
COMP 451 –
Fundamentals of Machine Learning
Lecture 24 --- Recurrent Neural Nets
William L. Hamilton
* Unless otherwise noted, all material posted for this course are
copyright of the instructor, and cannot be reused or reposted without
the instructor’s written permission.

William L. Hamilton, McGill University and Mila 1

Last time: Convolutional Neural Networks
Feedforward network Convolutional neural network (CNN)

§ CNN characteristics:
§ Input is usually a 3D tensor: 2D image x 3 colours
§ Each layer transforms an input 3D tensor to an output 3D tensor using a

differentiable function.

From: http://cs231n.github.io/convolutional-networks/William L. Hamilton, McGill University and Mila 2

Major paradigms for deep learning
§ Deep neural networks: The model should be interpreted as a

computation graph.
§ Supervised training: E.g., feedforward neural networks.
§ Unsupervised training (later in the course): E.g., autoencoders.

§ Special architectures for different problem domains.
§ Computer vision => Convolutional neural nets.
§ Text and speech => Recurrent neural nets.

William L. Hamilton, McGill University and Mila 3

Major paradigms for deep learning
§ Deep neural networks: The model should be interpreted as a

computation graph.
§ Supervised training: E.g., feedforward neural networks.
§ Unsupervised training (later in the course): E.g., autoencoders.

§ Special architectures for different problem domains.
§ Computer vision => Convolutional neural nets.
§ Text and speech => Recurrent neural nets.

William L. Hamilton, McGill University and Mila 4

§ Several datasets contain sequences of data (e.g. time-series, text)
§ How could we process sequences with a feed-forward neural network?

1. Take vectors representing the last N timesteps and concatenate (join) them
2. Take vectors representing the last N timesteps and average them

Neural models for sequences

From Phil Blumson’s slides

Example: machine translation
• Input: sequence of words
• Output: sequence of words

William L. Hamilton, McGill University and Mila 5

Neural models for sequences
§ Problem: these approaches don’t exploit the sequential nature of the data!!
§ Also, they can only consider information from a fixed-size context window
§ Temporal information is very important in sequences!!
§ E.g. machine translation:

“John hit Steve on the head with a bat”
!= “Steve hit John on the bat with a head”
!= “Bat hit a with head on the John Steve”

William L. Hamilton, McGill University and Mila 6

Recurrent Neural Networks (RNNs)

RECURRENT NEURAL NETWORKS
• Compare to: Feed Forward Neural Networks:
‣ Information is propagated from the inputs to the outputs
‣ No notion of “time” necessary

x2 x3 x4 x5x1

1st hidden layer:

2nd hidden layer:

Output layer :

15

RECURRENT NEURAL NETWORKS
• RNNs can have arbitrary topology.
‣ no fixed direction of information flow

• Delays associated with specific connections
‣ Every directed cycle must contain a delay.

• Possesses an internal dynamic state.

16

x2 x3 x4 x5x1

16

RECURRENT NEURAL NETWORKS
• RNNs can have arbitrary topology.
‣ no fixed direction of information flow

• Delays associated with specific connections
‣ Every directed cycle must contain a delay.

• Possesses an internal dynamic state.

16

x2 x3 x4 x5x1

16

Feed-forward neural net Add cycles in network

William L. Hamilton, McGill University and Mila 7

Recurrent Neural Networks (RNNs)

y: target

L: loss

o: output

h: hidden
state

x: input

Image from deeplearningbook.org

§ What kind of cycles?

§ Cycles with a time delay

§ Box means that the information is sent at the
next time step (no infinite loops)

William L. Hamilton, McGill University and Mila 8

Recurrent Neural Networks (RNNs)

y: target

L: loss

o: output

x: input

Image from deeplearningbook.org

§ What does this allow us to do?
§ Can view RNN as having a hidden state ht that

changes over time.
§ ht represents “useful information” from past inputs.
§ A standard/simple RNN:

ot = �(Vht + c)

ht = �(Wht�1 +Uxt + b)

William L. Hamilton, McGill University and Mila 9

Recurrent Neural Networks (RNNs)

§ Can unroll the RNN over time
to form an acyclic graph.

§ RNN = special kind of feed-
forward network

weights
are
shared
between
time steps

E.g., h3 = �(W(�(W�(Wh0 +Ux1 + b) +Ux2b) +Ux3 + b)

William L. Hamilton, McGill University and Mila 10

Kinds of output

§ How do we specify the target output of an RNN?
§ Many ways! Two main ones:

1) Can specify one target at the end of the
sequence

§ Ex: sentiment classification

2) Can specify an target at each time step
§ Ex: generating language

William L. Hamilton, McGill University and Mila 11

Sentiment classification

I loved the movie

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

0.7

Input layer

Hidden layer

Output layer

§ Input: Sequence of words
§ E.g., a review, a tweet, a news article

§ Output: A single value
§ E.g., indicating the probability that

the text has a positive sentiment

William L. Hamilton, McGill University and Mila 12

Sentiment classification

I loved the movie

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

0.7

Input layer

Hidden layer

Output layer

§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: A single value
§ E.g., indicating the probability that

the text has a positive sentiment

§ Words can be encoded as
“one-hot” vectors.

