
COMP 451 –
Fundamentals of Machine Learning
Lecture 24 --- Recurrent Neural Nets
William L. Hamilton
* Unless otherwise noted, all material posted for this course are 
copyright of the  instructor, and cannot be reused or reposted without 
the instructor’s written permission. 
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Last time: Convolutional Neural Networks
Feedforward network Convolutional neural network (CNN)

§ CNN characteristics:
§ Input is usually a 3D tensor:  2D image x 3 colours
§ Each layer transforms an input 3D tensor to an output 3D tensor using a 

differentiable function.

From: http://cs231n.github.io/convolutional-networks/William L. Hamilton, McGill University and Mila 2



Major paradigms for deep learning
§ Deep neural networks: The model should be interpreted as a 

computation graph.
§ Supervised training: E.g., feedforward neural networks.
§ Unsupervised training (later in the course):  E.g., autoencoders.

§ Special architectures for different problem domains.
§ Computer vision => Convolutional neural nets.
§ Text and speech => Recurrent neural nets.
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§ Several datasets contain sequences of data (e.g. time-series, text)
§ How could we process sequences with a feed-forward neural network?

1. Take vectors representing the last N timesteps and concatenate (join) them
2. Take vectors representing the last N timesteps and average them 

Neural models for sequences

From Phil Blumson’s slides

Example: machine translation
• Input: sequence of words
• Output: sequence of words
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Neural models for sequences
§ Problem: these approaches don’t exploit the sequential nature of the data!!
§ Also, they can only consider information from a fixed-size context window
§ Temporal information is very important in sequences!!
§ E.g. machine translation:

“John hit Steve on the head with a bat” 
!= “Steve hit John on the bat with a head”
!= “Bat hit a with head on the John Steve”
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Recurrent Neural Networks (RNNs)

RECURRENT NEURAL NETWORKS
• Compare to: Feed Forward Neural Networks:
‣ Information is propagated from the inputs to the outputs
‣ No notion of “time” necessary

x2 x3 x4 x5x1

1st hidden layer:

2nd hidden layer:

Output layer :

15

RECURRENT NEURAL NETWORKS
• RNNs can have arbitrary topology.
‣ no fixed direction of information flow

• Delays associated with specific connections
‣ Every directed cycle must contain a delay. 

• Possesses an internal dynamic state. 

16

x2 x3 x4 x5x1

16

RECURRENT NEURAL NETWORKS
• RNNs can have arbitrary topology.
‣ no fixed direction of information flow

• Delays associated with specific connections
‣ Every directed cycle must contain a delay. 

• Possesses an internal dynamic state. 

16

x2 x3 x4 x5x1

16

Feed-forward neural net Add cycles in network
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Recurrent Neural Networks (RNNs)

y: target

L: loss

o: output

h: hidden    
state

x: input

Image from deeplearningbook.org 

§ What kind of cycles?

§ Cycles with a time delay

§ Box means that the information is sent at the 
next time step (no infinite loops) 
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Recurrent Neural Networks (RNNs)

y: target

L: loss

o: output

x: input

Image from deeplearningbook.org 

§ What does this allow us to do?
§ Can view RNN as having a hidden state ht that 

changes over time.
§ ht represents “useful information” from past inputs.
§ A standard/simple RNN:

ot = �(Vht + c)

ht = �(Wht�1 +Uxt + b)
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Recurrent Neural Networks (RNNs)

§ Can unroll the RNN over time 
to form an acyclic graph.

§ RNN = special kind of feed-
forward network

weights 
are 
shared 
between 
time steps

E.g., h3 = �(W(�(W�(Wh0 +Ux1 + b) +Ux2b) +Ux3 + b)

William L. Hamilton, McGill University and Mila 10



Kinds of output

§ How do we specify the target output of an RNN?
§ Many ways! Two main ones:

1) Can specify one target at the end of the 
sequence

§ Ex: sentiment classification

2) Can specify an target at each time step
§ Ex: generating language
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Sentiment classification

I                loved             the              movie
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§ Input: Sequence of words
§ E.g., a review, a tweet, a news article

§ Output: A single value
§ E.g., indicating the probability that 

the text has a positive sentiment 
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Sentiment classification
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§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: A single value
§ E.g., indicating the probability that 

the text has a positive sentiment 

§ Words can be encoded as 
“one-hot” vectors.
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Sentiment classification
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§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: A single value
§ E.g., indicating the probability that 

the text has a positive sentiment 

§ There is only output at the end 
of the sequence
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Sentiment classification
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§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: A single value
§ E.g., indicating the probability that 

the text has a positive sentiment 

§ Classic example of a “sequence 
classification” task. 
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Language modeling 
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§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: Sequence of words
§ E.g., predicting the next word that 

will occur in a sentence.
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Language modeling 
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§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: Sequence of words
§ E.g., predicting the next word that 

will occur in a sentence.

