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Fundamentals of Machine Learning
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Autoencoders and self-supervision
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Autoencoders and self-supervision

= Two approaches to dimensionality reduction using deep learning.
= This is a rough categorization and not a strict division!!

=  Autoencoders:
= Optimize a “reconstruction loss.”

=  Encoder maps input to a low-dimensional space and decoder tries to recover the
original data from the low-dimensional space.

= “Self-supervision”:
= Try to predict some parts of the input from other parts of the input.
= |.e., make up labels from x.

William L. Hamilton. McGill Universitv and Mila



Autoencoders and self-supervision

= Two approaches to dimensionality reduction using deep learning.
= This is a rough categorization and not a strict division!!

=  Autoencoders:
= Optimize a “reconstruction loss.”

=  Encoder maps input to a low-dimensional space and decoder tries to recover the
original data from the low-dimensional space.

= “Self-supervision”:
= Try to predict some parts of the input from other parts of the input.
= |.e., make up labels from x.

William L. Hamilton. McGill Universitv and Mila




Autoencoding: the basic idea

| e Ideally they are identical. ------------------ >

X~ x

Bottleneck!

Encoder

X > 9o

An compressed low dimensional
representation of the input.

Image credit: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
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Learning an autoencoder function

= Goal: Learn a compressed representation of the input data.
=  We have two functions (usually neural networks):
= Encoder:
z = g¢(x)
= Decoder:

x = fo(z)
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Learning an autoencoder function

Goal: Learn a compressed representation of the input data.
We have two functions (usually neural networks):
= Encoder:
z = g¢(x)
= Decoder:

X = fo(z)

Train using a reconstruction loss:
J(x,%) = ||lx — x|”

=[x — fo(gs(x))|”
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Learning an autoencoder function

= Goal: Learn a compressed representation of the input data.
=  We have two functions (usually neural networks):
= Encoder:

z = go(x)

=  Decoder: Only interesting when z has
5 much smaller dimension
X = fo(z) } than xII |

= Train using a reconstruction loss:
J(x,%) = [[x — %]°

=[x — fo(gs(x))|”
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Autoencoding

R tructed
L e Ideally they are identical. ------------------ > ecoir'l‘:l::c =
X~ x
Bottleneck!
Encoder Decoder y
X |— -
9¢ fo i

An compressed low dimensional
representation of the input.

Image credit: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
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Recall: Principal Component Analysis (PCA)

= |dea: Project data into a lower-dimensional sub-space,
Rm -->Rm' where m’<m.
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Recall: Principal Component Analysis (PCA)

= |dea: Project data into a lower-dimensional sub-space,
Rm -->Rm' where m’<m.

= (Consider a linear mapping, x; --> W'x,

= W is the compression matrix with dimension Rmxm',
= Assume there is a decompression matrix Umxm,

William L. Hamilton. McGill Universitv and Mila

10



Recall: Principal Component Analysis (PCA)

= |dea: Project data into a lower-dimensional sub-space,
Rm -->Rm' where m’<m.

= (Consider a linear mapping, x; --> W'x,
= W is the compression matrix with dimension Rmxm',
= Assume there is a decompression matrix Umxm,

= Solve the following problem: argminy, Zi_., || x; - UWTx, ||?
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Recall: Principal Component Analysis (PCA)

= Solve the following problem: argminy,; Zi_., || x; - UW'x; ||
= Equivalently: argminy, || X - XWUT ||

= Solution is given by eigen-decomposition of XX,

W is mxm’ matrix corresponding to the first m’ eigenvectors of XX
(sorted in descending order by the magnitude of the eigenvalue).

Equivalently: W is mxm’ matrix containing the first m’ left singular
vectors of X

Note: The columns of W are orthogonal!
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PCA vs autoencoders

In the case of a linear encoders and decoders:
fw(x) = Wx gw(h) =Wh,

with squared-error reconstruction loss we can show that the minimum

>

error solution W yields the same subspace as PCA. f
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More advanced encoders and decoders

= \What to use as encoders and decoders?

= Most data (e.g., arbitrary real-valued or categorical features).
= Encoder and decoder are feed-forward neural networks.

=  Sequence data
=  Encoder and decoder are RNNs.

= |mage data
= Encoder is a CNN; decoder is a deconvolutional network.
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Aside: Deconvolutions

= “Deconvolution” is just a transposed convolution.

