
COMP 451 –
Fundamentals of Machine Learning
Lecture 22 --- Backpropagation 
William L. Hamilton
* Unless otherwise noted, all material posted for this course are 
copyright of the  instructor, and cannot be reused or reposted without 
the instructor’s written permission. 
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Why neural networks?
§ Key idea: Learn good features/representations rather than doing manual 

feature engineering.

§ Hidden layers correspond to “higher-level” learned features.

§ Critical in domains where manual feature engineering is difficult/impossible 
(e.g., images, raw audio) and empirically state-of-the-art in most domains.

§ Allow for “end-to-end” learning where manual feature 
engineering/selection is no longer necessary.
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Generalizing the feed-forward NN

§ Can use arbitrary output 
activation functions.

§ In practice, we do not necessarily 
need to use a sigmoid activation 
in the hidden layer.

§ We can make networks as deep 
as we want.

§ We can add regularization.
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Can be an arbitrary non-linear 
activation function
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Activation functions
h(i) = �i(W

(i)h(i�1) + b(i))
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§ There are many choices for the 
activation function!

§ It must be non-linear 
§ Stacking multiple linear functions is 

equivalent to a single linear function, 
so there would be no gain…..



Activation functions: Sigmoid
h(i) = �i(W

(i)h(i�1) + b(i))
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§ The sigmoid activation is the “classic”/ 
“original” activation function:

§ Easy to differentiate.
§ Can often be interpreted as a probability.
§ Easily “saturates”, i.e., for inputs outside 

the range [-4, 4] it is essentially constant, 
which can make it hard to train.

�(z) =
1

1 + e�z



Activation functions: Tanh
h(i) = �i(W

(i)h(i�1) + b(i))
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§ The tanh activation is another popular 
and traditional activation function:

§ Easy to differentiate: 
§ Can often be interpreted as a probability.
§ Slightly less prone to “saturation” than 

the sigmoid but still has a fixed range.
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Activation functions: ReLU
h(i) = �i(W

(i)h(i�1) + b(i))
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§ Rectified Linear Unit (ReLU) is the de 
facto standard in deep learning:

§ Unbounded range so it never saturates 
(i.e., activation can increase indefinitely).

§ Very strong empirical results.

ReLU(z) = max(z, 0)



Activation functions: softplus
h(i) = �i(W

(i)h(i�1) + b(i))
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§ There have been many variants of 
ReLUs proposed in recent years, e.g.,

§ Similar to ReLU but smoother. 
§ Expensive derivative compared to ReLU.

softplus(z) = ln(1 + ex)
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Regularization

§ We can combat overfitting in neural networks 
by adding regularization.

§ Standard approach is to apply L2-
regularization to certain layers: w(1)
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Regularized 
loss

Original loss

Frobenius norm of 
hidden layer weights 

(“Frobenius” = 2-norm 
for matrices)

2-norm of 
output 
weights



Complex architectures
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§ Neural network architectures can 
get very complicated!

§ E.g., might want to combine 
feature information from different 
modalities (e.g., text and images) 
using different networks.

§ Many more complex architectures 
will be covered in upcoming 
lectures!

Text 
features

Image features



How are we going to train these models?
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§ As long as all the operations are differentiable (or “sub-differentiable”) we can 
always just apply the chain rule and compute the derivatives.

§ But manually computing the gradient would be very painful/tedious!
§ Need to recompute every time we modify the architecture…
§ Lots of room for minor bugs in the code…

§ Solution: Automatically compute the gradient.



Computation graphs

§ A very simple “neural network” (i.e., 
computation graph):

§ Data is transformed at the nodes and 
“flows” allow the arrows.

§ a and b are source nodes (i.e., the 
input) and e	is the sink (i.e., the 
output).
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c = a+ b

d = b+ 1

e = c ⇤ d

[Image and inspiration credit: 
http://colah.github.io/posts/2015-08-Backprop/]



Computation graphs
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§ The forward pass in a 
computational graph =                     
setting the source 
variables/nodes and determining 
the sink/output value.

[Image and inspiration credit: 
http://colah.github.io/posts/2015-08-Backprop/]



Derivatives on computation graphs

William L. Hamilton, McGill University and Mila 14

§ We can use basic calculus to 
compute the derivatives on the 
edges.

§ Derivative tells us: If I change one 
node by one unit, how much 
does this impact another node?

[Image and inspiration credit: 
http://colah.github.io/posts/2015-08-Backprop/]



Derivatives on computation graphs
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§ But what if we want to compute the derivative 
between distant nodes?

[Image and inspiration credit: 
http://colah.github.io/posts/2015-08-Backprop/]



Derivatives on computation graphs
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§ But what if we want to compute the derivative 
between distant nodes?

