
COMP 451 –
Fundamentals of Machine Learning
Lecture 22 --- Backpropagation
William L. Hamilton
* Unless otherwise noted, all material posted for this course are
copyright of the instructor, and cannot be reused or reposted without
the instructor’s written permission.

William L. Hamilton, McGill University and Mila 1

Why neural networks?
§ Key idea: Learn good features/representations rather than doing manual

feature engineering.

§ Hidden layers correspond to “higher-level” learned features.

§ Critical in domains where manual feature engineering is difficult/impossible
(e.g., images, raw audio) and empirically state-of-the-art in most domains.

§ Allow for “end-to-end” learning where manual feature
engineering/selection is no longer necessary.

William L. Hamilton, McGill University and Mila 2

Generalizing the feed-forward NN

§ Can use arbitrary output
activation functions.

§ In practice, we do not necessarily
need to use a sigmoid activation
in the hidden layer.

§ We can make networks as deep
as we want.

§ We can add regularization.

w(1)
out

w(2)
out

ŷ(1)

ŷ(2)

h(1)
1

h(1)
2

h(2)
2

h(2)
1

h(2)
3

h(i) = �i(W
(i)h(i�1) + b(i))

Can be an arbitrary non-linear
activation function

William L. Hamilton, McGill University and Mila 3

Activation functions
h(i) = �i(W

(i)h(i�1) + b(i))

William L. Hamilton, McGill University and Mila 4

§ There are many choices for the
activation function!

§ It must be non-linear
§ Stacking multiple linear functions is

equivalent to a single linear function,
so there would be no gain…..

Activation functions: Sigmoid
h(i) = �i(W

(i)h(i�1) + b(i))

William L. Hamilton, McGill University and Mila 5

§ The sigmoid activation is the “classic”/
“original” activation function:

§ Easy to differentiate.
§ Can often be interpreted as a probability.
§ Easily “saturates”, i.e., for inputs outside

the range [-4, 4] it is essentially constant,
which can make it hard to train.

�(z) =
1

1 + e�z

Activation functions: Tanh
h(i) = �i(W

(i)h(i�1) + b(i))

William L. Hamilton, McGill University and Mila 6

§ The tanh activation is another popular
and traditional activation function:

§ Easy to differentiate:
§ Can often be interpreted as a probability.
§ Slightly less prone to “saturation” than

the sigmoid but still has a fixed range.

�(z) = tanh z =
ez � e�z

ez + e�z

@ tanh(z)

@z
= 1� tanh2(z)

Activation functions: ReLU
h(i) = �i(W

(i)h(i�1) + b(i))

William L. Hamilton, McGill University and Mila 7

§ Rectified Linear Unit (ReLU) is the de
facto standard in deep learning:

§ Unbounded range so it never saturates
(i.e., activation can increase indefinitely).

§ Very strong empirical results.

ReLU(z) = max(z, 0)

Activation functions: softplus
h(i) = �i(W

(i)h(i�1) + b(i))

William L. Hamilton, McGill University and Mila 8

§ There have been many variants of
ReLUs proposed in recent years, e.g.,

§ Similar to ReLU but smoother.
§ Expensive derivative compared to ReLU.

softplus(z) = ln(1 + ex)

Jreg = J + �(
HX

i=1

kW(i)k2
F
+ kwoutk22)

Regularization

§ We can combat overfitting in neural networks
by adding regularization.

§ Standard approach is to apply L2-
regularization to certain layers: w(1)

out

w(2)
out

ŷ(1)

ŷ(2)

h(1)
1

h(1)
2

h(2)
2

h(2)
1

h(2)
3

h(i) = �i(W
(i)h(i�1) + b(i))

William L. Hamilton, McGill University and Mila 9

Regularized
loss

Original loss

Frobenius norm of
hidden layer weights

(“Frobenius” = 2-norm
for matrices)

2-norm of
output
weights

Complex architectures

William L. Hamilton, McGill University and Mila 10

§ Neural network architectures can
get very complicated!

§ E.g., might want to combine
feature information from different
modalities (e.g., text and images)
using different networks.

§ Many more complex architectures
will be covered in upcoming
lectures!

Text
features

Image features

How are we going to train these models?

