. In the
related task of graph clustering or similarity matching, the goal is to learn an
unsupervised measure of similarity between a set of i.i.d. graphs.

Of all the machine learning tasks on graphs, graph classification is perhaps
the most straightforward analogue of standard supervised classification. Each
graph is an i.i.d. datapoint associated with a label, and the goal is to use a
labeled set of training points to learn a mapping from datapoints (i.e., graphs)
to labels. In a similar way graph clustering is the straightforward extension of
unsupervised clustering for graph data. The challenge in graph classification
and clustering, however, is how to define useful features that take into account
the relational structure within each datapoint.

1.3 Background and Traditional Approaches

Before we introduce the concepts of graph representation learning and deep
learning on graphs, it is necessary to give some methodological background and
context. What kinds of methods were used for machine learning on graphs prior
to the advent of modern deep learning approaches?

We will provide a very brief and focused tour of traditional learning ap-
proaches over graphs, providing pointers and references to more thorough treat-
ments of these methodological approaches along the way. This background
section will also serve to introduce key concepts from graph analysis that will
form the foundation for later chapters.

Our tour will be roughly aligned with the di↵erent kinds of learning tasks on
graphs. We will begin with a discussion of basic graph statistics, kernel methods,
and their use for node and graph classification tasks. Following this, we will
introduce and discuss various approaches for measuring the overlap between

1.3. BACKGROUND AND TRADITIONAL APPROACHES 9

Figure 1.4: A visualization of the marriages between various di↵erent prominent
families in 15th century Florence [Padgett and Ansell, 1993].

node neighborhoods, which form the basis of strong heuristics for link prediction.
Finally, we will close this background section with a brief introduction of spectral
clustering using graph Laplacians. Spectral clustering is one of the most well-
studied algorithms for clustering or community detection on graphs, and our
discussion of this technique will also introduce key mathematical concepts that
will re-occur throughout this book.

1.3.1 Graph Statistics and Kernel Methods

Traditional approaches to classification using graph data follow the traditional
(i.e., pre-deep-learning) machine learning paradigm. We begin by extracting
some statistics or features—based on heuristic functions or domain knowledge—
and then use these features as input to a standard machine learning classifier
(e.g., logistic regression). In this section, we will first introduce some important
node-level features and statistics, and we will follow this by a discussion of
how these node-level statistics can be generalized to graph level statistics and
extended to design kernel methods over graphs. Our goal will be to introduce
various heuristic statistics and graph properties, which are often used as features
in traditional machine learning pipelines applied to graphs.

Node-level statistics and features

Following Jackson [2010], we will motivate our discussion of node-level statistics
and features with a simple (but famous) social network: the network of 15th
century Florentine marriages (Figure 1.4). This network is well-known due to
the work of Padgett and Ansell [1993], which used this network to illustrate
the rise in power of the Medici family (depicted near the center) who came
to dominate Florentine politics. Political marriages were an important way to
consolidate power during the era of the Medicis, so this network of marriage
connections encodes a great deal about the political structure of this time.

10 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

For our purposes, we will consider this network and the rise of the Medici
from a machine learning perspective and ask the question: What features or
statistics could a machine learning model use to predict the Medici’s rise? In
other words, what properties or statistics of the Medici family node distinguish
it from the rest of the graph? And, more generally, what are useful properties
and statistics that we can use to characterize the nodes in this graph.

In principle the properties and statistics we discuss below could be used as
features in a node classification model (e.g., input to a logistic regression model).
Obviously, we would not be able to realistically train a machine learning model
on a graph as small as the Florentine marriage network, but it is still illustrative
to consider the kinds of features that could be used to di↵erentiate the nodes in
such a real-world graph.

Node degree. The most obvious and straightforward node feature to examine
is degree, which is usually denoted du for a node u 2 V and simply counts the
number of edges incident to a node:

du =
X

v2V

A[u, v]. (1.1)

Note that in cases of directed and weighted graphs, one can di↵erentiate between
di↵erent notions of degree—e.g., corresponding to outgoing edges or incoming
edges by summing over rows or columns in Equation (1.1). In general, the
degree of a node is an essential statistic to consider, and it is often one of the
most informative features in traditional machine learning models applied to
node-level tasks.

In the case of our Florentine marriages graph, we can see that degree is indeed
a good feature to distinguish the Medici family, as they have the highest degree
in the graph. However, their degree only outmatches the two closest families—
the Strozzi and the Guadagni—by a ratio of 3 to 2. Are there perhaps additional
or more discriminative features that can help to distinguish the Medici family
from the rest of the graph?

Node centrality. Node degree simply measures how many neighbors a node
has, but this is not necessarily su�cient to measure the importance of a node in a
graph. In many cases—such as our example graph of Florentine marriages—we
can benefit from additional and more powerful measures of node importance.
To obtain a more powerful measure of importance, we can consider various
measures of what is known as node centrality, which can form useful features in
a wide variety of node classification tasks.