§ E.g., consider how e is affected by a. 
§ Change a at a speed of 1.
§ Then c also changes at a speed of 1. 
§ And, c changing at a speed of 1 causes e to change at 

a speed of 2. 
§ So e changes at a rate of 1x2 with respect to a.

[Image and inspiration credit: 
http://colah.github.io/posts/2015-08-Backprop/]



Derivatives on computation graphs

William L. Hamilton, McGill University and Mila 17

§ But what if we want to compute the derivative 
between distant nodes?

§ E.g., consider how e is affected by a. 
§ Change a at a speed of 1.
§ Then c also changes at a speed of 1. 
§ And, c changing at a speed of 1 causes e to change at 

a speed of 2. 
§ So e changes at a rate of 1x2 with respect to a.

§ General rule: sum over all possible paths from 
one node to the other, multiplying the derivatives 
on each edge of the path, e.g. 

@e

@b
= 1 ⇤ 2 + 1 ⇤ 3 [Image and inspiration credit: 

http://colah.github.io/posts/2015-08-Backprop/]



Derivatives on computation graphs
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§ But what if we want to compute the derivative 
between distant nodes?

§ E.g., consider how e is affected by a. 
§ Change a at a speed of 1.
§ Then c also changes at a speed of 1. 
§ And, c changing at a speed of 1 causes e to change at 

a speed of 2. 
§ So e changes at a rate of 1x2 with respect to a.

§ General rule: sum over all possible paths from 
one node to the other, multiplying the derivatives 
on each edge of the path, e.g. 

@e

@b
= 1 ⇤ 2 + 1 ⇤ 3

“Sum over paths” idea 
is just chain rule!

[Image and inspiration credit: 
http://colah.github.io/posts/2015-08-Backprop/]



Challenge: combinatorial explosion
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@Z

@X
= ↵� + ↵✏+ ↵⇣ + �� + �✏+ �⇣ + �� + �✏+ �⇣

§ Naively summing over paths (i.e.
naively applying the chain rule) can 
lead to combinatorial explosion!

§ Number of paths between two 
nodes can be exponential in the 
number of graph edges!

3x3=9 paths between X and Z….

[Image and inspiration credit: 
http://colah.github.io/posts/2015-08-Backprop/]



Challenge: combinatorial explosion
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@Z

@X
= ↵� + ↵✏+ ↵⇣ + �� + �✏+ �⇣ + �� + �✏+ �⇣

§ Naively summing over paths (i.e.
naively applying the chain rule) can 
lead to combinatorial explosion!

§ Number of paths between two 
nodes can be exponential in the 
number of graph edges!

§ Idea: Factor the paths! @Z

@X
= (↵+ � + �)(� + ✏+ ⇣)



Factoring paths
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§ Forward mode
§ Goes from source(s) to sink.
§ At each node, sum all the 

incoming edges/derivatives.



Factoring paths
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§ Forward mode
§ Goes from source(s) to sink.
§ At each node, sum all the 

incoming edges/derivatives.

§ Reverse mode:
§ Goes from sink to source(s).
§ At each node, sum all the 

outgoing edges/derivatives.



Factoring paths
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§ Forward mode
§ Goes from source(s) to sink.
§ At each node, sum all the 

incoming edges/derivatives.

§ Reverse mode:
§ Goes from sink to source(s).
§ At each node, sum all the 

outgoing edges/derivatives.

§ Both only touch each edge once!



Computational savings: Forward-mode
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§ Run forward mode from the source 
b to the sink e.

§ Note that we get the derivative of 
each intermediate edge as well!



Computational savings: Forward-mode
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§ Run forward mode from the source 
b to the sink e.

§ Note that we get the derivative of 
each intermediate edge as well!

§ But in neural networks, we want 
the derivative of the output/loss 
w.r.t. all the previous layers…



Computational savings: Backward mode
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§ Run backward mode from the sink 
e to the sources a	and b.

§ Note that we get the derivative of 
each intermediate edge as well!



Computational savings: Backward mode
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§ Run backward mode from the sink 
e to the sources a	and b.

§ Note that we get the derivative of 
each intermediate edge as well!

§ We get the derivative w.r.t. the 
output in one pass!



Automated differentiation vs. backpropagation
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§ Reverse-mode automatic differentiation (RV-AD) can efficiently 
compute the derivative of every node in a computation graph.

§ Neural networks are just computation graphs!

§ We generally call RV-AD “backpropagation” in the context of 
neural networks and deep learning, since we are propagating the 
derivative/error backwards from the output node. 



