
COMP 451 –
Fundamentals of Machine Learning
Lecture 25 ---
Autoencoders and self-supervision
William L. Hamilton
* Unless otherwise noted, all material posted for this course are 
copyright of the  instructor, and cannot be reused or reposted without 
the instructor’s written permission. 
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Autoencoders and self-supervision
§ Two approaches to dimensionality reduction using deep learning.

§ This is a rough categorization and not a strict division!! 

§ Autoencoders:
§ Optimize a “reconstruction loss.”
§ Encoder maps input to a low-dimensional space and decoder tries to recover the 

original data from the low-dimensional space.

§ “Self-supervision”:
§ Try to predict some parts of the input from other parts of the input. 
§ I.e., make up labels from x. 
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Autoencoding: the basic idea
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Learning an autoencoder function
§ Goal:   Learn a compressed representation of the input data.
§ We have two functions (usually neural networks):

§ Encoder:  

§ Decoder:
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Learning an autoencoder function
§ Goal:   Learn a compressed representation of the input data.
§ We have two functions (usually neural networks):

§ Encoder:  

§ Decoder:

§ Train using a reconstruction loss:

Only interesting when z has 
much smaller dimension 

than x!
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Autoencoding
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Recall: Principal Component Analysis (PCA)

§ Idea:  Project data into a lower-dimensional sub-space, 
Rm -->Rm’, where m’<m.
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Recall: Principal Component Analysis (PCA)

§ Idea:  Project data into a lower-dimensional sub-space, 
Rm -->Rm’, where m’<m.

§ Consider a linear mapping, xi -->	WTxi
§ W is the compression matrix with dimension Rmxm’.
§ Assume there is a decompression matrix Um’xm.
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Recall: Principal Component Analysis (PCA)

§ Idea:  Project data into a lower-dimensional sub-space, 
Rm -->Rm’, where m’<m.

§ Consider a linear mapping, xi -->	WTxi
§ W is the compression matrix with dimension Rmxm’.
§ Assume there is a decompression matrix Um’xm.

§ Solve the following problem:  argminW,U Σi=1:n ||	xi – UWTxi ||2
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Recall: Principal Component Analysis (PCA)

§ Solve the following problem:  argminW,U Σi=1:n ||	xi – UWTxi ||2

§ Equivalently: argminW,U ||	X	– XWUT ||2

§ Solution is given by eigen-decomposition of XTX.
§ W is mxm’ matrix corresponding to the first m’ eigenvectors of XTX

(sorted in descending order by the magnitude of the eigenvalue).
§ Equivalently: W is mxm’ matrix containing the first m’ left singular 

vectors of X
§ Note: The columns of W	are orthogonal!
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PCA vs autoencoders
In the case of a linear encoders and decoders:

fW(x)	=	Wx gŴ(h)	=	W’h ,

with squared-error reconstruction loss we can show that the minimum 

error solution W yields the same subspace as PCA.
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More advanced encoders and decoders
§ What to use as encoders and decoders?

§ Most data (e.g., arbitrary real-valued or categorical features).
§ Encoder and decoder are feed-forward neural networks.

§ Sequence data 
§ Encoder and decoder are RNNs.

§ Image data
§ Encoder is a CNN; decoder is a deconvolutional network. 
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Aside: Deconvolutions 

William L. Hamilton, McGill University and Mila 15

§ “Deconvolution” is just a transposed convolution.



Regularization of autoencoders
§ How can we generate sparse autoencoders?  (And also, why?)
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Regularization of autoencoders
§ How can we generate sparse autoencoders?  (And also, why?)

§ Weight tying of the encoder and decoder weights (𝜃 = 𝜙) to explicitly 
constrain (regularize) the learned function.
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Regularization of autoencoders
§ How can we generate sparse autoencoders?  (And also, why?)

§ Weight tying of the encoder and decoder weights (𝜃 = 𝜙) to explicitly 
constrain (regularize) the learned function.

§ Directly penalize the output of the hidden units (e.g. with L1 penalty) to 
introduce sparsity in the weights.
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Regularization of autoencoders
§ How can we generate sparse autoencoders?  (And also, why?)

§ Weight tying of the encoder and decoder weights (𝜃 = 𝜙) to explicitly 
constrain (regularize) the learned function.

§ Directly penalize the output of the hidden units (e.g. with L1 penalty) to 
introduce sparsity in the weights.

§ Penalize the average output (over a batch of data) to encourage it to 
approach a fixed target.
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Denoising autoencoders
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Denoising autoencoders
§ Idea:  To force the hidden layer to discover more robust features, train the 

autoencoder with a corrupted version of the input.

Extracting and Composing Robust Features with Denoising Autoencoders

2.3. The Denoising Autoencoder

To test our hypothesis and enforce robustness to par-
tially destroyed inputs we modify the basic autoen-
coder we just described. We will now train it to recon-
struct a clean “repaired” input from a corrupted, par-
tially destroyed one. This is done by first corrupting
the initial input x to get a partially destroyed version
x̃ by means of a stochastic mapping x̃ ⇠ qD(x̃|x). In
our experiments, we considered the following corrupt-
ing process, parameterized by the desired proportion ⌫
of “destruction”: for each input x, a fixed number ⌫d
of components are chosen at random, and their value
is forced to 0, while the others are left untouched. All
information about the chosen components is thus re-
moved from that particuler input pattern, and the au-
toencoder will be trained to “fill-in” these artificially
introduced “blanks”. Note that alternative corrupting
noises could be considered1. The corrupted input x̃ is
then mapped, as with the basic autoencoder, to a hid-
den representation y = f✓(x̃) = s(Wx̃+b) from which
we reconstruct a z = g✓0(y) = s(W0y + b0) (see figure
1 for a schematic representation of the process). As
before the parameters are trained to minimize the av-
erage reconstruction error LIH(x, z) = IH(BxkBz) over
a training set, i.e. to have z as close as possible to the
uncorrupted input x. But the key di↵erence is that z
is now a deterministic function of x̃ rather than x and
thus the result of a stochastic mapping of x.

f✓

xxx̃

qD

y

z

LH(x, z)
g✓0

Figure 1. An example x is corrupted to x̃. The autoen-
coder then maps it to y and attempts to reconstruct x.

