COMP 451 Fundamentals of Machine Learning Lecture 21 - Neural Networks

William L. Hamilton

* Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor's written permission.

Recall the perceptron

Decision surface of a perceptron

- Single perceptron can represent linear boundaries.
- To represent non-linearly separate functions (e.g. XOR), we could use a network of stacked perceptron-like elements.
- If we connect perceptrons into networks, the error surface for the network is not differentiable (because

(a)

(b) of the hard threshold).

Example: A network representing XOR

 decision boundaries above

Recall the sigmoid function

Sigmoid provide "soft threshold", whereas perceptron provides "hard threshold"

- It has the following nice property: $\frac{d \sigma(z)}{d z}=\sigma(z)(1-\sigma(z))$

We can derive a gradient descent rule to train:

- One sigmoid unit -> multi-layer networks of sigmoid units.

Feed-forward neural networks

- We are stacking simple models with sigmoid output functions.
- (I.e., basically stacking logistic regression models)
- "Hidden" units are the output of the sigmoid/logistic models in the stack.
- Note that unlike a Boltzmann machine, the connections are directed and information only

$$
\begin{aligned}
& h_{i}=\sigma\left(\mathbf{w}_{i}^{\top} \mathbf{x}+b_{i}\right), \forall i \\
& \text { Hidden units are linear + sigmoid } \\
& \text { activation, i.e., analogous to } \\
& \text { logistic regression. }
\end{aligned}
$$ flows in one direction!

Feed-forward neural networks

Feed-forward neural networks

Hidden units are linear function + sigmoid applied to input.

Feed-forward neural networks

Feed-forward neural networks

Output unit: Linear function of the hidden units followed by an "activation function", $\phi_{\text {out }}$.

$$
h_{i}=\sigma\left(\mathbf{w}_{i}^{\top} \mathbf{x}+b_{i}\right), \forall i
$$

Feed-forward neural networks

Regression: $\phi_{\text {out }}(z)=z$

Feed-forward neural networks

- It is possible to have multiple output units.
- E.g., for multi-label classification.

Feed-forward neural networks

- It is possible to stack more than one hidden layer.
- This is known as the "depth" of the network.

$$
\mathbf{h}^{(1)}=\sigma\left(\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}^{(1)}\right) \rightarrow \mathbf{h}^{(2)}=\sigma\left(\mathbf{W}^{(2)} \mathbf{h}^{(1)}+\mathbf{b}^{(2)}\right) \rightarrow \hat{\mathbf{y}}=\phi_{\text {out }}\left(\mathbf{W}_{\text {out }} \mathbf{h}^{(2)}+\mathbf{b}_{\text {out }}\right)
$$

Why this name?

- In feed-forward networks the output of units in layer j become input to the units in layers $\mathrm{j}+1$.
- No cross-connection between units in the same layer.
- No backward connections from layers downstream
- In fully-connected networks, all units in layer j provide input to all units in layer $\mathrm{j}+1$.

Fully-connected networks

Fully connected networks are far more common!

Feed-forward neural networks

- In general, we have an input layer, H hidden layers, and an output layer.
- Computing the output is called running the "forward pass":

$$
\begin{aligned}
& \mathbf{h}^{0}=\mathbf{x} \\
& \text { for } \mathrm{i}=1 \ldots \mathrm{H}: \\
& \quad \mathbf{h}^{(i)}=\sigma\left(\mathbf{W}^{(i)} \mathbf{h}^{(i-1)}+\mathbf{b}^{(i)}\right) \\
& \hat{\mathbf{y}}=\phi_{\text {out }}\left(\mathbf{W}_{\text {out }} \mathbf{h}^{(H)}+\mathbf{b}_{\text {out }}\right)
\end{aligned}
$$

Initialize

Compute each hidden layer sequentially

Compute the output

Learning in feed-forward neural networks

- Assume the network structure (units + connections) is given.
- The learning problem is finding a good set of weights to minimize the error at the output of the network.
- Approach: gradient descent, because the form of the hypothesis formed by the network is:
- Differentiable! Because of the choice of sigmoid units.
- Very complex! Hence direct computation of the optimal weights is not possible.