3 x 3 “deconvolution”, stride 2 pad 1

Input: 2 x 2

Sum where
output overlaps

Same as backward pass for
™ normal convolution!
Input gives
weight for
filter
Output: 4 x 4

William L. Hamilton. McGill Universitv and Mila
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Regularization of autoencoders

= How can we generate sparse autoencoders? (And also, why?)
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Regularization of autoencoders

= How can we generate sparse autoencoders? (And also, why?)

= Weight tying of the encoder and decoder weights (8 = ¢) to explicitly
constrain (regularize) the learned function.

William L. Hamilton. McGill Universitv and Mila

17



Regularization of autoencoders

How can we generate sparse autoencoders? (And also, why?)

Weight tying of the encoder and decoder weights (8 = ¢) to explicitly
constrain (regularize) the learned function.

Directly penalize the output of the hidden units (e.g. with L1 penalty) to
introduce sparsity in the weights.

William L. Hamilton. McGill Universitv and Mila

18



Regularization of autoencoders

How can we generate sparse autoencoders? (And also, why?)

Weight tying of the encoder and decoder weights (8 = ¢) to explicitly
constrain (regularize) the learned function.

Directly penalize the output of the hidden units (e.g. with L1 penalty) to
introduce sparsity in the weights.

Penalize the average output (over a batch of data) to encourage it to
approach a fixed target.
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Denoising autoencoders

ITTTTTTTTTomTooooosoosossosoosoosoosoosoosooooo Ideally they are identical. --------------------o-oomommoomoooo oo oo !

: X~ X ¥
Original el Input Reconstructed
input destroyed input

input X
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Bottleneck!

Decoder

fo |

Encoder

9¢
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An compressed low dimensional
representation of the input.

oy
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Denoising autoencoders

ldea: To force the hidden layer to discover more robust features, train the

autoencoder with a corrupted version of the input.

William L. Hamilton. McGill Universitv and Mila
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Denoising autoencoders

. ldea: To force the hidden layer to discover more robust features, train the
autoencoder with a corrupted version of the input.

SO0

. Corruption processes: T

= Additive Gaussian noise [XQXQ Qj

= Randomly set some input features to zero.

=  More noise models in the literature. XT

(elelelele)
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Denoising autoencoders

. ldea: To force the hidden layer to discover more robust features, train the
autoencoder with a corrupted version of the input.

SO0

. Corruption processes: T

=  Additive Gaussian noise

=  Randomly set some input features to zero. [XQXQ QJ

=  More noise models in the literature. iT

¢ Training criterion: LO O O O Q]

Err = i1 Eqipa) L [ Xis fwr (8w(Xi)) |
where L is some reconstruction loss x is the original input, x’ is the corrupted input, and q() is
the corruption process.
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Contractive autoencoders

= Goal: Learn a representation that is robust to noise and perturbations of the input
data, by regularizing the latent space (represented by L2 norm of the Jacobian of
the encoded input.)

=  Contractive autoencoder training criterion:
Err(WW") = Yic1n L [ X, fur (Gw(X1)) 1+ AlJ(x)[1#2

where L is some reconstruction loss, J(x;)=0df,,(x;)/dx; is a Jacobian matrix of the
encoder evaluated at x;, F is the Frobenius norm, and A controls the strength of the regularization.

Many more similar ideas in the literature...
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Autoencoding: The key idea

| e Ideally they are identical. ------------------ >

X~ x

Bottleneck!

Encoder

X > 9o

An compressed low dimensional
representation of the input.

Image credit: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
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Autoencoding language?

R tructed
e e e Ideally they are identical. ------------------ > ecoirrl‘.:l::lc =
x ~ x’'
Bottleneck!
Encoder Decoder ;
X |— -
9¢ fo X
An compressed low dimensional
representation of the input.
“dog” “dog”
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Autoencoding language

= Autoencoding can generate high-quality low-dimensional features.

=  Works well when the original space x is rich and high-dimensional.

= Images

= MRl data

=  Speech data
= Video

= But what if we don’t have a good feature space to start with? E.g., for
representing words”?

William L. Hamilton. McGill Universitv and Mila
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Autoencoders and self-supervision

= Two approaches to dimensionality reduction using deep learning.
= This is a rough categorization and not a strict division!!

=  Autoencoders:
= Optimize a “reconstruction loss.”

=  Encoder maps input to a low-dimensional space and decoder tries to recover the
original data from the low-dimensional space.

= “Self-supervision”:
= Try to predict some parts of the input from other parts of the input.
= |.e., make up labels from x.
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Words embeddings / self-supervision

= What is the input space for words/language?

= |n the unsupervised case, generally all we have is a text corpus (i.e., a set
of documents).

= How can we learn representations from this data”?