Let us define the joint distribution

q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y ) (4)

where �u(v) puts mass 0 when u 6= v. Thus Y is a
deterministic function of eX. q0(X, eX,Y ) is param-
eterized by ✓. The objective function minimized by
stochastic gradient descent becomes:

arg min
✓,✓0

EEq0(X, eX)

h
LIH

⇣
X, g✓0(f✓( eX))

⌘i
. (5)

So from the point of view of the stochastic gradient de-
scent algorithm, in addition to picking an input sam-
ple from the training set, we will also produce a ran-
dom corrupted version of it, and take a gradient step

1The approach we describe and our analysis is not spe-
cific to a particular kind of corrupting noise.

towards reconstructing the uncorrupted version from
the corrupted version. Note that in this way, the au-
toencoder cannot learn the identity, unlike the basic
autoencoder, thus removing the constraint that d0 < d
or the need to regularize specifically to avoid such a
trivial solution.

2.4. Layer-wise Initialization and Fine Tuning

The basic autoencoder has been used as a building
block to train deep networks (Bengio et al., 2007), with
the representation of the k-th layer used as input for
the (k + 1)-th, and the (k + 1)-th layer trained after
the k-th has been trained. After a few layers have been
trained, the parameters are used as initialization for a
network optimized with respect to a supervised train-
ing criterion. This greedy layer-wise procedure has
been shown to yield significantly better local minima
than random initialization of deep networks , achieving
better generalization on a number of tasks (Larochelle
et al., 2007).

The procedure to train a deep network using the de-
noising autoencoder is similar. The only di↵erence is
how each layer is trained, i.e., to minimize the crite-
rion in eq. 5 instead of eq. 3. Note that the corrup-
tion process qD is only used during training, but not
for propagating representations from the raw input to
higher-level representations. Note also that when layer
k is trained, it receives as input the uncorrupted out-
put of the previous layers.

3. Relationship to Other Approaches

Our training procedure for the denoising autoencoder
involves learning to recover a clean input from a cor-
rupted version, a task known as denoising. The prob-
lem of image denoising, in particular, has been exten-
sively studied in the image processing community and
many recent developments rely on machine learning
approaches (see e.g. Roth and Black (2005); Elad and
Aharon (2006); Hammond and Simoncelli (2007)). A
particular form of gated autoencoders has also been
used for denoising in Memisevic (2007). Denoising us-
ing autoencoders was actually introduced much ear-
lier (LeCun, 1987; Gallinari et al., 1987), as an alter-
native to Hopfield models (Hopfield, 1982). Our ob-
jective however is fundamentally di↵erent from that of
developing a competitive image denoising algorithm.
We investigate explicit robustness to corrupting noise
as a novel criterion guiding the learning of suitable in-
termediate representations to initialize a deep network.
Thus our corruption+denoising procedure is applied
not only on the input, but also recursively to interme-
diate representations.

Extracting and Composing Robust Features with Denoising Autoencoders

2.3. The Denoising Autoencoder

To test our hypothesis and enforce robustness to par-
tially destroyed inputs we modify the basic autoen-
coder we just described. We will now train it to recon-
struct a clean “repaired” input from a corrupted, par-
tially destroyed one. This is done by first corrupting
the initial input x to get a partially destroyed version
x̃ by means of a stochastic mapping x̃ ⇠ qD(x̃|x). In
our experiments, we considered the following corrupt-
ing process, parameterized by the desired proportion ⌫
of “destruction”: for each input x, a fixed number ⌫d
of components are chosen at random, and their value
is forced to 0, while the others are left untouched. All
information about the chosen components is thus re-
moved from that particuler input pattern, and the au-
toencoder will be trained to “fill-in” these artificially
introduced “blanks”. Note that alternative corrupting
noises could be considered1. The corrupted input x̃ is
then mapped, as with the basic autoencoder, to a hid-
den representation y = f✓(x̃) = s(Wx̃+b) from which
we reconstruct a z = g✓0(y) = s(W0y + b0) (see figure
1 for a schematic representation of the process). As
before the parameters are trained to minimize the av-
erage reconstruction error LIH(x, z) = IH(BxkBz) over
a training set, i.e. to have z as close as possible to the
uncorrupted input x. But the key di↵erence is that z
is now a deterministic function of x̃ rather than x and
thus the result of a stochastic mapping of x.

f✓

xxx̃

qD

y

z

LH(x, z)
g✓0

Figure 1. An example x is corrupted to x̃. The autoen-
coder then maps it to y and attempts to reconstruct x.