One popular and important measure of centrality is the so-called eigenvector

centrality. Whereas degree simply measures how many neighbors each node has,
eigenvector centrality also takes into account how important a node’s neighbors
are. In particular, we define a node’s eigenvector centrality eu via a recurrence
relation in which the node’s centrality is proportional to the average centrality

1.3. BACKGROUND AND TRADITIONAL APPROACHES 11

of its neighbors:

eu =
1

�

X

v2V

A[u, v]ev 8u 2 V, (1.2)

where � is constant. Rewriting this equation in vector notation with e as the
vector of node centralities, we can see that this recurrence defines the standard
eigenvector equation for the adjacency matrix:

�e = Ae. (1.3)

In other words, the centrality measure that satisfies the recurrence in Equa-
tion 1.2 corresponds to an eigenvector of the adjacency matrix. Assuming that
we require positive centrality values, we can apply the Perron-Frobenius Theo-
rem to further determine that the vector of centrality values e is given by the
eigenvector corresponding to the largest eigenvalue of A [Newman, 2016].

One view of eigenvector centrality is that it ranks the likelihood that a node
is visited on a random walk of infinite length on the graph. This view can be
illustrated by considering the use of power iteration to obtain the eigenvector
centrality values. That is, since � is the leading eigenvector of A, we can
compute e using power iteration via3

e(t+1) = Ae(t). (1.4)

If we start o↵ this power iteration with the vector e(0) = (1, 1, ..., 1)>, then
we can see that after the first iteration e(1) will contain the degrees of all the
nodes. In general, at iteration t � 1, e(t) will contain the number of length-t
paths arriving at each node. Thus, iterating this process indefinitely we obtain
a score that is proportional to the number of times a node is visited on paths of
infinite length. This connection between node importance, random walks, and
the spectrum of the graph adjacency matrix will return often throughout the
ensuing sections and chapters.

Returning to our example of the Florentine marriage network, if we compute
the eigenvector centrality values on this graph, we again see that the Medici
family is the most influential, with a normalized value of 0.43 compared to the
next-highest value of 0.36. There are, of course, other measures of centrality that
we could use to characterize the nodes in this graph—some of which are even
more discerning with respect to the Medici family’s influence. These include
betweeness centrality—which measures how often a node lies on the shortest
path between two other nodes—as well as closeness centrality—which measures
the average shortest path length between a node and all other nodes. These
measures and many more are reviewed in detail by Newman [2018].

The clustering coe�cient. Measures of importance, such as degree and
centrality are clearly useful for distinguishing the prominent Medici family from
the rest of the Florentine marriage network. But what about features that are

3Note that we have ignored the normalization in the power iteration computation for
simplicity, as this does not change the main result.

12 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

useful for distinguishing between the other nodes in the graph? For example, the
Peruzzi and Guadagni nodes in the graph have very similar degree (3 v.s. 4) and
similar eigenvector centralities (0.28 v.s. 0.29). However, looking at the graph
in Figure 1.4, there is a clear di↵erence between these two families. Whereas the
the Peruzzi family is in the midst of a relatively tight-knit cluster of families,
the Guadagni family occurs in a more star-like role.

This important structural distinction can be measured using variations of
the clustering coe�cient, which measures the proportion of closed triangles in a
node’s local neighborhood. The popular local variant of the clustering coe�cient
is computed as [Watts and Strogatz, 1998]:

cu =
|(v1, v2) 2 E : v1, v2 2 N (u)|

�du

2

� . (1.5)

The numerator simply counts the number of edges between neighbours of node
u—where we use N (u) = {v 2 V : (u, v) 2 E} to denote the node neighbor-
hood. The denominator calculates how many pairs of nodes there are in u’s
neighborhood.

The clustering coe�cient takes its name from the fact that it measures how
tightly clustered a node’s neighborhood is. A clustering coe�cient of 1 would
imply that all of u’s neighbors are also neighbors of each other. In our Florentine
marriage graph, we can see that some nodes are highly clustered—e.g., the
Peruzzi nodes has a clustering coe�cient of 0.66—while other nodes such as the
Guadagni node have clustering coe�cients of 0. As with centrality, there are
numerous variations of the clustering coe�cient (e.g., to account for directed
graphs), which are also reviewed in detail by Newman [2018]. An interesting and
important property of real-world networks throughout the social and biological
sciences is that they tend to have far higher clustering coe�cients than one
would expect if edges were sampled randomly [Watts and Strogatz, 1998].