Automated differentiation in practice
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§ Many automated differentiation frameworks exist.
§ Basic derivatives are hard-coded (often called “kernels”) and 

everything else computed via automated differentiation. 
§ Nearly all based on Python/NumPy.
§ You specify:

§ The forward model (i.e., the computation graph).
§ The training examples and training schedule (e.g., how the 

points are batched together).
§ The optimization details (e.g., loss function, learning rate).

§ The framework takes care of the derivative computations!



Convergence of backpropagation
§ If the learning rate is appropriate, the algorithm is guaranteed to converge to a 

local minimum of the cost function.
§ NOT the global minimum. (Can be much worse.)
§ There can be MANY local minimum.
§ Use random restarts = train multiple nets with different initial weights.
§ In practice, the solution found is often good (i.e., local minima are not a 

big problem in practice)…

§ Training can take thousands of iterations – CAN  BE VERY SLOW!  But using 
network after training is generally fast.
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Overtraining
§ Traditional overfitting is concerned with the number of parameters vs. the number 

of instances
§ In neural networks: related phenomenon called overtraining occurs when weights 

take on large magnitudes, i.e. unit saturation
§ As learning progresses, the network has more active parameters.Overtraining in feed-forward networks
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• Traditional overfitting is concerned with the number of parameters vs.
the number of instances

• In neural networks there is an additional phenomenon called overtraining
which occurs when weights take on large magnitudes, pushing the
sigmoids into saturation

• E�ectively, as learning progresses, the network has more actual
parameters

• Use a validation set to decide when to stop training!
• Regularization is also very e�ective

COMP-652, Lecture 5 - September 20, 2012 37

More application-specific tricks

• If there is too little data, it can be perturbed by random noise; this helps
escape local minima and gives more robust results

• In image classification and pattern recognition tasks, extra data can be
generated, e.g., by applying transformations that make sense

• Weight sharing can be used to indicate parameters that should have the
same value based on prior knowledge

• In this case, each update is computed separately using backprop, then
the tied parameters are updated with an average

COMP-652, Lecture 5 - September 20, 2012 38
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Overtraining
§ Traditional overfitting is concerned with the number of parameters vs. the number 

of instances
§ In neural networks: related phenomenon called overtraining occurs when weights 

take on large magnitudes, i.e. unit saturation
§ As learning progresses, the network has more active parameters.

§ Use validation set to decide when to stop.
§ # training updates is a hyper-parameter.

Overtraining in feed-forward networks
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More application-specific tricks

• If there is too little data, it can be perturbed by random noise; this helps
escape local minima and gives more robust results

• In image classification and pattern recognition tasks, extra data can be
generated, e.g., by applying transformations that make sense

• Weight sharing can be used to indicate parameters that should have the
same value based on prior knowledge

• In this case, each update is computed separately using backprop, then
the tied parameters are updated with an average
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Choosing the learning rate
§ Backprop is very sensitive to the choice of learning rate.

§ Too large ⇒ divergence.
§ Too small ⇒ VERY slow learning.
§ The learning rate also influences the ability to escape local optima.

§ The learning rate is a critical hyperparameter. 
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Adaptive optimization algorithms
§ It is now standard to use “adaptive” optimization algorithms.

§ These approaches modify the learning rate adaptively depending on how 
the training is progressing.

§ Adam, RMSProp, and AdaGrad are popular approaches, with Adam 
being the de facto standard in deep learning. 
§ All of these approaches scale the learning rate for each parameter based 

on statistics of the history of gradient updates for that parameter.
§ Intuition: increase the update strength for parameters that have had smaller 

updates in the past.
William L. Hamilton, McGill University and Mila 34



Adding momentum
§ At each iteration of gradient descent, we are computing an update based 

based on the derivative of the current (mini)batch of training examples:

�iw = ↵
@J

@w
Update for 

weight vector

Derivative of error 
w.r.t. weights for 
current minibatch

w �iw
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Adding momentum
§ On i’th gradient descent update, instead of:

We do:

The second term is called momentum

�iw = ↵
@J

@w

�iw = ↵
@J

@w
+ ��i�1w
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Adding momentum
§ On i’th gradient descent update, instead of:

We do:

The second term is called momentum

Advantages:
§ Easy to pass small local minima.
§ Keeps the weights moving in areas where the error is flat.

Disadvantages:
§ With too much momentum, it can get out of a global maximum!
§ One more parameter to tune, and more chances of divergence

�iw = ↵
@J

@w

�iw = ↵
@J

@w
+ ��i�1w
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What you should know
§ Basic generalizations of neural networks: activation functions, 

regularization, and complex architectures
§ The concept of a computation graph.
§ The basics of automated differentiation (reverse and forward mode) and 

backpropagation.
§ The issue of overtraining.
§ Optimization hyperparameters for backpropagation: learning rate, 

momentum, adaptive optimization algorithms
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