Gradient-descent preliminaries for NN

- Take regression as a simple case (i.e., the y values are one-dimensional and real-valued).
- Assume we have a fully-connected network with one hidden layer.
- We want to compute the weight update after seeing a single training example $<x, y>$.
- We are using the squared loss: $J(y, \hat{y})=\frac{1}{2}(\hat{y}-y)^{2}$

Gradient-descent update for the output node

$$
\frac{\partial J}{\partial \mathbf{w}_{\mathrm{out}}}=\frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \mathbf{w}_{\mathrm{out}}}
$$

Basic Neural Net

$$
\mathbf{W}=\left[\begin{array}{ll}
\mathbf{w}_{1}^{\top} \\
\mathbf{w}_{2}^{\top}
\end{array}\right] \quad \begin{aligned}
& \mathbf{h}=\sigma(\mathbf{W} \mathbf{x}+\mathbf{b}) \\
& \hat{y}=\mathbf{w}_{\mathrm{out}}^{\top} \mathbf{h}+b_{\mathrm{out}}
\end{aligned}
$$

Gradient-descent update for the output node

$$
\begin{aligned}
\frac{\partial J}{\partial \mathbf{w}_{\text {out }}} & =\frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \mathbf{w}_{\text {out }}} \\
& =(\hat{y}-y) \frac{\partial \hat{y}}{\partial \mathbf{w}_{\text {out }}} \quad \begin{array}{l}
\text { Recall that: } \\
J(y, \hat{y})=\frac{1}{2}(\hat{y}-y)^{2}
\end{array}
\end{aligned}
$$

Basic Neural Net

Gradient-descent update for the output node

$$
\begin{aligned}
\frac{\partial J}{\partial \mathbf{w}_{\mathrm{out}}} & =\frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \mathbf{w}_{\mathrm{out}}} \quad \begin{array}{l}
\text { Recall tha } \\
\hat{y}=\mathbf{w}_{\mathrm{ou}}^{\top}
\end{array} \\
& =(\hat{y}-y) \frac{\partial \hat{y}}{\partial \mathbf{w}_{\mathrm{out}}} \\
& =(\hat{y}-y) \frac{\partial\left(\mathbf{w}_{\mathrm{out}} \mathbf{h}+b_{\mathrm{out}}\right)}{\partial \mathbf{w}_{\mathrm{out}}}
\end{aligned}
$$

Basic Neural Net

$$
\mathbf{W}=\left[\begin{array}{l}
\mathbf{w}_{1}^{\top} \\
\mathbf{w}_{2}^{\top}
\end{array}\right] \quad \begin{aligned}
& \mathbf{h}=\sigma(\mathbf{W} \mathbf{x}+\mathbf{b}) \\
& \hat{y}=\mathbf{w}_{\mathrm{out}}^{\top} \mathbf{h}+b_{\mathrm{out}}
\end{aligned}
$$

Gradient-descent update for the output node

$$
\begin{aligned}
& \frac{\partial J}{\partial \mathbf{w}_{\text {out }}}=\frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \mathbf{w}_{\text {out }}} \\
&=(\hat{y}-y) \frac{\partial \hat{y}}{\partial \mathbf{w}_{\text {out }}} \\
&=(\hat{y}-y) \frac{\partial\left(\mathbf{w}_{\text {out }} \mathbf{h}+b_{\text {out }}\right)}{\partial \mathbf{w}_{\text {out }}} \\
&=(\hat{y}-y) \mathbf{h} \\
&=\delta_{\text {out }} \mathbf{h} \quad \text { We can think of this of } \\
& \quad \quad \text { this as the "error signal" at } \\
& \text { the output node. }
\end{aligned}
$$