§ Same input representation as 
sentiment classification
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Language modeling 
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§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: Sequence of words
§ E.g., predicting the next word that 

will occur in a sentence.

§ But now we have an output at 
each time-step! 

§ Predicting the next word is a 
multiclass prediction problem 
(each word is a class), so use a 
softmax!
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Language modeling 

§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: Sequence of words
§ E.g., predicting the next word that 

will occur in a sentence.

§ Usually add an “end of 
sentence token”
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Language modeling 

§ Input: Sequence of words
§ E.g., review, tweet, or news article

§ Output: Sequence of words
§ E.g., predicting the next word that will 

occur in a sentence.

§ Classic “sequence modeling” task.
§ Language modelling is the 

“backbone” of NLP.
§ Useful for machine translation, dialogue 

systems, automated captioning, etc.
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Training RNNs

§ How can we train RNNs?
§ Same as feed-forward networks: train with backpropagation 

on unrolled computation graph!
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Training RNNs

§ How can we train RNNs?
§ Same as feed-forward networks: train with backpropagation 

on unrolled computation graph!

§ This is called backpropagation through time (BPTT) 
§ Same derivation as regular backprop (use chain rule)
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Training RNNs

§ BPTT is straightforward for 
sequence classification.

§ Gradient flows from the final 
prediction back through all 
the layers. 
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Backpropagation through time

§ BPTT is straightforward for 
sequence classification.

§ Gradient flows from the final 
prediction back through all 
the layers. 
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Backpropagation through time

§ BPTT is less straightforward 
for language modeling.

§ Gradient flows from the 
prediction at each time-step 
to the preceding time-steps. 
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Backpropagation through time

§ BPTT is less straightforward 
for language modeling.

§ Conceptually, we can think 
that we are jointly training on 
three sequence classification 
tasks. 
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Backpropagation through time
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Backpropagation through time

§ BPTT is less straightforward 
for language modeling.

§ Conceptually, we can think 
that we are jointly training on 
three sequence classification 
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Backpropagation through time

§ BPTT is less straightforward 
for language modeling.

§ Conceptually, we can think 
that we are jointly training on 
three sequence classification 
tasks. 
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Backpropagation through time

§ BPTT is less straightforward for 
language modeling.

§ For very long 
sequence/language modeling 
tasks, sometimes we “truncate” 
the gradient flow. 
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Backpropagation through time

§ BPTT is less straightforward for 
language modeling.

§ For very long 
sequence/language modeling 
tasks, sometimes we “truncate” 
the gradient flow.
§ I.e., only the last K time-steps are 

used to train the prediction. 0
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There are many ways to add recurrence

§ So far, we have been 
considering a standard/simple 
RNN.

§ Recurrence is between the 
hidden states:

§ This is called the Elman RNN.
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ht = �(Wht�1 +Uxt + b)
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§ But there are other options!

§ E.g., recurrence based on the 
output:

§ This is called the Jordan RNN.

There are many ways to add recurrence
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William L. Hamilton, McGill University and Mila 33



There are many ways to add recurrence

§ Q: Which is better?

§ Elman RNN:

§ Jordan RNN:
vs.

Jordan RNN                  Elman RNN

ot = �(Vht + c)

ot = �(Vht + c)

ht = �(Wht�1 +Uxt + b)

ht = �(Wot�1 +Uxt + b)
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There are many ways to add recurrence

§ Q: Which is better?

§ A: Elman RNN. Usually output o 
is constrained in some way, and 
may be missing some important 
info from the past.

vs.

Jordan RNN                  Elman RNN
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There are many ways to add recurrence

§ Q: Which is better?

§ A: Elman RNN. Usually output o 
is constrained in some way, and 
may be missing some important 
info from the past.

§ We can also add both types of 
recurrence at once! 

vs.

Jordan RNN                  Elman RNN
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Beyond Elman and Jordan RNNs

§ Elman and Jordan RNNs are relatively straightforward.
§ But in practice they are very hard to train! 
§ Issue: Multiplying by the same W matrix over and over is 

very unstable…

§ There are recurrent architectures that fix this! (Next lecture). 