William L. Hamilton, McGill University and Mila 11

§ As long as all the operations are differentiable (or “sub-differentiable”) we can
always just apply the chain rule and compute the derivatives.

§ But manually computing the gradient would be very painful/tedious!
§ Need to recompute every time we modify the architecture…
§ Lots of room for minor bugs in the code…

§ Solution: Automatically compute the gradient.

Computation graphs

§ A very simple “neural network” (i.e.,
computation graph):

§ Data is transformed at the nodes and
“flows” allow the arrows.

§ a and b are source nodes (i.e., the
input) and e	is the sink (i.e., the
output).

William L. Hamilton, McGill University and Mila 12

c = a+ b

d = b+ 1

e = c ⇤ d

[Image and inspiration credit:
http://colah.github.io/posts/2015-08-Backprop/]

Computation graphs

William L. Hamilton, McGill University and Mila 13

§ The forward pass in a
computational graph =
setting the source
variables/nodes and determining
the sink/output value.

[Image and inspiration credit:
http://colah.github.io/posts/2015-08-Backprop/]

Derivatives on computation graphs

William L. Hamilton, McGill University and Mila 14

§ We can use basic calculus to
compute the derivatives on the
edges.

§ Derivative tells us: If I change one
node by one unit, how much
does this impact another node?

[Image and inspiration credit:
http://colah.github.io/posts/2015-08-Backprop/]

Derivatives on computation graphs

William L. Hamilton, McGill University and Mila 15

§ But what if we want to compute the derivative
between distant nodes?

[Image and inspiration credit:
http://colah.github.io/posts/2015-08-Backprop/]

Derivatives on computation graphs

William L. Hamilton, McGill University and Mila 16

§ But what if we want to compute the derivative
between distant nodes?

§ E.g., consider how e is affected by a.
§ Change a at a speed of 1.
§ Then c also changes at a speed of 1.
§ And, c changing at a speed of 1 causes e to change at

a speed of 2.
§ So e changes at a rate of 1x2 with respect to a.

[Image and inspiration credit:
http://colah.github.io/posts/2015-08-Backprop/]

Derivatives on computation graphs

William L. Hamilton, McGill University and Mila 17

§ But what if we want to compute the derivative
between distant nodes?

§ E.g., consider how e is affected by a.
§ Change a at a speed of 1.
§ Then c also changes at a speed of 1.
§ And, c changing at a speed of 1 causes e to change at

a speed of 2.
§ So e changes at a rate of 1x2 with respect to a.

§ General rule: sum over all possible paths from
one node to the other, multiplying the derivatives
on each edge of the path, e.g.

@e

@b
= 1 ⇤ 2 + 1 ⇤ 3 [Image and inspiration credit:

http://colah.github.io/posts/2015-08-Backprop/]

Derivatives on computation graphs

William L. Hamilton, McGill University and Mila 18

§ But what if we want to compute the derivative
between distant nodes?

§ E.g., consider how e is affected by a.
§ Change a at a speed of 1.
§ Then c also changes at a speed of 1.
§ And, c changing at a speed of 1 causes e to change at

a speed of 2.
§ So e changes at a rate of 1x2 with respect to a.

§ General rule: sum over all possible paths from
one node to the other, multiplying the derivatives
on each edge of the path, e.g.

@e

@b
= 1 ⇤ 2 + 1 ⇤ 3

“Sum over paths” idea
is just chain rule!

[Image and inspiration credit:
http://colah.github.io/posts/2015-08-Backprop/]

Challenge: combinatorial explosion

William L. Hamilton, McGill University and Mila 19

@Z

@X
= ↵� + ↵✏+ ↵⇣ + �� + �✏+ �⇣ + �� + �✏+ �⇣

§ Naively summing over paths (i.e.
naively applying the chain rule) can
lead to combinatorial explosion!

§ Number of paths between two
nodes can be exponential in the
number of graph edges!

3x3=9 paths between X and Z….

[Image and inspiration credit:
http://colah.github.io/posts/2015-08-Backprop/]

Challenge: combinatorial explosion

William L. Hamilton, McGill University and Mila 20

@Z

@X
= ↵� + ↵✏+ ↵⇣ + �� + �✏+ �⇣ + �� + �✏+ �⇣

§ Naively summing over paths (i.e.
naively applying the chain rule) can
lead to combinatorial explosion!