William L. Hamilton, McGill University and Mila 13

Sentiment classification

I loved the movie

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

0.7

Input layer

Hidden layer

Output layer

§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: A single value
§ E.g., indicating the probability that

the text has a positive sentiment

§ There is only output at the end
of the sequence

William L. Hamilton, McGill University and Mila 14

Sentiment classification

I loved the movie

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

0.7

Input layer

Hidden layer

Output layer

§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: A single value
§ E.g., indicating the probability that

the text has a positive sentiment

§ Classic example of a “sequence
classification” task.

William L. Hamilton, McGill University and Mila 15

Language modeling

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

Input layer

Hidden layer

Output layer

loved the movie

0
0
0
1

1
0
0
0

0
1
0
0

§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: Sequence of words
§ E.g., predicting the next word that

will occur in a sentence.

William L. Hamilton, McGill University and Mila 16

Language modeling

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

Input layer

Hidden layer

Output layer

loved the movie

0
0
0
1

1
0
0
0

0
1
0
0

§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: Sequence of words
§ E.g., predicting the next word that

will occur in a sentence.

§ Same input representation as
sentiment classification

William L. Hamilton, McGill University and Mila 17

Language modeling

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

Input layer

Hidden layer

Output layer

loved the movie

0
0
0
1

1
0
0
0

0
1
0
0

§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: Sequence of words
§ E.g., predicting the next word that

will occur in a sentence.

§ But now we have an output at
each time-step!

§ Predicting the next word is a
multiclass prediction problem
(each word is a class), so use a
softmax!

William L. Hamilton, McGill University and Mila 18

Language modeling

§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: Sequence of words
§ E.g., predicting the next word that

will occur in a sentence.

§ Usually add an “end of
sentence token”

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

Input layer

Hidden layer

Output layer

loved the movie <EOS>

0
0
0
1

1
0
0
0

0
1
0
0

0
0
0
0

William L. Hamilton, McGill University and Mila 19

Language modeling

§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: Sequence of words
§ E.g., predicting the next word that will

occur in a sentence.

§ Classic “sequence modeling” task.
§ Language modelling is the

“backbone” of NLP.
§ Useful for machine translation, dialogue

systems, automated captioning, etc.

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

Input layer

Hidden layer

Output layer

loved the movie <EOS>

0
0
0
1

1
0
0
0

0
1
0
0

0
0
0
0

William L. Hamilton, McGill University and Mila 20

Training RNNs

§ How can we train RNNs?
§ Same as feed-forward networks: train with backpropagation

on unrolled computation graph!

William L. Hamilton, McGill University and Mila 21

Training RNNs

§ How can we train RNNs?
§ Same as feed-forward networks: train with backpropagation

on unrolled computation graph!

§ This is called backpropagation through time (BPTT)
§ Same derivation as regular backprop (use chain rule)

William L. Hamilton, McGill University and Mila 22

Training RNNs

§ BPTT is straightforward for
sequence classification.

§ Gradient flows from the final
prediction back through all
the layers.

I loved the movie

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

0.7

Input layer

Hidden layer

Output layer

William L. Hamilton, McGill University and Mila 23

Backpropagation through time

§ BPTT is straightforward for
sequence classification.

§ Gradient flows from the final
prediction back through all
the layers.

I loved the movie

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

0.7

Input layer

Hidden layer

Output layer

William L. Hamilton, McGill University and Mila 24

Backpropagation through time

§ BPTT is less straightforward
for language modeling.

§ Gradient flows from the
prediction at each time-step
to the preceding time-steps.

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

Input layer

Hidden layer

Output layer

loved the movie <EOS>

0
0
0
1

1
0
0
0

0
1
0
0

0
0
0
0

William L. Hamilton, McGill University and Mila 25

Backpropagation through time

§ BPTT is less straightforward
for language modeling.

§ Conceptually, we can think
that we are jointly training on
three sequence classification
tasks.

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

Input layer

Hidden layer

Output layer

loved the movie <EOS>

0
0
0
1

1
0
0
0

0
1
0
0

0
0
0
0

William L. Hamilton, McGill University and Mila 26

Backpropagation through time

§ BPTT is less straightforward
for language modeling.