E.g., h3 = �(W(�(W�(Wh0 +Ux1 + b) +Ux2b) +Ux3 + b)

ht = �(Wht�1 +Uxt + b)
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The problem of long-term dependencies
§ Let’s say we are doing language modelling 
§ Input paragraph: “I grew up in France. I worked at […]. I speak fluent French.” 
§ Want to predict ‘French’ given words before. This can be hard!
§ In practice it is very hard for RNNs to to learn dependencies lasting many time steps.
§ Why could this be?
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The problem of long-term dependencies
§ Because the hidden-to-hidden transition matrix W is 

the same for each time step, this can cause the 
gradients to explode or vanish

§ Intuition: Imagine multiplying a scalar number w by 
itself many times. wk for k	→ ∞ will either explode (if 
w > 1) or vanish (if w < 1)

§ Similar behavior occurs if W is a matrix

ht = �(Wht�1 +Uxt + b)

E.g., h3 = �(W(�(W�(Wh0 +Ux1 + b) +Ux2b) +Ux3 + b)
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The problem of long-term dependencies
§ Recall: a way to intuitively think of backpropagating gradients

§ If I change my input by a small amount, what will be the result on the output? 
ó

If I want my output (loss) to decrease, how do I change my input?

§ If input is being multiplied by the same W many times, this could cause either 
a huge or tiny effect on the output.

=> 
The gradient of loss w.r.t parameters could be huge or tiny.
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The problem of long-term dependencies
§ Perspective from linear algebra (eigendecomposition)
§ Consider a simplified “linear” RNN with following recurrence:

ht = Wht�1
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The problem of long-term dependencies
§ Perspective from linear algebra (eigendecomposition)
§ Consider a simplified “linear” RNN with following recurrence:

§ Now, we can get the eigendecomposition of W as:

where Q is an orthogonal matrix of eigenvectors and D a matrix with eigenvalues on the diagonal.

ht = Wht�1

W = QDQ>
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The problem of long-term dependencies
§ Perspective from linear algebra (eigendecomposition)
§ Consider a simplified “linear” RNN with following recurrence:

§ Now, we can get the eigendecomposition of W as:

where Q is an orthogonal matrix of eigenvectors and D a matrix with eigenvalues on the diagonal.
§ And, thus:

§ So each eigenvalue is raised to the power of t, causing eigenvalues < 1 to vanish 
and eigenvalues > 1 to explode. 

ht = Wht�1

W = QDQ>

ht = Wth0

= (QDQ>QDQ>...)h0

= QDtQ>h0 since Q>Q = I
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How to avoid vanishing/exploding gradients?

§ Simple way to avoid exploding gradients: gradient clipping

if |gradient| > threshold: 
gradient = threshold * sign(gradient)

§ Another way: change the architecture of the RNN so there are some 
non-multiplicative interactions
§ E.g., long short-term memory (LSTM) units
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Long short-term memory (LSTM) units

LSTM images from: colah.github.io

RNN:

LSTM:
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Long short-term memory (LSTM) units
§ Much better at dealing with long-term dependencies
§ Can think of it as a special ‘cell’ 
§ Governed by a set of update equations:
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LSTMs
§ Core idea: the cell state is an an ‘information highway’
§ Cell state is updated additively based on input, rather than 

multiplicatively => less prone to exploding/ vanishing gradients
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LSTMs: Cell states, hidden states, and gating
§ Cell state vs hidden state (roughly)

§ Hidden state: what info from past do I need to make my next prediction?
§ Cell state: what info from past might I need to make future predictions?

§ For regular RNN, hidden state plays both of these roles
§ LSTM uses a set of ‘gates’ to control information flow 

§ Gate = sigmoid layer + element-wise multiplication. Gives vector of 
numbers between [0,1] that determine how much of each component to 
let through:
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LSTMs: Forget gate

§ Forget gate: how much information do we want to keep 
from the previous cell state?
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LSTMs: Input gate

§ Input gate: what information from the current input (and 
previous hidden state) do we want to transfer to the cell state?
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LSTMs: Cell update

§ Cell state updated as an additive linear combination of old 
cell state and processed input:
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LSTMs: Output gate:

§ Output gate: what information from the cell state do we 
need to make the next prediction?
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LSTMs
§ LSTM architecture has existed for many years (Hochreiter & Schmidhuber 1997).

§ Many state-of-the-art results, e.g., 
§ Cursive handwriting recognition (Graves & Schmidhuber, 2009)
§ Speech recognition (Graves, Mohamed & Hinton, 2013)
§ Machine translation (Sutskever, Vinyals & Le, 2014)
§ Question-answer (Weston et al., 2015)
§ Unstructured dialogue response generation (Serban et al., 2016)

§ Other similar models can be used (e.g. Gated Recurrent Units)
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