Let us define the joint distribution

q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y ) (4)

where �u(v) puts mass 0 when u 6= v. Thus Y is a
deterministic function of eX. q0(X, eX,Y ) is param-
eterized by ✓. The objective function minimized by
stochastic gradient descent becomes:

arg min
✓,✓0

EEq0(X, eX)

h
LIH

⇣
X, g✓0(f✓( eX))

⌘i
. (5)

So from the point of view of the stochastic gradient de-
scent algorithm, in addition to picking an input sam-
ple from the training set, we will also produce a ran-
dom corrupted version of it, and take a gradient step

1The approach we describe and our analysis is not spe-
cific to a particular kind of corrupting noise.

towards reconstructing the uncorrupted version from
the corrupted version. Note that in this way, the au-
toencoder cannot learn the identity, unlike the basic
autoencoder, thus removing the constraint that d0 < d
or the need to regularize specifically to avoid such a
trivial solution.

2.4. Layer-wise Initialization and Fine Tuning

The basic autoencoder has been used as a building
block to train deep networks (Bengio et al., 2007), with
the representation of the k-th layer used as input for
the (k + 1)-th, and the (k + 1)-th layer trained after
the k-th has been trained. After a few layers have been
trained, the parameters are used as initialization for a
network optimized with respect to a supervised train-
ing criterion. This greedy layer-wise procedure has
been shown to yield significantly better local minima
than random initialization of deep networks , achieving
better generalization on a number of tasks (Larochelle
et al., 2007).

The procedure to train a deep network using the de-
noising autoencoder is similar. The only di↵erence is
how each layer is trained, i.e., to minimize the crite-
rion in eq. 5 instead of eq. 3. Note that the corrup-
tion process qD is only used during training, but not
for propagating representations from the raw input to
higher-level representations. Note also that when layer
k is trained, it receives as input the uncorrupted out-
put of the previous layers.

3. Relationship to Other Approaches

Our training procedure for the denoising autoencoder
involves learning to recover a clean input from a cor-
rupted version, a task known as denoising. The prob-
lem of image denoising, in particular, has been exten-
sively studied in the image processing community and
many recent developments rely on machine learning
approaches (see e.g. Roth and Black (2005); Elad and
Aharon (2006); Hammond and Simoncelli (2007)). A
particular form of gated autoencoders has also been
used for denoising in Memisevic (2007). Denoising us-
ing autoencoders was actually introduced much ear-
lier (LeCun, 1987; Gallinari et al., 1987), as an alter-
native to Hopfield models (Hopfield, 1982). Our ob-
jective however is fundamentally di↵erent from that of
developing a competitive image denoising algorithm.
We investigate explicit robustness to corrupting noise
as a novel criterion guiding the learning of suitable in-
termediate representations to initialize a deep network.
Thus our corruption+denoising procedure is applied
not only on the input, but also recursively to interme-
diate representations.

Extracting and Composing Robust Features with Denoising Autoencoders

2.3. The Denoising Autoencoder

To test our hypothesis and enforce robustness to par-
tially destroyed inputs we modify the basic autoen-
coder we just described. We will now train it to recon-
struct a clean “repaired” input from a corrupted, par-
tially destroyed one. This is done by first corrupting
the initial input x to get a partially destroyed version
x̃ by means of a stochastic mapping x̃ ⇠ qD(x̃|x). In
our experiments, we considered the following corrupt-
ing process, parameterized by the desired proportion ⌫
of “destruction”: for each input x, a fixed number ⌫d
of components are chosen at random, and their value
is forced to 0, while the others are left untouched. All
information about the chosen components is thus re-
moved from that particuler input pattern, and the au-
toencoder will be trained to “fill-in” these artificially
introduced “blanks”. Note that alternative corrupting
noises could be considered1. The corrupted input x̃ is
then mapped, as with the basic autoencoder, to a hid-
den representation y = f✓(x̃) = s(Wx̃+b) from which
we reconstruct a z = g✓0(y) = s(W0y + b0) (see figure
1 for a schematic representation of the process). As
before the parameters are trained to minimize the av-
erage reconstruction error LIH(x, z) = IH(BxkBz) over
a training set, i.e. to have z as close as possible to the
uncorrupted input x. But the key di↵erence is that z
is now a deterministic function of x̃ rather than x and
thus the result of a stochastic mapping of x.

f✓

xxx̃

qD

y

z

LH(x, z)
g✓0

Figure 1. An example x is corrupted to x̃. The autoen-
coder then maps it to y and attempts to reconstruct x.

Let us define the joint distribution

q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y ) (4)

where �u(v) puts mass 0 when u 6= v. Thus Y is a
deterministic function of eX. q0(X, eX,Y ) is param-
eterized by ✓. The objective function minimized by
stochastic gradient descent becomes:

arg min
✓,✓0

EEq0(X, eX)

h
LIH

⇣
X, g✓0(f✓( eX))

⌘i
. (5)

So from the point of view of the stochastic gradient de-
scent algorithm, in addition to picking an input sam-
ple from the training set, we will also produce a ran-
dom corrupted version of it, and take a gradient step

1The approach we describe and our analysis is not spe-
cific to a particular kind of corrupting noise.

towards reconstructing the uncorrupted version from
the corrupted version. Note that in this way, the au-
toencoder cannot learn the identity, unlike the basic
autoencoder, thus removing the constraint that d0 < d
or the need to regularize specifically to avoid such a
trivial solution.
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the k-th has been trained. After a few layers have been
trained, the parameters are used as initialization for a
network optimized with respect to a supervised train-
ing criterion. This greedy layer-wise procedure has
been shown to yield significantly better local minima
than random initialization of deep networks , achieving
better generalization on a number of tasks (Larochelle
et al., 2007).