Basic Neural Net

$$
\mathbf{W}=\left[\begin{array}{l}
\mathbf{w}_{1}^{\top} \\
\mathbf{w}_{2}^{\top}
\end{array}\right] \quad \begin{aligned}
& \mathbf{h}=\sigma(\mathbf{W} \mathbf{x}+\mathbf{b}) \\
& \hat{y}=\mathbf{w}_{\mathrm{out}}^{\top} \mathbf{h}+b_{\mathrm{out}}
\end{aligned}
$$

Gradient-descent update for the hidden node

$\frac{\partial J}{\partial \mathbf{w}_{i}}$

We want to determine the derivative of the error w.r.t. to the weights of the hidden node.

$$
\mathbf{W}=\left[\begin{array}{ll}
\mathbf{w}_{1}^{\top} \\
\mathbf{w}_{2}^{\top}
\end{array}\right] \begin{aligned}
& \mathbf{h}=\sigma(\mathbf{W} \mathbf{x}+\mathbf{b}) \\
& \hat{y}=\mathbf{w}_{\mathrm{out}}^{\top} \mathbf{h}+b_{\mathrm{out}}
\end{aligned}
$$

Basic Neural Net

Gradient-descent update for the hidden node

$\frac{\partial J}{\partial \mathbf{w}_{i}}=\frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \mathbf{w}_{j}}$
Again, apply the
chain rule

Basic Neural Net

$$
\mathbf{W}=\left[\begin{array}{c}
\mathbf{w}_{1}^{\top} \\
\mathbf{w}_{2}^{\top}
\end{array}\right] \begin{aligned}
& \mathbf{h}=\sigma(\mathbf{W} \mathbf{x}+\mathbf{b}) \\
& \hat{y}=\mathbf{w}_{\mathrm{out}}^{\top} \mathbf{h}+b_{\mathrm{out}}
\end{aligned}
$$

Gradient-descent update for the hidden node

$$
\begin{aligned}
\frac{\partial J}{\partial \mathbf{w}_{i}} & =\frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \mathbf{w}_{j}} \\
& =\delta_{\text {out }} \frac{\partial \hat{y}}{\partial \mathbf{w}_{j}}
\end{aligned}
$$

We already
compute the error
at the output node,
so we can just
substitute this in.

Basic Neural Net

Gradient-descent update for the hidden node

$$
\begin{aligned}
\frac{\partial J}{\partial \mathbf{w}_{i}} & =\frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \mathbf{w}_{j}} \\
& =\delta_{\text {out }} \frac{\partial \hat{y}}{\partial \mathbf{w}_{j}} \\
& =\delta_{\text {out }} \frac{\partial \hat{y}}{\partial h_{j}} \frac{\partial h_{j}}{\partial \mathbf{w}_{j}}
\end{aligned}
$$

Recall that:
$h_{i}=\sigma\left(\mathbf{w}_{i}^{\top} \mathbf{x}+b_{i}\right), \forall i$
And again, apply the chain rule....

Gradient-descent update for the hidden node

$$
\begin{aligned}
\frac{\partial J}{\partial \mathbf{w}_{i}} & =\frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \mathbf{w}_{j}} \\
& =\delta_{\text {out }} \frac{\partial \hat{y}}{\partial \mathbf{w}_{j}} \\
& =\delta_{\text {out }} \frac{\partial \hat{y}}{\partial h_{j}} \frac{\partial h_{j}}{\partial \mathbf{w}_{j}} \\
& =\delta_{\text {out }} w_{\text {out }, j} \frac{\partial h_{j}}{\partial \mathbf{w}_{j}}
\end{aligned}
$$

Recall that
$\hat{y}=\mathbf{w}_{\text {out }}^{\top} \mathbf{h}+b_{\text {out }}$
and note that the
j'th hidden node
only interacts with
the j'th value in $\mathbf{w}_{\text {out }}$

Basic Neural Net

$$
\mathbf{W}=\left[\begin{array}{ll}
\mathbf{w}_{1}^{\top} \\
\mathbf{w}_{2}^{\top}
\end{array}\right] \begin{aligned}
& \mathbf{h}=\sigma(\mathbf{W} \mathbf{x}+\mathbf{b}) \\
& \hat{y}=\mathbf{w}_{\mathrm{out}}^{\top} \mathbf{h}+b_{\mathrm{out}}
\end{aligned}
$$