Closed triangles, ego graphs, and motifs. An alternative way of viewing
the clustering coe�cient—rather than as a measure of local clustering—is that
it counts the number of closed triangles within each node’s local neighborhood.
In more precise terms, the clustering coe�cient is related to the ratio between
the actual number of triangles and the total possible number of triangles within
a node’s ego graph, i.e., the subgraph containing that node, its neighbors, and
all the edges between nodes in its neighborhood.

This idea can be generalized to the notion of counting arbitrary motifs or
graphlets within a node’s ego graph. That is, rather than just counting triangles,
we could consider more complex structures, such as cycles of particular length,
and we could characterize nodes by counts of how often these di↵erent motifs
occur in their ego graph. By examining a node’s ego graph in this way, we can
essentially transform the task of computing node-level statistics and features
to a graph-level task. Thus, we will now turn our attention to this graph-level
problem.

1.3. BACKGROUND AND TRADITIONAL APPROACHES 13

Figure 1.5: Visualization of molecular graph structures from the ESOL dataset
Delaney [2004]. The graphs in the top row represent chemical compounds that
are highly soluble with the blue areas denoting fragments that Duvenaud et al.
[2015] detected to be highly indictive of solubility, while the bottom row are
anti-soluble compounds. Visualization from Duvenaud et al. [2015].

Graph-level features and graph kernels

So far we have discussed various statistics and properties at the node level,
which could be used as features for node-level classification tasks. However,
what if our goal is to do graph-level classification? For example, suppose we
are given a dataset of graphs representing molecules and our goal is to classify
the solubility of these molecules based on their graph structure (Figure 1.5). In
this section we will briefly survey approaches to extracting graph-level features
for such tasks.

Many of the methods we survey here fall under the general classification of
graph kernel methods, which are approaches to designing features for graphs or
implicit kernel functions that can be used in machine learning models. We will
touch upon only a small fraction of the approaches within this large area, and
we will focus on methods that extract explicit feature representations, rather
than approaches that define implicit kernels (i.e., similarity measures) between
graphs. We point the interested reader to Kriege et al. [2019] and Vishwanathan
et al. [2010] for detailed surveys of this area.

Bag of nodes. The simplest approach to defining a graph-level feature is to
just aggregate node-level statistics. For example, one can compute histograms
or other summary statistics based on the degrees, centralities, and clustering
coe�cients of the nodes in the graph, and then use this aggregated information
as a graph-level representation. The downside to this approach is that it is
entirely based upon local node-level information and can miss important global
properties in the graph.

14 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

The Weisfieler-Lehman kernel. One way to improve the basic bag of nodes
approach is using a strategy of iterative neighborhood aggregation. The idea with
these approaches is to extract node-level features that contain more information
than just their local ego graph, and then to aggregate these richer features into
a graph-level representation.

Perhaps the most important and well-known of these strategies is the Weisfieler-
Lehman (WL) algorithm and kernel [Shervashidze et al., 2011]. The basic idea
behind the WL algorithm is the following:

1. First, we assign an initial label l
(0)(v) to each node. In most graphs, this

label is simply the degree, i.e., l
(0)(v) = dv 8v 2 V .

2. Next, we iteratively assign a new label to each node by hashing the multi-
set of the current labels within the node’s neighborhood:

l
(i)(v) = hash({{l

(i�1)(u) 8u 2 N (v)}}), (1.6)

where the double-braces are used to denote a multi-set and the HASH
function maps each unique multi-set to a unique new label.

3. After running K iterations of re-labeling (i.e., Step 2), we now have a label
l
(K)(v) for each node that summarizes the structure of its K-hop neigh-
borhood. We can then compute histograms or other summary statistics
over these labels as a feature representation for the graph, i.e., the WL
kernel is computed by measuring the di↵erence between the resultant label
sets for two graphs.

The WL kernel is popular, well-studied and known to have important theoretical
properties. For example, one popular way to approximate graph isomorphism is
to check whether or not two graphs have the same label set after T rounds of the
WL algorithm, and this approach is known to solve the isomorphism problem
for a broad set of graphs [Shervashidze et al., 2011].

The WL approach goes by many names—such as naive vertex refinement
[Hamilton et al., 2017b] and molecular fingerprints in the biochemistry commu-
nity [Duvenaud et al., 2015]—and it is a fundamentally important algorithm in
graph analysis. As we will see in Part II of this book, graph neural networks—
which are the modern standard for deep learning on graphs—have close theo-
retical connections to the WL algorithm.

