
Chapter 9

Linear Regression

The optimization and loss function view of machine learning allows us to easily
generalize to di↵erent kinds of target outputs. So far in this course we have
been focused on the supervised classification task, where the target outputs are
categorical. Using the loss function perspective, we can easily generalize and
design a model for real-valued targets, i.e., the regression task. In this chapter,
we introduce the standard loss function used for regression and discuss how it
can be combined with a basic linear model.

Motivating example

As a motivating example, consider a (synthetic) medical example, where we aim
to predict how long (e.g., the number of days) it will take for a cancer patient
to go into remission after receiving treatment. In a simple univariate model, we
might use the size of a tumour (e.g., the diameter in millimeters) as a feature for
the prediction. Here, our input and output values are both continuous, making
regression a natural fit for this task.1 A visual illustration of what this data
might look like is shown in Figure 9.1.

9.1 Loss Function for Regression

One might imagine that a natural loss function for linear regression would be
the mean absolute error (MAE)

L(y, ŷ) = |y � ŷ|. (9.1)

The MAE is natural because it simply measures the absolute value of the dif-
ference between the prediction ŷ and the ground truth y. This is sensible for
regression because this loss is well-defined for the entire range of real values. It
also fits with the intuition that a regression loss should measure the distance
between the prediction and the target.

1We assume that fractional values for days are permissible.

71

72 CHAPTER 9. LINEAR REGRESSION

0 20 40 60 80 100
0

20

40

60

80

100

x tumor size (mm)

y
d
ay
s
to

re
m
is
si
on

Figure 9.1: Illustration of a simple univariate regression dataset, with the single
feature (i.e., tumor size) on the x-axis and the target (i.e., time to remission)
on the y-axis.

However, the issue with the MAE loss is that it is not smooth and easily
di↵erentiable, due to the use of the absolute value. As an alternative, the
standard loss function used in regression is the mean-squared error (MSE):

L(y, ŷ) = ky � ŷk
2 (9.2)

= (y � ŷ)2. (9.3)

Like the MAE loss, the MSE has a natural interpretation. In this case we are
taking the (squared) Euclidean distance between the prediction and the target,
rather than absolute distance. The Euclidean distance is a natural measure
of distance in Euclidean space, and taking the square is simply necessary to
ensure that this function is twice di↵erentiable. Compared to the MAE, the
main di↵erence of the MSE is that its quadratic nature assigns relatively higher
penalties as the magnitude of the errors increase. In other words, the MSE
tends to penalize larger errors more aggressively, compared to the MAE.

9.2 A Linear Regression Model

We can combine the MSE with a linear model to obtain one of the most classic
and essential machine learning approaches: linear regression. Similar to the
previous linear models covered in this course, we define the prediction function
as

f(x) = w
>
x, (9.4)

9.2. A LINEAR REGRESSION MODEL 73

0 20 40 60 80 100
0

20

40

60

80

100

x tumor size (mm)

y
d
ay
s
to

re
m
is
si
on

Figure 9.2: Illustration of the best fit regression line for the (artificial) medical
prediction dataset.

where w 2 Rm is a vector of learnable parameters and x 2 Rm is a vector of
input features. Note that as with previous linear models, we must assume that
one of the input features is a constant value. Otherwise, we must add an explicit
bias/intercept term b to the equation, making it

f(x) = b+w
>
x. (9.5)

As usual, we omit the explicit intercept term without loss of generality and for
notational convenience.

Taking the linear model into account, the full empirical risk minimization
for linear regression can be written as:

arg min
w2Rm

R(w) = arg min
w2Rm

1

|Dtrn|

X

(x,y)2Dtrn

(y �w
>
x)2 (9.6)

= arg min
w2Rm

1

n
kXtrnw �Ytrnk

2
. (9.7)

Here, we use Xtrn 2 Rn⇥m to denote a matrix with n = |Dtrn| rows, with
each row corresponding to a vector of training features (i.e., Xtrn[:, i] = xi).
Similarly, Ytrn 2 Rn is a vector with each entry corresponding to a di↵erent
training target (i.e., Ytrn[i] = yi). In intuitive terms, we want to find the
linear model that minimizes the average squared Euclidean distance between
the prediction and the target.