Gradient-descent update for the hidden node

$$
\begin{array}{rl|l|}
\frac{\partial J}{\partial \mathbf{w}_{i}} & =\frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \mathbf{w}_{j}} & \begin{array}{l}
\text { Recall that } \\
h_{i}=\sigma\left(\mathbf{w}_{i}^{\top} \mathbf{x}+b_{i}\right), \forall i \\
\text { and the identity }
\end{array} \\
& =\delta_{\text {out }} \frac{\partial \hat{y}}{\partial \mathbf{w}_{j}} & \begin{array}{l}
\frac{\partial \sigma(z)}{\partial z}=\sigma(z)(1-\sigma(z))
\end{array} \\
& =\delta_{\text {out }} \frac{\partial \hat{y}}{\partial h_{j}} \frac{\partial h_{j}}{\partial \mathbf{w}_{j}} & \\
& =\delta_{\text {out }} w_{\text {out }, j} \frac{\partial h_{j}}{\partial \mathbf{w}_{j}} \\
& =\delta_{\text {out }} w_{\text {out }, j} \sigma\left(\mathbf{w}_{j}^{\top} \mathbf{x}+b\right)\left(1-\sigma\left(\mathbf{w}_{j}^{\top} \mathbf{x}+b\right)\right) \mathbf{x}
\end{array}
$$

Basic Neural Net

$$
\mathbf{W}=\left[\begin{array}{c}
\mathbf{w}_{1}^{\top} \\
\mathbf{w}_{2}^{\top}
\end{array}\right] \begin{aligned}
& \mathbf{h}=\sigma(\mathbf{W} \mathbf{x}+\mathbf{b}) \\
& \hat{y}=\mathbf{w}_{\mathrm{out}}^{\top} \mathbf{h}+b_{\mathrm{out}}
\end{aligned}
$$

Gradient-descent update for the hidden node

$$
\begin{aligned}
& \frac{\partial J}{\partial \mathbf{w}_{i}}=\frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \mathbf{w}_{j}} \\
&=\delta_{\text {out }} \frac{\partial \hat{y}}{\partial \mathbf{w}_{j}} \\
&=\delta_{\text {out }} \frac{\partial \hat{y}}{\partial h_{j}} \frac{\partial h_{j}}{\partial \mathbf{w}_{j}} \\
&=\delta_{\text {out }} w_{\text {out }, j} \frac{\partial h_{j}}{\partial \mathbf{w}_{j}} \\
&=\delta_{\text {out }} w_{\text {out }, j} \sigma\left(\mathbf{w}_{j}^{\top} \mathbf{x}+b\right)\left(1-\sigma\left(\mathbf{w}_{j}^{\top} \mathbf{x}+b\right)\right) \mathbf{x} \\
&=\delta_{h_{j}} \mathbf{x} \quad \text { We can think of this of this a the } \\
& \text { "error signal" at the hidden node. }
\end{aligned}
$$

Basic Neural Net

$$
\mathbf{W}=\left[\begin{array}{ll}
\mathbf{w}_{1}^{\top} \\
\mathbf{w}_{2}^{\top}
\end{array}\right] \quad \begin{aligned}
& \mathbf{h}=\sigma(\mathbf{W} \mathbf{x}+\mathbf{b}) \\
& \\
& \hat{y}=\mathbf{w}_{\mathrm{out}}^{\top} \mathbf{h}+b_{\mathrm{out}}
\end{aligned}
$$