Graphlets and path-based methods Finally, just as in our discussion of
node-level features, one valid and powerful strategy for defining features over
graphs is to simply count the occurrence of di↵erent small subgraph structures,
usually called graphlets in this context. Formally, the graphlet kernel involves
enumerating all possible graph structures of a particular size and counting
how many times they occur in the full graph (see Figure 1.6 for an example
with graphlets of size 3). The challenge with this approach is that computing
graphlets of size k is at least as hard as solving the graph isomorphism prob-
lem for graphs of size k. Counting these graphlets is a combinatorially di�cult

1.3. BACKGROUND AND TRADITIONAL APPROACHES 15

Figure 1.6: Illustration of size-3 graphlets in a simple graph. Figure taken from
Kriege et al. [2019].

problem, though numerous approximations have been proposed [Shervashidze
and Borgwardt, 2009].

An alternative to enumerating all possible graphlets is to use path-based

methods. In these approaches, rather than enumerating graphlets, one simply
examines the di↵erent kinds of paths that occur in the graph. For example, the
random walk kernel proposed by Kashima et al. [2003] involves running ran-
dom walks over the graph and then counting the occurrence of di↵erent degree
sequences,4 while the shortest-path kernel of Borgwardt and Kriegel [2005] in-
volves a similar idea but uses only the shortest-paths between nodes (rather
than random walks). As we will see in Part I of this book, this idea of charac-
terizing graphs based on walks and paths is a powerful one, as it can extract
rich structural information while avoiding many of the combinatorial pitfalls of
graph data.

1.3.2 Neighborhood Overlap Detection

In the last section we covered various approaches to extract features or statistics
about individual nodes or entire graphs. These node and graph-level statistics
are useful for many classification tasks, but they are limited in that they do not
quantify the relationships between nodes. For instance, the statistics discussed
in the last section are not very useful for the task of relation prediction, where
our goal is to predict the existence of an edge between two nodes (Figure 1.7).

In this section we will consider various statistical measures of neighborhood
overlap between pairs of nodes, which quantify the extent to which a pair of
nodes are related. For example, the simplest neighborhood overlap measure
just counts the number of neighbors that two nodes share:

S[u, v] = |N (u) \ N (v)|, (1.7)

4Other node labels can also be used.

16 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

Figure 1.7: An illustration of the full graph and a subsampled graph used for
training. The dotted edges in the training graph are removed when training a
model or computing the overlap statistics.

where we use S[u, v] to denote the value quantifying the relationship between
nodes u and v and let S 2 R|V|⇥|V| denote the similarity matrix summarizing
all the pairwise node statistics.

While there is no learning involved in any of the statistical measures dis-
cussed in this section, they are still very useful and powerful baselines for re-
lation prediction. Given a neighborhood overlap statistic S[u, v], a common
strategy is to assume that the likelihood of an edge is simply proportional to
this statistic:

P (A[u, v] = 1) / S[u, v]. (1.8)

Thus, in order to approach relation prediction using a neighborhood overlap
measure, one simply needs to choose a particular overlap statistic and then
set a threshold to determine when to predict the existence of an edge. Note
that in the relation prediction setting we generally assume that we only know
a subset of the true edges Etrain ⇢ E . Our hope is that node-node similarity
measures computed on the training edges will lead to accurate predictions about
the existence of test (i.e., unseen) edges.

Local overlap measures

Local overlap statistics are simply functions of the number of common neighbors
two nodes share, i.e. |N (u) \ N (v)|. For instance, the Sorensen index defines
a matrix SSorenson 2 R|V|⇥|V| of node-node neighborhood overlaps with entries
given by

SSorenson[u, v] =
2|N (u) \ N (v)|

du + dv
, (1.9)

1.3. BACKGROUND AND TRADITIONAL APPROACHES 17

which normalizes the count of common neighbors by the sum of the node degrees.
Normalization of some kind is usually very important; otherwise, the overlap
measure would be highly biased towards predicting edges for nodes with large
degrees. Other similar approaches include the the Salton index normalizes by
the product of the node degrees

SSalton[u, v] =
2|N (u) \ N (v)|p

dudv
, (1.10)

and the Jaccard overlap:

SJaccard(u, v) =
|N (u) \ N (v)|
|N (u) [N (v)| . (1.11)

In general these measures seek to measure the overlap between neighborhoods
while minimizing the bias towards high vs. low-degree nodes, and there are many
variations of normalizing constants in the literature [Lü and Zhou, 2011].

There are also measures that go beyond simply counting the number of com-
mon neighbors and that seek to consider the importance of common neighbors
in some way. The Resource Allocation (RA) index counts the inverse degrees
of the common neighbors,

SRA[v1, v2] =
X

u2N (v1)\N (v2)

1

du
, (1.12)

while the Adamic-Adar (AA) index performs a similar computation using the
inverse logarithm of the degrees:

SAA[v1, v2] =
X

u2N (v1)\N (v2)

1

log(du)
. (1.13)

Both these measures give more weight to common neighbors that have low
degree, with intuition that a shared low-degree neighbor is more informative
than a shared high-degree one.