The procedure to train a deep network using the de-
noising autoencoder is similar. The only di↵erence is
how each layer is trained, i.e., to minimize the crite-
rion in eq. 5 instead of eq. 3. Note that the corrup-
tion process qD is only used during training, but not
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developing a competitive image denoising algorithm.
We investigate explicit robustness to corrupting noise
as a novel criterion guiding the learning of suitable in-
termediate representations to initialize a deep network.
Thus our corruption+denoising procedure is applied
not only on the input, but also recursively to interme-
diate representations.
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Denoising autoencoders
§ Idea:  To force the hidden layer to discover more robust features, train the 

autoencoder with a corrupted version of the input.

§ Corruption processes:
§ Additive Gaussian noise
§ Randomly set some input features to zero.
§ More noise models in the literature.

Extracting and Composing Robust Features with Denoising Autoencoders

2.3. The Denoising Autoencoder
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tially destroyed one. This is done by first corrupting
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we reconstruct a z = g✓0(y) = s(W0y + b0) (see figure
1 for a schematic representation of the process). As
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trivial solution.

2.4. Layer-wise Initialization and Fine Tuning

The basic autoencoder has been used as a building
block to train deep networks (Bengio et al., 2007), with
the representation of the k-th layer used as input for
the (k + 1)-th, and the (k + 1)-th layer trained after
the k-th has been trained. After a few layers have been
trained, the parameters are used as initialization for a
network optimized with respect to a supervised train-
ing criterion. This greedy layer-wise procedure has
been shown to yield significantly better local minima
than random initialization of deep networks , achieving
better generalization on a number of tasks (Larochelle
et al., 2007).

The procedure to train a deep network using the de-
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how each layer is trained, i.e., to minimize the crite-
rion in eq. 5 instead of eq. 3. Note that the corrup-
tion process qD is only used during training, but not
for propagating representations from the raw input to
higher-level representations. Note also that when layer
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3. Relationship to Other Approaches

Our training procedure for the denoising autoencoder
involves learning to recover a clean input from a cor-
rupted version, a task known as denoising. The prob-
lem of image denoising, in particular, has been exten-
sively studied in the image processing community and
many recent developments rely on machine learning
approaches (see e.g. Roth and Black (2005); Elad and
Aharon (2006); Hammond and Simoncelli (2007)). A
particular form of gated autoencoders has also been
used for denoising in Memisevic (2007). Denoising us-
ing autoencoders was actually introduced much ear-
lier (LeCun, 1987; Gallinari et al., 1987), as an alter-
native to Hopfield models (Hopfield, 1982). Our ob-
jective however is fundamentally di↵erent from that of
developing a competitive image denoising algorithm.
We investigate explicit robustness to corrupting noise
as a novel criterion guiding the learning of suitable in-
termediate representations to initialize a deep network.
Thus our corruption+denoising procedure is applied
not only on the input, but also recursively to interme-
diate representations.
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Let us define the joint distribution

q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y ) (4)

where �u(v) puts mass 0 when u 6= v. Thus Y is a
deterministic function of eX. q0(X, eX,Y ) is param-
eterized by ✓. The objective function minimized by
stochastic gradient descent becomes:

arg min
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So from the point of view of the stochastic gradient de-
scent algorithm, in addition to picking an input sam-
ple from the training set, we will also produce a ran-
dom corrupted version of it, and take a gradient step

1The approach we describe and our analysis is not spe-
cific to a particular kind of corrupting noise.

towards reconstructing the uncorrupted version from
the corrupted version. Note that in this way, the au-
toencoder cannot learn the identity, unlike the basic
autoencoder, thus removing the constraint that d0 < d
or the need to regularize specifically to avoid such a
trivial solution.

2.4. Layer-wise Initialization and Fine Tuning

The basic autoencoder has been used as a building
block to train deep networks (Bengio et al., 2007), with
the representation of the k-th layer used as input for
the (k + 1)-th, and the (k + 1)-th layer trained after
the k-th has been trained. After a few layers have been
trained, the parameters are used as initialization for a
network optimized with respect to a supervised train-
ing criterion. This greedy layer-wise procedure has
been shown to yield significantly better local minima
than random initialization of deep networks , achieving
better generalization on a number of tasks (Larochelle
et al., 2007).

The procedure to train a deep network using the de-
noising autoencoder is similar. The only di↵erence is
how each layer is trained, i.e., to minimize the crite-
rion in eq. 5 instead of eq. 3. Note that the corrup-
tion process qD is only used during training, but not
for propagating representations from the raw input to
higher-level representations. Note also that when layer
k is trained, it receives as input the uncorrupted out-
put of the previous layers.

3. Relationship to Other Approaches

Our training procedure for the denoising autoencoder
involves learning to recover a clean input from a cor-
rupted version, a task known as denoising. The prob-
lem of image denoising, in particular, has been exten-
sively studied in the image processing community and
many recent developments rely on machine learning
approaches (see e.g. Roth and Black (2005); Elad and
Aharon (2006); Hammond and Simoncelli (2007)). A
particular form of gated autoencoders has also been
used for denoising in Memisevic (2007). Denoising us-
ing autoencoders was actually introduced much ear-
lier (LeCun, 1987; Gallinari et al., 1987), as an alter-
native to Hopfield models (Hopfield, 1982). Our ob-
jective however is fundamentally di↵erent from that of
developing a competitive image denoising algorithm.
We investigate explicit robustness to corrupting noise
as a novel criterion guiding the learning of suitable in-
termediate representations to initialize a deep network.
Thus our corruption+denoising procedure is applied
not only on the input, but also recursively to interme-
diate representations.
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2.3. The Denoising Autoencoder