§ Number of paths between two
nodes can be exponential in the
number of graph edges!

§ Idea: Factor the paths! @Z

@X
= (↵+ � + �)(� + ✏+ ⇣)

Factoring paths

William L. Hamilton, McGill University and Mila 21

§ Forward mode
§ Goes from source(s) to sink.
§ At each node, sum all the

incoming edges/derivatives.

Factoring paths

William L. Hamilton, McGill University and Mila 22

§ Forward mode
§ Goes from source(s) to sink.
§ At each node, sum all the

incoming edges/derivatives.

§ Reverse mode:
§ Goes from sink to source(s).
§ At each node, sum all the

outgoing edges/derivatives.

Factoring paths

William L. Hamilton, McGill University and Mila 23

§ Forward mode
§ Goes from source(s) to sink.
§ At each node, sum all the

incoming edges/derivatives.

§ Reverse mode:
§ Goes from sink to source(s).
§ At each node, sum all the

outgoing edges/derivatives.

§ Both only touch each edge once!

Computational savings: Forward-mode

William L. Hamilton, McGill University and Mila 24

§ Run forward mode from the source
b to the sink e.

§ Note that we get the derivative of
each intermediate edge as well!

Computational savings: Forward-mode

William L. Hamilton, McGill University and Mila 25

§ Run forward mode from the source
b to the sink e.

§ Note that we get the derivative of
each intermediate edge as well!

§ But in neural networks, we want
the derivative of the output/loss
w.r.t. all the previous layers…

Computational savings: Backward mode

William L. Hamilton, McGill University and Mila 26

§ Run backward mode from the sink
e to the sources a	and b.

§ Note that we get the derivative of
each intermediate edge as well!

Computational savings: Backward mode

William L. Hamilton, McGill University and Mila 27

§ Run backward mode from the sink
e to the sources a	and b.

§ Note that we get the derivative of
each intermediate edge as well!

§ We get the derivative w.r.t. the
output in one pass!

Automated differentiation vs. backpropagation

William L. Hamilton, McGill University and Mila 28

§ Reverse-mode automatic differentiation (RV-AD) can efficiently
compute the derivative of every node in a computation graph.

§ Neural networks are just computation graphs!

§ We generally call RV-AD “backpropagation” in the context of
neural networks and deep learning, since we are propagating the
derivative/error backwards from the output node.

Automated differentiation in practice

William L. Hamilton, McGill University and Mila 29

§ Many automated differentiation frameworks exist.
§ Basic derivatives are hard-coded (often called “kernels”) and

everything else computed via automated differentiation.
§ Nearly all based on Python/NumPy.
§ You specify:

§ The forward model (i.e., the computation graph).
§ The training examples and training schedule (e.g., how the

points are batched together).
§ The optimization details (e.g., loss function, learning rate).

§ The framework takes care of the derivative computations!

Convergence of backpropagation
§ If the learning rate is appropriate, the algorithm is guaranteed to converge to a

local minimum of the cost function.
§ NOT the global minimum. (Can be much worse.)
§ There can be MANY local minimum.
§ Use random restarts = train multiple nets with different initial weights.
§ In practice, the solution found is often good (i.e., local minima are not a

big problem in practice)…

§ Training can take thousands of iterations – CAN BE VERY SLOW! But using
network after training is generally fast.

William L. Hamilton, McGill University and Mila 30

Overtraining
§ Traditional overfitting is concerned with the number of parameters vs. the number

of instances
§ In neural networks: related phenomenon called overtraining occurs when weights

take on large magnitudes, i.e. unit saturation
§ As learning progresses, the network has more active parameters.Overtraining in feed-forward networks

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 5000 10000 15000 20000

E
rr

o
r

Number of weight updates

Error versus weight updates (example 1)

Training set error

Validation set error

• Traditional overfitting is concerned with the number of parameters vs.
the number of instances

• In neural networks there is an additional phenomenon called overtraining
which occurs when weights take on large magnitudes, pushing the
sigmoids into saturation

• E�ectively, as learning progresses, the network has more actual
parameters

• Use a validation set to decide when to stop training!
• Regularization is also very e�ective