Global overlap measures

Local overlap measures are extremely e↵ective heuristics for link prediction and
often achieve competitive performance even compared to advanced deep learning
approaches [Perozzi et al., 2014]. However, the local approaches are limited in
that they only consider local node neighborhoods. For example, two nodes
could have no local overlap in their neighborhoods but still be members of the
same community in the graph. Global overlap statistics attempt to take such
relationships into account.

Katz index The Katz index is the most basic global overlap statistic. To
compute the Katz index we simply count the number of paths of all length

18 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

between a pair of nodes:

SKatz[u, v] =
1X

i=1

�
iAi[u, v], (1.14)

where � is a weighting term that controls how much weight is given to short
v.s. long paths. In particular, a small value of � < 1 would down-weight the
importance of long paths.

Geometric series of matrices The Katz index is one example of a
geometric series of matrices, variants of which occur frequently in graph
analysis and graph representation learning. The solution to these basic
form of this series is given by the following theorem.
Theorem 1. Let X be a real-valued matrix and let �1 denote the largest

eigenvalue of X. Then

(I � X)�1 =
1X

i=0

Xi

if and only if �1 < 1 and (I � X) is non-singular.

Proof. Let sn =
Pn

i=0
Xi then we have that

Xsn = X
nX

i=0

Xi

=
n+1X

i=1

Xi

and

sn � Xsn =
nX

i=0

Xi �
n+1X

i=1

Xi

sn(I � X) = I � Xn+1

sn = (I � Xn+1)(I � X)�1

And if �1 < 1 we have that limn!1 Xn = 0 so

lim
n!1

sn = lim
n!1

(I � Xn+1)(I � X)�1

= I(I � X)�1

= (I � X)�1

Based on Theorem 1, we can see that the solution to the Katz index is given
by

SKatz = (I � �A)�1 � I, (1.15)

1.3. BACKGROUND AND TRADITIONAL APPROACHES 19

where SKatz 2 R|V|⇥|V| is the full matrix of node-node similarity values.

Leicht, Holme, and Newman (LHN) similarity One issue with the Katz
index is that it is strongly biased by node degree. Equation (1.14) is generally
going to give higher overall similarity scores when considering high-degree nodes,
compared to low-degree ones, since high-degree nodes will generally be involved
in more paths. To alleviate this, Leicht et al. [2006] propose an improved metric
by considering the ratio between the actual number of observed paths and the
number of expected paths between two nodes:

Ai

E[Ai]
, (1.16)

i.e., the number of paths between two nodes is normalized based on our expec-
tation of how many paths we expect under a random model.

To compute the expectation E[Ai] rely on what is called the configuration

model, which assumes that we draw a random network with the same set of de-
grees as our given network. Under this assumption, we can analytically compute
that

E[A[u, v]] =
dudv

2m
, (1.17)

which states that under a random configuration model the likelihood of an edge
is simply proportional to the product of the two node degrees. This can be seen
by noting that there are du edges leaving u and each of these edges has a dv

2m
chance of ending at v. For E[A2[u, v]] we can similarly compute

E[A2[v1, v2]] =
dv1dv2

(2m)2

X

u2V
(du � 1)du. (1.18)

This follows from the fact that path of length 2 could pass through any interme-
diate vertex u, and the likelihood of such a path is proportional to the likelihood

that an edge leaving v1 hits u—given by
dv1du

2m —multiplied by the probability

that an edge leaving u hits v2—given by
dv2 (du�1)

2m (where we subtract one since
we have already used up one of u’s edges for the incoming edge from v1).

Unfortunately the analytical computation of expected node path counts un-
der a random configuration model becomes intractable as we go beyond paths
of length three. Thus, to obtain the expectation E[Ai] for longer path lengths
(i.e., i > 2), Leicht et al. [2006] rely on the fact the largest eigenvalue can be
used to approximate the growth in the number of paths. In particular, if we
define pi 2 R|V| as the vector counting the number of length-i paths between
node u and all other nodes, then we have that for large i

Api = �1pi�1, (1.19)

since pi will eventually converge to the dominant eigenvector of the graph. This
implies that the number of paths between two nodes grows by a factor of �1 at

20 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

each iteration, where �1 is the first eigenvalue of A. Based on this approximation
for large i as well as the exact solution for i = 1 we obtain:

E[Ai[u, v]] =
dudv�

i�1

2m
. (1.20)

Finally, putting it all together we can obtain a normalized version of the
Katz index—which we term the LNH index:

SLNH[u, v] = I[u, v] +
2m

dudv

1X

i=0

��
1�i
1

Ai[u, v], (1.21)

where I is a |V| ⇥ |V| identity matrix indexed in a consistent manner as A.
Unlike the Katz index the LNH index accounts for the expected number of paths
between nodes and only gives a high similarity measure if two nodes occur on
more paths than we expect. Using Theorem 1 the solution to the matrix series
(after ignoring diagonal terms) can be written as [Lü and Zhou, 2011]:

SLNH = 2↵m�1D
�1(I � �

�1

A)�1D�1
, (1.22)

where D is a matrix with node degrees on the diagonal.