To test our hypothesis and enforce robustness to par-
tially destroyed inputs we modify the basic autoen-
coder we just described. We will now train it to recon-
struct a clean “repaired” input from a corrupted, par-
tially destroyed one. This is done by first corrupting
the initial input x to get a partially destroyed version
x̃ by means of a stochastic mapping x̃ ⇠ qD(x̃|x). In
our experiments, we considered the following corrupt-
ing process, parameterized by the desired proportion ⌫
of “destruction”: for each input x, a fixed number ⌫d
of components are chosen at random, and their value
is forced to 0, while the others are left untouched. All
information about the chosen components is thus re-
moved from that particuler input pattern, and the au-
toencoder will be trained to “fill-in” these artificially
introduced “blanks”. Note that alternative corrupting
noises could be considered1. The corrupted input x̃ is
then mapped, as with the basic autoencoder, to a hid-
den representation y = f✓(x̃) = s(Wx̃+b) from which
we reconstruct a z = g✓0(y) = s(W0y + b0) (see figure
1 for a schematic representation of the process). As
before the parameters are trained to minimize the av-
erage reconstruction error LIH(x, z) = IH(BxkBz) over
a training set, i.e. to have z as close as possible to the
uncorrupted input x. But the key di↵erence is that z
is now a deterministic function of x̃ rather than x and
thus the result of a stochastic mapping of x.
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Figure 1. An example x is corrupted to x̃. The autoen-
coder then maps it to y and attempts to reconstruct x.

Let us define the joint distribution

q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y ) (4)

where �u(v) puts mass 0 when u 6= v. Thus Y is a
deterministic function of eX. q0(X, eX,Y ) is param-
eterized by ✓. The objective function minimized by
stochastic gradient descent becomes:

arg min
✓,✓0

EEq0(X, eX)

h
LIH

⇣
X, g✓0(f✓( eX))
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. (5)

So from the point of view of the stochastic gradient de-
scent algorithm, in addition to picking an input sam-
ple from the training set, we will also produce a ran-
dom corrupted version of it, and take a gradient step

1The approach we describe and our analysis is not spe-
cific to a particular kind of corrupting noise.

towards reconstructing the uncorrupted version from
the corrupted version. Note that in this way, the au-
toencoder cannot learn the identity, unlike the basic
autoencoder, thus removing the constraint that d0 < d
or the need to regularize specifically to avoid such a
trivial solution.

2.4. Layer-wise Initialization and Fine Tuning

The basic autoencoder has been used as a building
block to train deep networks (Bengio et al., 2007), with
the representation of the k-th layer used as input for
the (k + 1)-th, and the (k + 1)-th layer trained after
the k-th has been trained. After a few layers have been
trained, the parameters are used as initialization for a
network optimized with respect to a supervised train-
ing criterion. This greedy layer-wise procedure has
been shown to yield significantly better local minima
than random initialization of deep networks , achieving
better generalization on a number of tasks (Larochelle
et al., 2007).

The procedure to train a deep network using the de-
noising autoencoder is similar. The only di↵erence is
how each layer is trained, i.e., to minimize the crite-
rion in eq. 5 instead of eq. 3. Note that the corrup-
tion process qD is only used during training, but not
for propagating representations from the raw input to
higher-level representations. Note also that when layer
k is trained, it receives as input the uncorrupted out-
put of the previous layers.

3. Relationship to Other Approaches

Our training procedure for the denoising autoencoder
involves learning to recover a clean input from a cor-
rupted version, a task known as denoising. The prob-
lem of image denoising, in particular, has been exten-
sively studied in the image processing community and
many recent developments rely on machine learning
approaches (see e.g. Roth and Black (2005); Elad and
Aharon (2006); Hammond and Simoncelli (2007)). A
particular form of gated autoencoders has also been
used for denoising in Memisevic (2007). Denoising us-
ing autoencoders was actually introduced much ear-
lier (LeCun, 1987; Gallinari et al., 1987), as an alter-
native to Hopfield models (Hopfield, 1982). Our ob-
jective however is fundamentally di↵erent from that of
developing a competitive image denoising algorithm.
We investigate explicit robustness to corrupting noise
as a novel criterion guiding the learning of suitable in-
termediate representations to initialize a deep network.
Thus our corruption+denoising procedure is applied
not only on the input, but also recursively to interme-
diate representations.

William L. Hamilton, McGill University and Mila 22



Denoising autoencoders
§ Idea:  To force the hidden layer to discover more robust features, train the 

autoencoder with a corrupted version of the input.

§ Corruption processes:
§ Additive Gaussian noise
§ Randomly set some input features to zero.
§ More noise models in the literature.

• Training criterion:
Err	=	∑i=1:n Eq(xi’|xi) L	[	xi	,	fW’	(gW(xi’))	]
where L is some reconstruction loss x is the original input,  x’ is the corrupted input, and q()	is 
the corruption process.

Extracting and Composing Robust Features with Denoising Autoencoders

2.3. The Denoising Autoencoder

To test our hypothesis and enforce robustness to par-
tially destroyed inputs we modify the basic autoen-
coder we just described. We will now train it to recon-
struct a clean “repaired” input from a corrupted, par-
tially destroyed one. This is done by first corrupting
the initial input x to get a partially destroyed version
x̃ by means of a stochastic mapping x̃ ⇠ qD(x̃|x). In
our experiments, we considered the following corrupt-
ing process, parameterized by the desired proportion ⌫
of “destruction”: for each input x, a fixed number ⌫d
of components are chosen at random, and their value
is forced to 0, while the others are left untouched. All
information about the chosen components is thus re-
moved from that particuler input pattern, and the au-
toencoder will be trained to “fill-in” these artificially
introduced “blanks”. Note that alternative corrupting
noises could be considered1. The corrupted input x̃ is
then mapped, as with the basic autoencoder, to a hid-
den representation y = f✓(x̃) = s(Wx̃+b) from which
we reconstruct a z = g✓0(y) = s(W0y + b0) (see figure
1 for a schematic representation of the process). As
before the parameters are trained to minimize the av-
erage reconstruction error LIH(x, z) = IH(BxkBz) over
a training set, i.e. to have z as close as possible to the
uncorrupted input x. But the key di↵erence is that z
is now a deterministic function of x̃ rather than x and
thus the result of a stochastic mapping of x.
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Figure 1. An example x is corrupted to x̃. The autoen-
coder then maps it to y and attempts to reconstruct x.