Gradient-descent update for the hidden node

$$
\begin{aligned}
& \frac{\partial J}{\partial \mathbf{w}_{i}}=\frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \mathbf{w}_{j}} \quad \begin{array}{c}
\text { The error at the hidden node is } \\
\text { a function of the error at the } \\
\text { output, and we are }
\end{array} \\
&=\delta_{\text {out }} \frac{\partial \hat{y}}{\partial \mathbf{w}_{j}} \quad \begin{array}{c}
\text { "propagating" this error } \\
\text { backwards through the } \\
\text { network. }
\end{array} \\
&=\delta_{\text {out }} \frac{\partial \hat{y}}{\partial h_{j}} \frac{\partial h_{j}}{\partial \mathbf{w}_{j}} \quad \\
&=\delta_{\text {out }} w_{\text {out }, j} \frac{\partial h_{j}}{\partial \mathbf{w}_{j}} \\
&=\delta_{\text {out }} w_{\text {out }, j} \sigma\left(\mathbf{w}_{j}^{\top} \mathbf{x}+b\right)\left(1-\sigma\left(\mathbf{w}_{j}^{\top} \mathbf{x}+b\right)\right) \mathbf{x} \\
&=\delta_{h_{j}} \mathbf{x} \quad \text { We can think of this of this a the } \\
& \text { "error signal" at the hidden node. }
\end{aligned}
$$

Basic Neural Net

Stochastic gradient descent

- Initialize all weights to small random numbers.
- Repeat until convergence:
- Pick a training example, x.
- Feed example through network to compute output y.

Forward
pass

- For the output unit, compute the correction:

$$
\frac{\partial J}{\partial \mathbf{w}_{\text {out }}}=\delta_{\text {out }} \mathbf{x}
$$

Backpropagation

- For each hidden unit j, compute its share of the correction:

$$
\frac{\partial J}{\partial \mathbf{w}_{j}}=\delta_{\text {out }} w_{\text {out }, j} \sigma\left(\mathbf{w}_{j}^{\top} \mathbf{x}+b\right)\left(1-\sigma\left(\mathbf{w}_{j}^{\top} \mathbf{x}+b\right)\right) \mathbf{x}
$$

- Update each network weight:

$$
\mathbf{w}_{j}=\mathbf{w}_{j}-\alpha \frac{\partial J}{\partial \mathbf{w}_{j}} \forall j, \quad \mathbf{w}_{\text {out }}=\mathbf{w}_{\text {out }}-\alpha \frac{\partial J}{\partial \mathbf{w}_{\text {out }}}
$$

Organizing the training data

- Stochastic gradient descent: Compute error on a single example at a time (as in previous slide).
- Batch gradient descent: Compute error on all examples.
- Loop through the training data, accumulating weight changes.
- Update all weights and repeat.
- Mini-batch gradient descent: Compute error on small subset.
" Randomly select a "mini-batch" (i.e. subset of training examples).
- Calculate error on mini-batch, apply to update weights, and repeat.

Expressiveness of feed-forward NN

A neural network with no hidden layers?

- Same representational power as logistic/linear regression or a perceptron; Boolean AND, OR, NOT, but not XOR.

Expressiveness of feed-forward NN

A neural network with no hidden layers?

- Same representational power as logistic/linear regression or a perceptron; Boolean AND, OR, NOT, but not XOR.

A neural network with a single hidden layer?

- Can represent every boolean function, but might require a number of hidden units that is exponential in the number of inputs.
- Every bounded continuous function can be approximated with arbitrary precision by a boolean function.

Expressiveness of feed-forward NN

A neural network with no hidden layers?

- Same representational power as logistic/linear regression or a perceptron; Boolean AND, OR, NOT, but not XOR.

A neural network with a single hidden layer?

- Can represent every boolean function, but might require a number of hidden units that is exponential in the number of inputs.
- Every bounded continuous function can be approximated with arbitrary precision by a boolean function.

A neural network with two hidden layers?

- Any function can be approximated to arbitrary accuracy by a network with two hidden layers.

Generalizing the feed-forward NN

- Can use arbitrary output activation functions.
- In practice, we do not necessarily need to use a sigmoid activation in the hidden layer.
- We can make networks as deep as we want.
- We can add regularization.
- But how to compute these nasty derivatives..? (Next lecture!)

$\mathbf{h}^{(i)}=\phi_{i}\left(\mathbf{W}^{(i)} \mathbf{h}^{(i-1)}+\mathbf{b}^{(i)}\right)$
Can be an arbitrary non-linear activation function