Random walk methods

Another set of global similarity measures consider random walks rather than
exact counts of paths over the graph. For example, we can directly apply the
PageRank approach [Page et al., 1999], where we define the stochastic matrix
P = AD�1 and compute:

qu = cPqu + (1 � c)eu. (1.23)

In this equation eu is a one-hot indicator vector for node u and qu[v] gives
the stationary probability that random walk starting at node u visits node v.
Here, the c term determines the probability of the random walk restarting at
node u at each timestep. Without this restart probability, the random walk
probabilities would simply converge to a normalized variant of the eigenvector
centrality. However, with this restart probability we instead obtain a measure
of importance specific to the node u, since the random walks are continually
being “teleported” back to that node. The solution to this recurrence is given
by

qu = (1 � c)(I � cP)�1eu, (1.24)

and we can define a node-node random walk similarity measure as

SRW[u, v] = qu[v] + qv[u], (1.25)

i.e., the similarity between a pair of nodes is proportional to how likely we are
to reach each node from a random walk starting from the other node.

1.3. BACKGROUND AND TRADITIONAL APPROACHES 21

1.3.3 Graph Laplacians and Spectral Methods

We now turn to the problem of learning to cluster the nodes in graph. This
section will also motivate the task of learning low dimensional embeddings of
nodes. We begin with the definition of some important matrices that can be
used to represent graphs.

Graph Laplacians

Adjacency matrices can represent graphs without any loss of information. How-
ever, there are alternative matrix representations of graphs that have useful
mathematical properties. These matrix representations are called Laplacians

and are formed by various transformations of the adjacency matrix.

Unnormalized Laplacian The most basic Laplacian matrix is the unnor-
malized Laplacian, which is defined as:

L = D � A, (1.26)

where A is the adjacency matrix and D is the degree matrix. The Laplacian
has a number of important properties:

1. It is symmetric and positive semi-definite.

2. The following vector identity holds 8x 2 R|V|

x>Lx =
X

u2V

X

v2V
A[u, v](x[u] � x[v])2 (1.27)

= 2
X

(u,v)2E

(x[u] � x[v])2 (1.28)

3. L has |V | non-negative eigenvalues: 0 = �|V| �|V|�1 ... �|1|

The Laplacian and connected components The Laplacian summa-
rizes many important properties of the graph. For example, we have the
following theorem:
Theorem 2. The geometric multiplicity of the 0 eigenvalue of the Lapla-

cian L corresponds to the number of connected components in the graph.

Proof. This can be seen by noting that for any eigenvector e of the eigen-
value 0 we have that

e>Le = 0 (1.29)

by the definition of the eigenvalue-eigenvector equation. And, the result in
Equation (1.29) implies that

X

(u,v)2E

(e[u] � e[v])2 = 0. (1.30)

22 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

The equality above then implies that e[u] = e[v], 8(u, v) 2 E , which in
turn implies that e[u] is the same constant for all nodes u that are in the
same connected component. Thus, if the graph is fully connected then the
eigenvector for the eigenvalue 0 will be a constant vector of ones for all
nodes in the graph, and this will be the only eigenvector for eigenvalue 0,
since in this case there is only one unique solution to Equation (1.29).

Conversely, if the graph is composed of multiple connected components
then we will have that Equation 1.29 holds independently on each of the
blocks of the Laplacian corresponding to each connected component. That
is, if the graph is composed of K connected components, then the Laplacian
matrix can be written as

L =

2

6666664

L1

L2

. . .

LK

3

7777775
, (1.31)

where each of the Lk blocks in this matrix is a valid graph Laplacian of
a fully connected subgraph of the original graph. Since they are valid
Laplacians only fully connected graphs, for each of the Lk blocks we will
have that Equation (1.29) holds and that each of these sub-Laplacians has
an eigenvalue of 0 with multiplicity 1 and an eigenvector of all ones (defined
only over the nodes in that component). Moreover, since L is a block
diagonal matrix, its spectra is given by the union of the spectra of all the
Lk blocks, i.e., the eigenvalues of L are the union of the eigenvalues of the
Lk matrices and the eigenvectors of L are the union of the eigenvectors of
all the Lk matrices with 0 values filled at the positions of the other blocks.
Thus, we can see that each block contributes one eigenvector for eigenvalue
0, and this eigenvector is an indicator vector for the nodes in that connected
component.