§ Conceptually, we can think
that we are jointly training on
three sequence classification
tasks.

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

Input layer

Hidden layer

Output layer

loved the movie <EOS>

0
0
0
0

William L. Hamilton, McGill University and Mila 27

Backpropagation through time

§ BPTT is less straightforward
for language modeling.

§ Conceptually, we can think
that we are jointly training on
three sequence classification
tasks.

0
0
1
0

0
0
0
1

1
0
0
0

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

Input layer

Hidden layer

Output layer

loved the movie <EOS>

0
1
0
0

William L. Hamilton, McGill University and Mila 28

Backpropagation through time

§ BPTT is less straightforward
for language modeling.

§ Conceptually, we can think
that we are jointly training on
three sequence classification
tasks.

0
0
1
0

0
0
0
1

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

Input layer

Hidden layer

Output layer

loved the movie <EOS>

1
0
0
0

William L. Hamilton, McGill University and Mila 29

Backpropagation through time

§ BPTT is less straightforward for
language modeling.

§ For very long
sequence/language modeling
tasks, sometimes we “truncate”
the gradient flow.

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

Input layer

Hidden layer

Output layer

loved the movie <EOS>

0
0
0
1

1
0
0
0

0
1
0
0

0
0
0
0

William L. Hamilton, McGill University and Mila 30

Backpropagation through time

§ BPTT is less straightforward for
language modeling.

§ For very long
sequence/language modeling
tasks, sometimes we “truncate”
the gradient flow.
§ I.e., only the last K time-steps are

used to train the prediction. 0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

Input layer

Hidden layer

Output layer

loved the movie <EOS>

0
0
0
0

William L. Hamilton, McGill University and Mila 31

There are many ways to add recurrence

§ So far, we have been
considering a standard/simple
RNN.

§ Recurrence is between the
hidden states:

§ This is called the Elman RNN.
0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

Input layer

Hidden layer

Output layer

0
0
0
1

1
0
0
0

0
1
0
0

0
0
0
0

ht = �(Wht�1 +Uxt + b)

William L. Hamilton, McGill University and Mila 32

§ But there are other options!

§ E.g., recurrence based on the
output:

§ This is called the Jordan RNN.

There are many ways to add recurrence

0
0
1
0

0
0
0
1

1
0
0
0

0
1
0
0

0.3
1.2
8.7
0.1

1.5
1.7
0.6
0.8

2.3
4.6
0.8
0.9

0.1
0.2
3.3
0.7

Input layer

Hidden layer

Output layer

0
0
0
1

1
0
0
0

0
1
0
0

0
0
0
0

ht = �(Wot�1 +Uxt + b)

William L. Hamilton, McGill University and Mila 33

There are many ways to add recurrence

§ Q: Which is better?

§ Elman RNN:

§ Jordan RNN:
vs.

Jordan RNN Elman RNN

ot = �(Vht + c)

ot = �(Vht + c)

ht = �(Wht�1 +Uxt + b)

ht = �(Wot�1 +Uxt + b)

William L. Hamilton, McGill University and Mila 34

There are many ways to add recurrence

§ Q: Which is better?

§ A: Elman RNN. Usually output o
is constrained in some way, and
may be missing some important
info from the past.

vs.

Jordan RNN Elman RNN

William L. Hamilton, McGill University and Mila 35

There are many ways to add recurrence

§ Q: Which is better?

§ A: Elman RNN. Usually output o
is constrained in some way, and
may be missing some important
info from the past.

§ We can also add both types of
recurrence at once!

vs.

Jordan RNN Elman RNN

William L. Hamilton, McGill University and Mila 36

Beyond Elman and Jordan RNNs

§ Elman and Jordan RNNs are relatively straightforward.
§ But in practice they are very hard to train!
§ Issue: Multiplying by the same W matrix over and over is

very unstable…

§ There are recurrent architectures that fix this! (Next lecture).

E.g., h3 = �(W(�(W�(Wh0 +Ux1 + b) +Ux2b) +Ux3 + b)

ht = �(Wht�1 +Uxt + b)

William L. Hamilton, McGill University and Mila 37

The problem of long-term dependencies
§ Let’s say we are doing language modelling
§ Input paragraph: “I grew up in France. I worked at […]. I speak fluent French.”
§ Want to predict ‘French’ given words before. This can be hard!
§ In practice it is very hard for RNNs to to learn dependencies lasting many time steps.
§ Why could this be?