Let us define the joint distribution

q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y ) (4)

where �u(v) puts mass 0 when u 6= v. Thus Y is a
deterministic function of eX. q0(X, eX,Y ) is param-
eterized by ✓. The objective function minimized by
stochastic gradient descent becomes:

arg min
✓,✓0
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. (5)

So from the point of view of the stochastic gradient de-
scent algorithm, in addition to picking an input sam-
ple from the training set, we will also produce a ran-
dom corrupted version of it, and take a gradient step

1The approach we describe and our analysis is not spe-
cific to a particular kind of corrupting noise.

towards reconstructing the uncorrupted version from
the corrupted version. Note that in this way, the au-
toencoder cannot learn the identity, unlike the basic
autoencoder, thus removing the constraint that d0 < d
or the need to regularize specifically to avoid such a
trivial solution.

2.4. Layer-wise Initialization and Fine Tuning

The basic autoencoder has been used as a building
block to train deep networks (Bengio et al., 2007), with
the representation of the k-th layer used as input for
the (k + 1)-th, and the (k + 1)-th layer trained after
the k-th has been trained. After a few layers have been
trained, the parameters are used as initialization for a
network optimized with respect to a supervised train-
ing criterion. This greedy layer-wise procedure has
been shown to yield significantly better local minima
than random initialization of deep networks , achieving
better generalization on a number of tasks (Larochelle
et al., 2007).

The procedure to train a deep network using the de-
noising autoencoder is similar. The only di↵erence is
how each layer is trained, i.e., to minimize the crite-
rion in eq. 5 instead of eq. 3. Note that the corrup-
tion process qD is only used during training, but not
for propagating representations from the raw input to
higher-level representations. Note also that when layer
k is trained, it receives as input the uncorrupted out-
put of the previous layers.

3. Relationship to Other Approaches

Our training procedure for the denoising autoencoder
involves learning to recover a clean input from a cor-
rupted version, a task known as denoising. The prob-
lem of image denoising, in particular, has been exten-
sively studied in the image processing community and
many recent developments rely on machine learning
approaches (see e.g. Roth and Black (2005); Elad and
Aharon (2006); Hammond and Simoncelli (2007)). A
particular form of gated autoencoders has also been
used for denoising in Memisevic (2007). Denoising us-
ing autoencoders was actually introduced much ear-
lier (LeCun, 1987; Gallinari et al., 1987), as an alter-
native to Hopfield models (Hopfield, 1982). Our ob-
jective however is fundamentally di↵erent from that of
developing a competitive image denoising algorithm.
We investigate explicit robustness to corrupting noise
as a novel criterion guiding the learning of suitable in-
termediate representations to initialize a deep network.
Thus our corruption+denoising procedure is applied
not only on the input, but also recursively to interme-
diate representations.
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coder we just described. We will now train it to recon-
struct a clean “repaired” input from a corrupted, par-
tially destroyed one. This is done by first corrupting
the initial input x to get a partially destroyed version
x̃ by means of a stochastic mapping x̃ ⇠ qD(x̃|x). In
our experiments, we considered the following corrupt-
ing process, parameterized by the desired proportion ⌫
of “destruction”: for each input x, a fixed number ⌫d
of components are chosen at random, and their value
is forced to 0, while the others are left untouched. All
information about the chosen components is thus re-
moved from that particuler input pattern, and the au-
toencoder will be trained to “fill-in” these artificially
introduced “blanks”. Note that alternative corrupting
noises could be considered1. The corrupted input x̃ is
then mapped, as with the basic autoencoder, to a hid-
den representation y = f✓(x̃) = s(Wx̃+b) from which
we reconstruct a z = g✓0(y) = s(W0y + b0) (see figure
1 for a schematic representation of the process). As
before the parameters are trained to minimize the av-
erage reconstruction error LIH(x, z) = IH(BxkBz) over
a training set, i.e. to have z as close as possible to the
uncorrupted input x. But the key di↵erence is that z
is now a deterministic function of x̃ rather than x and
thus the result of a stochastic mapping of x.
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coder then maps it to y and attempts to reconstruct x.

Let us define the joint distribution

q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y ) (4)

where �u(v) puts mass 0 when u 6= v. Thus Y is a
deterministic function of eX. q0(X, eX,Y ) is param-
eterized by ✓. The objective function minimized by
stochastic gradient descent becomes:
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So from the point of view of the stochastic gradient de-
scent algorithm, in addition to picking an input sam-
ple from the training set, we will also produce a ran-
dom corrupted version of it, and take a gradient step

1The approach we describe and our analysis is not spe-
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towards reconstructing the uncorrupted version from
the corrupted version. Note that in this way, the au-
toencoder cannot learn the identity, unlike the basic
autoencoder, thus removing the constraint that d0 < d
or the need to regularize specifically to avoid such a
trivial solution.