Normalized Laplacians In addition to the unnormalized Laplacian there
are also two popular normalized variants of the Laplacian. The symmetric
normalized Laplacian is defined as

Lsym = D� 1
2 LD� 1

2 , (1.32)

while the random walk Laplacian is defined as

LRW = D�1L (1.33)

Both of these matrices have similar properties as the Laplacian, but generally
their algebraic properties di↵er by small constants due to the normalization.

1.3. BACKGROUND AND TRADITIONAL APPROACHES 23

For example, Theorem 2 holds exactly for LRW. For Lsym, Theorem 2 holds

but with the eigenvectors for the 0 eigenvalue scaled by D
1
2 . As we will see

throughout this book, these di↵erent variants of the Laplacian can be useful for
di↵erent analysis and learning tasks.

1.3.4 Graph Cuts and Clustering

In Theorem 2, we saw that the eigenvectors corresponding to the 0 eigenvalue of
the Laplacian can be used to assign nodes to clusters based on which connected
component they belong to. However, this approach only allows us to cluster
nodes that are already in disconnected components, which is trivial. In this
section we take this idea one step further and show that the Laplacian can be
used to give an optimal clustering of nodes within a fully connected graph.

Graph cuts In order to motivate the Laplacian spectral clustering approach,
we first must define what we mean by an optimal cluster. To do so, we define
the notion of a cut on a graph. Let A ⇢ V denote a subset of the nodes in the
graph and let Ā denote the complement of this set, i.e., A [Ā = V, A \ Ā = ;.
Given a partitioning of the graph into K non-overlapping subsets A1, ..., AK we
define the cut value of this partition as

cut(A1, ..., AK) =
1

2

KX

k=1

|(u, v) 2 E : u 2 Ak, v 2 Āk|. (1.34)

In other words, the cut is simply the count of how many edges cross the boundary
between the partition of nodes. Now, one option to define an optimal clustering

of the nodes into K clusters would be to select a partition that minimizes this
cut value. There are e�cient algorithms to solve this task, but a known problem
with this approach is that it tends to simply make clusters that consist of a single
node [Stoer and Wagner, 1997].

Thus, instead of simply minimizing the cut we generally seek to minimize
the cut while also enforcing that the partitions are all reasonably large. One
popular way of enforcing this is by minimizing the Ratio Cut:

RatioCut(A1, ..., AK) =
1

2

PK
k=1

|(u, v) 2 E : u 2 Ak, v 2 Āk|
|Ak| , (1.35)

which penalizes the solution for choosing small cluster sizes. Another popular
solution is to minimize the Normalized Cut (NCut):

NCut(A1, ..., AK) =
1

2

PK
k=1

|(u, v) 2 E : u 2 Ak, v 2 Āk|
vol(Ak)

, (1.36)

where vol(A) =
P

u2A du. The NCut enforces that all clusters have a similar
number of edges incident to their nodes.

24 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

Approximating the RatioCut with the Laplacian spectrum We will
now derive an approach to find a cluster assignment that minimizes the RatioCut
using the Laplacian spectrum. (A similar approach can be used to minimize the
NCut value as well.) For simplicity, we will consider the case where we K = 2
and we are separating our nodes into two clusters. Our goal is to solve the
following optimization problem

min
A2V

RatioCut(A, Ā). (1.37)

To rewrite this problem in a more convenient way, we define the following vector
a 2 R|V|:

a[u] =

8
<

:

q
|Ā|
|A| if u 2 A

�
q

|A|
|Ā| if u 2 Ā

. (1.38)

Combining this vector with our properties of the graph Laplacian we can see
that

a>La =
X

(u,v)2E

(a[u] � a[v])2 (1.39)

=
X

(u,v)2E : u2A,v2Ā

(a[u] � a[v])2 (1.40)

=
X

(u,v)2E : u2A,v2Ā

 s
|Ā|
|A| �

�

s
|A|
|Ā|

!!2

(1.41)

= cut(A, Ā)

✓
|A|
|Ā|

+
|Ā|
|A| + 2

◆
(1.42)

= cut(A, Ā)

✓
|A| + |Ā|

|Ā|
+

|A| + |Ā|
|A|

◆
(1.43)

= |V|RatioCut(A, Ā). (1.44)

Thus, we can see that a allows us to write the Ratio Cut in terms of the Laplacian
(up to a constant factor). In addition, a has two other important properties:

X

u2V
a[u] = 0 , a ? (1.45)

and

kak2 = |V|. (1.46)

Both of these properties can be verified algebraically by the reader.

Putting this altogether we can rewrite the Ratio Cut minimization problem

1.3. BACKGROUND AND TRADITIONAL APPROACHES 25

in Equation (1.37) as

min
A2V

a>La (1.47)

s.t.

a ?
kak2 = |V|
a defined as in Equation 1.38.