COMP-652, Lecture 5 - September 20, 2012 37

More application-specific tricks

• If there is too little data, it can be perturbed by random noise; this helps
escape local minima and gives more robust results

• In image classification and pattern recognition tasks, extra data can be
generated, e.g., by applying transformations that make sense

• Weight sharing can be used to indicate parameters that should have the
same value based on prior knowledge

• In this case, each update is computed separately using backprop, then
the tied parameters are updated with an average

COMP-652, Lecture 5 - September 20, 2012 38

William L. Hamilton, McGill University and Mila 31

Overtraining
§ Traditional overfitting is concerned with the number of parameters vs. the number

of instances
§ In neural networks: related phenomenon called overtraining occurs when weights

take on large magnitudes, i.e. unit saturation
§ As learning progresses, the network has more active parameters.

§ Use validation set to decide when to stop.
§ # training updates is a hyper-parameter.

Overtraining in feed-forward networks

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 5000 10000 15000 20000

E
rr

o
r

Number of weight updates

Error versus weight updates (example 1)

Training set error

Validation set error

• Traditional overfitting is concerned with the number of parameters vs.
the number of instances

• In neural networks there is an additional phenomenon called overtraining
which occurs when weights take on large magnitudes, pushing the
sigmoids into saturation

• E�ectively, as learning progresses, the network has more actual
parameters

• Use a validation set to decide when to stop training!
• Regularization is also very e�ective

COMP-652, Lecture 5 - September 20, 2012 37

More application-specific tricks

• If there is too little data, it can be perturbed by random noise; this helps
escape local minima and gives more robust results

• In image classification and pattern recognition tasks, extra data can be
generated, e.g., by applying transformations that make sense

• Weight sharing can be used to indicate parameters that should have the
same value based on prior knowledge

• In this case, each update is computed separately using backprop, then
the tied parameters are updated with an average

COMP-652, Lecture 5 - September 20, 2012 38

William L. Hamilton, McGill University and Mila 32

Choosing the learning rate
§ Backprop is very sensitive to the choice of learning rate.

§ Too large ⇒ divergence.
§ Too small ⇒ VERY slow learning.
§ The learning rate also influences the ability to escape local optima.

§ The learning rate is a critical hyperparameter.

William L. Hamilton, McGill University and Mila 33

Adaptive optimization algorithms
§ It is now standard to use “adaptive” optimization algorithms.

§ These approaches modify the learning rate adaptively depending on how
the training is progressing.

§ Adam, RMSProp, and AdaGrad are popular approaches, with Adam
being the de facto standard in deep learning.
§ All of these approaches scale the learning rate for each parameter based

on statistics of the history of gradient updates for that parameter.
§ Intuition: increase the update strength for parameters that have had smaller

updates in the past.
William L. Hamilton, McGill University and Mila 34

Adding momentum
§ At each iteration of gradient descent, we are computing an update based

based on the derivative of the current (mini)batch of training examples:

�iw = ↵
@J

@w
Update for

weight vector

Derivative of error
w.r.t. weights for
current minibatch

w �iw

William L. Hamilton, McGill University and Mila 35

Adding momentum
§ On i’th gradient descent update, instead of:

We do:

The second term is called momentum

�iw = ↵
@J

@w

�iw = ↵
@J

@w
+ ��i�1w

William L. Hamilton, McGill University and Mila 36

Adding momentum
§ On i’th gradient descent update, instead of:

We do:

The second term is called momentum

Advantages:
§ Easy to pass small local minima.
§ Keeps the weights moving in areas where the error is flat.

Disadvantages:
§ With too much momentum, it can get out of a global maximum!
§ One more parameter to tune, and more chances of divergence

�iw = ↵
@J

@w

�iw = ↵
@J

@w
+ ��i�1w

William L. Hamilton, McGill University and Mila 37

What you should know
§ Basic generalizations of neural networks: activation functions,

regularization, and complex architectures
§ The concept of a computation graph.
§ The basics of automated differentiation (reverse and forward mode) and

backpropagation.
§ The issue of overtraining.
§ Optimization hyperparameters for backpropagation: learning rate,

momentum, adaptive optimization algorithms

William L. Hamilton, McGill University and Mila 38