William L. Hamilton. McGill Universitv and Mila 29



Words embeddings / self-supervision

= |dea: Make up a supervised learning task in order to learn
representations for words!

=  Co-occurrence information tells us a lot about word meaning.

=  For example, “dog” and “pitbull” occur in many of the same contexts.
=  For example, “loved” and “appreciated” occur in many of the same contexts.

= Let’s learn features/representations for words that are good for predicting
their context!

William L. Hamilton. McGill Universitv and Mila 30



Words embeddings / self-supervision

. Create a training set by
applying a “sliding window”
over the corpus.

. l.e., given a word, we try to
predict what words are likely to
occur around it.

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Source Text

B

brown

fox jumps over

The - brown

fox

The

quick-fox

jumps over

jumps | over

The|quick

brown - jumps

over
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the

the

the

the

lazy dog.

lazy dog.

lazy dog.

lazy dog.

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)


http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Word2Vec / SkipGram Model

. Key idea: Train a neural network
to predict context words from

input word. Input Vector
0]
= Hidden layer learns -
representations/features for 0]
0
words! o
s . 0
?orlreI:pgmedipnogSIttclyotr}]\e —
word “ants” 0
o]

10,000
positions

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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Linear Neurons

Output Layer
Softmax Classifier

Hidden Layer

Probability that the word at a
randomly chosen, nearby
position is “abandon”

- / — @ N ”ability”

v

| @ —— .."“able”

——  .."“zone”

300 neurons

10,000
neurons
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Word2Vec / SkipGram Model

=  Key idea: Train a neural network Hidden Layer ) Word Vector
to predict context words from Weight Matrix Lookup Table!
InDUt Word' 300 neurons 300 features

. Hidden layer learns
representations/features for

words!

10,000 words
10,000 words

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Word2Vec / SkipGram Model

Intuition: dot-product between word representations is proportional to
the probability that they co-occur in the corpus!

= One issue is that the output layer is very big!
=  We need to do a softmax over the entire vocabulary!

Output weights for “car”

softmax

Word vector for “ants” 3 - .

S ex Probability that if you

S .
. X8 ) - = randomly pick a word

j») Z “ ” PR 7s ”

300 features S e nearby “ants”, that it is “car
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Negative sampling

= |nstead of using a softmax, we approximate it!

, Dot-product of word
Sum over entire

L embeddings
= QOriginal softmax loss: vocabulary /
(P 7
| log(P(w, C) - 1Og i: eZuw 2! )
/ V w C
Negative log- — = -
likelihood of seeing = —ZLZC 4t log( Z eszC’)
word ¢ in the context ey
of word w '

This term is very
expensive! O(|V|)

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Negative sampling

= |nstead of using a softmax, we approximate it!

= Negative sampling loss:

—log(P(w,c)) ~ t+ log(a(

—
Z,, %

)

/

Probability that w and ¢ co-occur
approximated with sigmoid.

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Z log(U(—Z@TUZC; )

Key idea: Dot-product for co-
occurring pairs should be higher
than random pairsl.

William L. Hamilton. McGill Universitv and Mila

Instead of summing over entire
vocabulary. We just sample N
“negative example” words.


http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Variants of word2vec

Given a set of
(neighboring) words,
guess single words
that potentially occur
along with this set of
words.

INPUT PROJECTION OuUTPUT INPUT PROJECTION OUTPUT

w(t-2) —‘ M"Z)
wit-1) /J w-1)
wi(t) L'_ * \

wit
or

wit+1) wit+1)

w(t+2) —‘ w(t+2)

> CBOW Skip-gram

lji(Continuous Bag Of Words) m

https://towardsdatascience.com/an-implementation-guide-to-word2vec-using-numpy-and-google-sheets-13445eebd281

William L. Hamilton. McGill Universitv and Mila

Guess potential
neighboring
words based on
the single word
being analyzed.
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Word2Vec and autoencoders

Vector summarizing a
word’s co-occurrence
statistics.

------------- Ideally they are identical. --------------

X~ x

Bottleneck!

Decoder

fo

Encoder

9o

An compressed low dimensional
representation of the input.
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Reconstructed
input

Y
o

Vector summarizing a
word’s co-occurrence
statistics.
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”Self-supervised learning” more generally

Key idea: Create supervised data from unsupervised data by predicting
some parts of the input from other parts of the input.

A relatively new/recent idea.

Has led to new state-of-the-art in language and vision tasks.

E.g., BERT and ELMO in NLF.

William L. Hamilton. McGill Universitv and Mila
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