Unfortunately, however, this is an NP-hard problem since the restriction that
a is defined as in Equation 1.38 requires that we are optimizing over a discrete
set. The obvious relaxation is to remove this discreteness condition and simplify
the minimization to be over real-valued vectors:

min
a2R|V|

a>La (1.48)

s.t.

a ?
kak2 = |V|.

By the Rayleigh-Ritz Theorem, the solution to this optimization problem is
given by the second-smallest eigenvector of L (since the smallest eigenvector is
equal to).

Thus, we can approximate the minimization of the RatioCut by setting a to
be the second-smallest eigenvector5 of the Laplacian. To turn this real-valued
vector into a set of discrete cluster assignments, we can simply assign nodes to
clusters based on the sign of a[u], i.e.,

(
u 2 A if a[u] � 0

u 2 Ā if a[u] < 0.
(1.49)

In summary, the second-smallest eigenvector of the Laplacian is a continuous
approximation to the discrete vector that gives an optimal cluster assignment
(with respect to the RatioCut). An analogous result can be shown for approx-
imating the NCut value, but it relies on the second-smallest eigenvector of the
normalized Laplacian LRW [Von Luxburg, 2007].

1.3.5 Generalized spectral clustering

In the last section we saw that the spectrum of the Laplacian allowed us to
find a meaningful partition of the graph into two clusters. In particular, we saw
that the second-smallest eigenvector could be used to partition the nodes into
di↵erent clusters. This general idea can be extended to an arbitrary number
of K clusters by examining the K smallest eigenvectors of the Laplacian. The
steps of this general approach are as follows:

5Note that by second-smallest eigenvector we mean the eigenvector corresponding to the
second-smallest eigenvalue.

26 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

1. Find the K smallest eigenvectors of L (excluding the smallest):
e|V|�1, e|V|�2, ..., e|V|�K .

2. Form the matrix U 2 R|V|⇥K�1 with the eigenvectors from Step 1 as
columns.

3. Represent each node by its corresponding row in the matrix U, i.e.,

zu = U[u] 8u 2 V.

4. Run K-means clustering on the embeddings zu 8u 2 V.

As with the discussion of the K = 2 case in the previous section, this approach
can be adapted to use the normalized Laplacian , and the approximation result
for K = 2 can also be generalized to this K > 2 case [Von Luxburg, 2007].

The general principle of spectral clustering is a powerful one. We can rep-
resent the nodes in a graph using the spectra of the graph Laplacian, and this
representation can be motivated as a principled approximation to an optimal
graph clustering. There are also close theoretical connections between spec-
tral clustering and random walks on graphs as well as the field of graph signal
processing. We will discuss many of these connections in future chapters.

1.4 Graph Representation Learning:
An Overview

The central problem in machine learning on graphs is finding a way to incor-
porate information about graph-structure into a machine learning model. For
example, in the case of link prediction in a social network, one might want to
encode pairwise properties between nodes, such as relationship strength or the
number of common friends. Or in the case of node classification, one might
want to include information about the global position of a node in the graph or
the structure of the node’s local graph neighborhood. The challenge—from a
machine learning perspective—is that there is no straightforward way to encode
this high-dimensional, non-Euclidean information about graph structure into a
feature vector.

In the previous section we saw a number of traditional approaches to learning
over graphs. We discussed how graph statistics and kernels can extract feature
information for classification tasks. We saw how neighborhood overlap statistics
can provide powerful heuristics for relation prediction. And, we o↵ered a brief
introduction to the notion of spectral clustering, which allows us to cluster
nodes into communities in a principled manner. However, all the approaches
discussed in Section 1.3 are limited due to the fact that they require careful,
hand-engineered statistics and measures. These hand-engineered features are
inflexible—i.e., they cannot adapt during the learning process—and designing
these features can be a time-consuming and expensive process.

1.4. GRAPH REPRESENTATION LEARNING: AN OVERVIEW 27

This book is about an alternative approach to learning over graphs: graph

representation learning. Instead of extracting hand-engineered features, we
will seek to learn representations that encode structural information about
the graph. The idea behind these representation learning approaches is to
learn a mapping that embeds nodes, or entire (sub)graphs, as points in a low-
dimensional vector space Rd. The goal is to optimize this mapping so that
geometric relationships in the embedding space reflect the structure of the orig-
inal graph. After optimizing the embedding space, the learned embeddings can
be used as feature inputs for downstream machine learning tasks. The key dis-
tinction between representation learning approaches and previous work is how
they treat the problem of representing graph structure. Previous work treated
this problem as a pre-processing step, using hand-engineered statistics to ex-
tract structural information. In contrast, representation learning approaches
treat this problem as machine learning task itself, using a data-driven approach
to learn embeddings that encode graph structure.