2.4. Layer-wise Initialization and Fine Tuning

The basic autoencoder has been used as a building
block to train deep networks (Bengio et al., 2007), with
the representation of the k-th layer used as input for
the (k + 1)-th, and the (k + 1)-th layer trained after
the k-th has been trained. After a few layers have been
trained, the parameters are used as initialization for a
network optimized with respect to a supervised train-
ing criterion. This greedy layer-wise procedure has
been shown to yield significantly better local minima
than random initialization of deep networks , achieving
better generalization on a number of tasks (Larochelle
et al., 2007).

The procedure to train a deep network using the de-
noising autoencoder is similar. The only di↵erence is
how each layer is trained, i.e., to minimize the crite-
rion in eq. 5 instead of eq. 3. Note that the corrup-
tion process qD is only used during training, but not
for propagating representations from the raw input to
higher-level representations. Note also that when layer
k is trained, it receives as input the uncorrupted out-
put of the previous layers.

3. Relationship to Other Approaches

Our training procedure for the denoising autoencoder
involves learning to recover a clean input from a cor-
rupted version, a task known as denoising. The prob-
lem of image denoising, in particular, has been exten-
sively studied in the image processing community and
many recent developments rely on machine learning
approaches (see e.g. Roth and Black (2005); Elad and
Aharon (2006); Hammond and Simoncelli (2007)). A
particular form of gated autoencoders has also been
used for denoising in Memisevic (2007). Denoising us-
ing autoencoders was actually introduced much ear-
lier (LeCun, 1987; Gallinari et al., 1987), as an alter-
native to Hopfield models (Hopfield, 1982). Our ob-
jective however is fundamentally di↵erent from that of
developing a competitive image denoising algorithm.
We investigate explicit robustness to corrupting noise
as a novel criterion guiding the learning of suitable in-
termediate representations to initialize a deep network.
Thus our corruption+denoising procedure is applied
not only on the input, but also recursively to interme-
diate representations.
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tially destroyed inputs we modify the basic autoen-
coder we just described. We will now train it to recon-
struct a clean “repaired” input from a corrupted, par-
tially destroyed one. This is done by first corrupting
the initial input x to get a partially destroyed version
x̃ by means of a stochastic mapping x̃ ⇠ qD(x̃|x). In
our experiments, we considered the following corrupt-
ing process, parameterized by the desired proportion ⌫
of “destruction”: for each input x, a fixed number ⌫d
of components are chosen at random, and their value
is forced to 0, while the others are left untouched. All
information about the chosen components is thus re-
moved from that particuler input pattern, and the au-
toencoder will be trained to “fill-in” these artificially
introduced “blanks”. Note that alternative corrupting
noises could be considered1. The corrupted input x̃ is
then mapped, as with the basic autoencoder, to a hid-
den representation y = f✓(x̃) = s(Wx̃+b) from which
we reconstruct a z = g✓0(y) = s(W0y + b0) (see figure
1 for a schematic representation of the process). As
before the parameters are trained to minimize the av-
erage reconstruction error LIH(x, z) = IH(BxkBz) over
a training set, i.e. to have z as close as possible to the
uncorrupted input x. But the key di↵erence is that z
is now a deterministic function of x̃ rather than x and
thus the result of a stochastic mapping of x.
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Figure 1. An example x is corrupted to x̃. The autoen-
coder then maps it to y and attempts to reconstruct x.

Let us define the joint distribution

q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y ) (4)

where �u(v) puts mass 0 when u 6= v. Thus Y is a
deterministic function of eX. q0(X, eX,Y ) is param-
eterized by ✓. The objective function minimized by
stochastic gradient descent becomes:
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So from the point of view of the stochastic gradient de-
scent algorithm, in addition to picking an input sam-
ple from the training set, we will also produce a ran-
dom corrupted version of it, and take a gradient step

1The approach we describe and our analysis is not spe-
cific to a particular kind of corrupting noise.

towards reconstructing the uncorrupted version from
the corrupted version. Note that in this way, the au-
toencoder cannot learn the identity, unlike the basic
autoencoder, thus removing the constraint that d0 < d
or the need to regularize specifically to avoid such a
trivial solution.

2.4. Layer-wise Initialization and Fine Tuning

The basic autoencoder has been used as a building
block to train deep networks (Bengio et al., 2007), with
the representation of the k-th layer used as input for
the (k + 1)-th, and the (k + 1)-th layer trained after
the k-th has been trained. After a few layers have been
trained, the parameters are used as initialization for a
network optimized with respect to a supervised train-
ing criterion. This greedy layer-wise procedure has
been shown to yield significantly better local minima
than random initialization of deep networks , achieving
better generalization on a number of tasks (Larochelle
et al., 2007).

The procedure to train a deep network using the de-
noising autoencoder is similar. The only di↵erence is
how each layer is trained, i.e., to minimize the crite-
rion in eq. 5 instead of eq. 3. Note that the corrup-
tion process qD is only used during training, but not
for propagating representations from the raw input to
higher-level representations. Note also that when layer
k is trained, it receives as input the uncorrupted out-
put of the previous layers.