William L. Hamilton, McGill University and Mila 38

The problem of long-term dependencies
§ Because the hidden-to-hidden transition matrix W is

the same for each time step, this can cause the
gradients to explode or vanish

§ Intuition: Imagine multiplying a scalar number w by
itself many times. wk for k	→ ∞ will either explode (if
w > 1) or vanish (if w < 1)

§ Similar behavior occurs if W is a matrix

ht = �(Wht�1 +Uxt + b)

E.g., h3 = �(W(�(W�(Wh0 +Ux1 + b) +Ux2b) +Ux3 + b)

William L. Hamilton, McGill University and Mila 39

The problem of long-term dependencies
§ Recall: a way to intuitively think of backpropagating gradients

§ If I change my input by a small amount, what will be the result on the output?
ó

If I want my output (loss) to decrease, how do I change my input?

§ If input is being multiplied by the same W many times, this could cause either
a huge or tiny effect on the output.

=>
The gradient of loss w.r.t parameters could be huge or tiny.

William L. Hamilton, McGill University and Mila 40

The problem of long-term dependencies
§ Perspective from linear algebra (eigendecomposition)
§ Consider a simplified “linear” RNN with following recurrence:

ht = Wht�1

William L. Hamilton, McGill University and Mila 41

The problem of long-term dependencies
§ Perspective from linear algebra (eigendecomposition)
§ Consider a simplified “linear” RNN with following recurrence:

§ Now, we can get the eigendecomposition of W as:

where Q is an orthogonal matrix of eigenvectors and D a matrix with eigenvalues on the diagonal.

ht = Wht�1

W = QDQ>

William L. Hamilton, McGill University and Mila 42

The problem of long-term dependencies
§ Perspective from linear algebra (eigendecomposition)
§ Consider a simplified “linear” RNN with following recurrence:

§ Now, we can get the eigendecomposition of W as:

where Q is an orthogonal matrix of eigenvectors and D a matrix with eigenvalues on the diagonal.
§ And, thus:

§ So each eigenvalue is raised to the power of t, causing eigenvalues < 1 to vanish
and eigenvalues > 1 to explode.

ht = Wht�1

W = QDQ>

ht = Wth0

= (QDQ>QDQ>...)h0

= QDtQ>h0 since Q>Q = I

William L. Hamilton, McGill University and Mila 43

How to avoid vanishing/exploding gradients?

§ Simple way to avoid exploding gradients: gradient clipping

if |gradient| > threshold:
gradient = threshold * sign(gradient)

§ Another way: change the architecture of the RNN so there are some
non-multiplicative interactions
§ E.g., long short-term memory (LSTM) units

William L. Hamilton, McGill University and Mila 44

Long short-term memory (LSTM) units

LSTM images from: colah.github.io

RNN:

LSTM:

William L. Hamilton, McGill University and Mila 45

Long short-term memory (LSTM) units
§ Much better at dealing with long-term dependencies
§ Can think of it as a special ‘cell’
§ Governed by a set of update equations:

William L. Hamilton, McGill University and Mila 46

LSTMs
§ Core idea: the cell state is an an ‘information highway’
§ Cell state is updated additively based on input, rather than

multiplicatively => less prone to exploding/ vanishing gradients

William L. Hamilton, McGill University and Mila 47

LSTMs: Cell states, hidden states, and gating
§ Cell state vs hidden state (roughly)

§ Hidden state: what info from past do I need to make my next prediction?
§ Cell state: what info from past might I need to make future predictions?

§ For regular RNN, hidden state plays both of these roles
§ LSTM uses a set of ‘gates’ to control information flow

§ Gate = sigmoid layer + element-wise multiplication. Gives vector of
numbers between [0,1] that determine how much of each component to
let through:

William L. Hamilton, McGill University and Mila 48

LSTMs: Forget gate

§ Forget gate: how much information do we want to keep
from the previous cell state?

William L. Hamilton, McGill University and Mila 49

LSTMs: Input gate

§ Input gate: what information from the current input (and
previous hidden state) do we want to transfer to the cell state?

William L. Hamilton, McGill University and Mila 50

LSTMs: Cell update

§ Cell state updated as an additive linear combination of old
cell state and processed input:

William L. Hamilton, McGill University and Mila 51

LSTMs: Output gate:

§ Output gate: what information from the cell state do we
need to make the next prediction?

William L. Hamilton, McGill University and Mila 52

LSTMs
§ LSTM architecture has existed for many years (Hochreiter & Schmidhuber 1997).

§ Many state-of-the-art results, e.g.,
§ Cursive handwriting recognition (Graves & Schmidhuber, 2009)
§ Speech recognition (Graves, Mohamed & Hinton, 2013)
§ Machine translation (Sutskever, Vinyals & Le, 2014)
§ Question-answer (Weston et al., 2015)
§ Unstructured dialogue response generation (Serban et al., 2016)

§ Other similar models can be used (e.g. Gated Recurrent Units)

William L. Hamilton, McGill University and Mila 53