3. Relationship to Other Approaches

Our training procedure for the denoising autoencoder
involves learning to recover a clean input from a cor-
rupted version, a task known as denoising. The prob-
lem of image denoising, in particular, has been exten-
sively studied in the image processing community and
many recent developments rely on machine learning
approaches (see e.g. Roth and Black (2005); Elad and
Aharon (2006); Hammond and Simoncelli (2007)). A
particular form of gated autoencoders has also been
used for denoising in Memisevic (2007). Denoising us-
ing autoencoders was actually introduced much ear-
lier (LeCun, 1987; Gallinari et al., 1987), as an alter-
native to Hopfield models (Hopfield, 1982). Our ob-
jective however is fundamentally di↵erent from that of
developing a competitive image denoising algorithm.
We investigate explicit robustness to corrupting noise
as a novel criterion guiding the learning of suitable in-
termediate representations to initialize a deep network.
Thus our corruption+denoising procedure is applied
not only on the input, but also recursively to interme-
diate representations.
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Contractive autoencoders
§ Goal:  Learn a representation that is robust to noise and perturbations of the input 

data, by regularizing the latent space (represented by L2 norm of the Jacobian of 
the encoded input.)

§ Contractive autoencoder training criterion:
Err(W,W’)	=	∑i=1:n L	[	xi	,	fW’	(gW(xi))	]	+	λ||J(xi)||F2

where L is some reconstruction loss, J(xi)=∂fW(xi)/∂xi is a Jacobian matrix of the      
encoder evaluated at xi, F is the Frobenius norm, and λ controls the strength of the regularization.

Many more similar ideas in the literature…

William L. Hamilton, McGill University and Mila 24



Autoencoding: The key idea

William L. Hamilton, McGill University and Mila 25
Image credit: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html



Autoencoding language?

William L. Hamilton, McGill University and Mila 26

“dog” “dog”



Autoencoding language
§ Autoencoding can generate high-quality low-dimensional features.

§ Works well when the original space x is rich and high-dimensional.
§ Images
§ MRI data
§ Speech data
§ Video

§ But what if we don’t have a good feature space to start with? E.g., for 
representing words?

William L. Hamilton, McGill University and Mila 27



Autoencoders and self-supervision
§ Two approaches to dimensionality reduction using deep learning.

§ This is a rough categorization and not a strict division!! 

§ Autoencoders:
§ Optimize a “reconstruction loss.”
§ Encoder maps input to a low-dimensional space and decoder tries to recover the 

original data from the low-dimensional space.

§ “Self-supervision”:
§ Try to predict some parts of the input from other parts of the input. 
§ I.e., make up labels from x. 

William L. Hamilton, McGill University and Mila 28



Words embeddings / self-supervision
§ What is the input space for words/language?

§ In the unsupervised case, generally all we have is a text corpus (i.e., a set 
of documents).

§ How can we learn representations from this data? 

William L. Hamilton, McGill University and Mila 29



Words embeddings / self-supervision
§ Idea: Make up a supervised learning task in order to learn 

representations for words!

§ Co-occurrence information tells us a lot about word meaning. 
§ For example, “dog” and “pitbull” occur in many of the same contexts.
§ For example, “loved” and “appreciated” occur in many of the same contexts.

§ Let’s learn features/representations for words that are good for predicting 
their context! 

William L. Hamilton, McGill University and Mila 30



Words embeddings / self-supervision

William L. Hamilton, McGill University and Mila 31

§ Create a training set by 
applying a “sliding window” 
over the corpus.

§ I.e., given a word, we try to 
predict what words are likely to 
occur around it.

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/


Word2Vec / SkipGram Model

William L. Hamilton, McGill University and Mila 32

§ Key idea: Train a neural network 
to predict context words from 
input word.

§ Hidden layer learns 
representations/features for 
words!

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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Word2Vec / SkipGram Model
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§ Key idea: Train a neural network 
to predict context words from 
input word.

§ Hidden layer learns 
representations/features for 
words!

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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Word2Vec / SkipGram Model

William L. Hamilton, McGill University and Mila 34

§ Intuition: dot-product between word representations is proportional to 
the probability that they co-occur in the corpus!

§ One issue is that the output layer is very big!
§ We need to do a softmax over the entire vocabulary!

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/


Negative sampling

William L. Hamilton, McGill University and Mila 35

§ Instead of using a softmax, we approximate it!

§ Original softmax loss:

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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X

c02V
ez

>
wzc0 )

Dot-product of word 
embeddings

Negative log-
likelihood of seeing 

word c in the context 
of word w

Sum over entire 
vocabulary

This term is very 
expensive! O(|V|)

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/


Negative sampling

William L. Hamilton, McGill University and Mila 36

§ Instead of using a softmax, we approximate it!

§ Negative sampling loss:

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

� log(P (w, c)) ⇡ � log(�(z>wzc))�
NX

j=1

log(�(�z>wzc0j
))

Probability that w and c co-occur 
approximated with sigmoid.

Instead of summing over entire 
vocabulary. We just sample N 

“negative example” words.

Key idea: Dot-product for co-
occurring pairs should be higher 

than random pairs!.

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/


Variants of word2vec

William L. Hamilton, McGill University and Mila 37
https://towardsdatascience.com/an-implementation-guide-to-word2vec-using-numpy-and-google-sheets-13445eebd281

https://towardsdatascience.com/an-implementation-guide-to-word2vec-using-numpy-and-google-sheets-13445eebd281


Word2Vec and autoencoders

William L. Hamilton, McGill University and Mila 38

Vector summarizing a 
word’s co-occurrence 

statistics.

Vector summarizing a 
word’s co-occurrence 

statistics.



”Self-supervised learning” more generally

William L. Hamilton, McGill University and Mila 39

§ Key idea: Create supervised data from unsupervised data by predicting 
some parts of the input from other parts of the input.

§ A relatively new/recent idea.

§ Has led to new state-of-the-art in language and vision tasks.

§ E.g., BERT and ELMO in NLP. 