74 CHAPTER 9. LINEAR REGRESSION

9.3 Optimizing Linear Regression

One option to optimize a linear regression model is to use gradient descent.
Using the vector notation of Equation 9.7, a full batch gradient descent approach
would result in the following update rule:

w
(k+1) = w

(k)
� ↵

(k)
rw

1

n
kXtrnw

(k)
�Ytrnk

2 (9.8)

= w
(k)

� ↵
(k)

rw
1

n
(Xtrnw

(k)
�Ytrn)

>(Xtrnw
(k)

�Ytrn) (9.9)

= w
(k)

� ↵
(k) 2

n
X

>
trn(Xtrnw

(k)
�Ytrn) (9.10)

= w
(k)

� ↵
(k) 2

n

⇣
X

>
trnXtrnw

(k)
�X

>
trnYtrn

⌘
. (9.11)

However, linear regression is also one of the models where a closed-form
solution is attainable for the minimizer. If we take the gradient, set to zero, and
solve, we get the following

rw
1

n
kXtrnw �Ytrnk

2 = 0 (9.12)

2

n

�
X

>
trnXtrnw �X

>
trnYtrn

�
= 0 (9.13)

X
>
trnXtrnw = X

>
trnYtrn (9.14)

w = (X>
trnXtrn)

�1
XtrnYtrn. (9.15)

9.3.1 Gradient descent or closed form?

Both the gradient descent and closed-form approaches have pros and cons.

Computational complexity The computational complexity of computing
the closed form solution is O(n2

m + n
3), since we need to compute and invert

the n ⇥ n matrix X
>
trnXtrn. In contrast, a single step of gradient descent has

time complexity O(n2
m), since its cost is dominated by the matrix multiplica-

tion to compute X
>
trnXtrn. Thus, gradient descent will have e�ciency benefits

when m << n (i.e., the number of features is less than the number of training
examples) and when the number of iterations K required to converge is much
less than n. In practice, minibatch stochastic gradient descent can also be used,
which has even cheaper iteration costs and can often converge equally fast as
full batch gradient descent.

Stability and interpretability One benefit of the closed-form solution is
that we do not need to rely on an iterative algorithm, which may lead to spuri-
ous or incorrect solutions (e.g., if the step size is incorrect). With the closed-form
solution, we can use an o↵-the-shelf matrix inversion algorithm, which guaran-
tees stability. In addition, we can detect ill-posed cases where X

>
trnXtrn is not

9.4. A MAXIMUM-LIKELIHOOD PERSPECTIVE 75

invertible. In these cases, the matrix X
>
trnXtrn is singular, which implies that

there is no unique solution to the optimization problem. This can happen—for
example—when m >> n, meaning we have too many features and not enough
training examples. The benefit of the closed-form solution is that we will gen-
erally detect this situation (e.g., our matrix inversion algorithm will give an
error), whereas gradient descent will end up producing a solution, which may
be unreasonable.

Flexibility The gradient descent approach has the upper hand when it comes
to flexibility. As we will see in later chapters, it is often advantageous to combine
di↵erent loss terms into a single optimization. The gradient descent approach
is able to accommodate such modifications gracefully, as long as the additional
loss terms are smooth, di↵erentiable, and preferably convex. On the other hand,
there is no guarantee that we can find a closed-form solution when combining
the MSE loss with other loss functions.

9.4 A Maximum-Likelihood Perspective

It is possible to derive the mean-squared error and the linear regression based on
the notion of maximum likelihood. However, the derivation is far less intuitive,
compared to the classification setting. In the linear regression setting, we assume
the following probabilistic model

p(y|x) = w
>
x+ ✏, (9.16)

where ✏ ⇠ N (0,�2) is random Gaussian noise with some constant variance �
2.

Equation 9.17 assumes that the distribution of the target values corresponds to
the additive combination of our deterministic prediction function w

>
x as well

as some Gaussian noise. Intuitively, we assume that our data is not a perfect
linear function, but that it corresponds to a linear function with some noise
added on top. Figure 9.3 illustrates this idea.

Another way of interpreting this assumption is that the data corresponds to
a normal distribution with a conditional mean centered around w

>
x

p(y|x) = N (w>
x,�

2), (9.17)

where N (w>
x,�

2) denotes a normal distribution with mean w
>
x and some

constant variance �
2. Equation 9.17 again implies that our target values are

normally distributed around the prediction line w
>
x.

76 CHAPTER 9. LINEAR REGRESSION

0 20 40 60 80 100
0

20

40

60

80

100

x tumor size (mm)

y
d
ay
s
to

re
m
is
si
on

0 20 40 60 80 100
0

20

40

60

80

100

x tumor size (mm)

y
d
ay
s
to

re
m
is
si
on

Figure 9.3: In the real world it is unlikely to encounter data that is perfectly
predicted by a linear function (left figure). For example, we would not expect
the size of a tumor to perfectly predict how many days before a patient went
into remission. Instead, we often encounter data that can be approximated by
a linear function, such as data that is roughly linear with additive noise (right
figure).

Now, if we consider the log-likelihood of this model, we obtain

logL(w,Dtrn) =
X

(x,y)2Dtrn

log

✓
1

�
p
2⇡

e
� (y�w>x)2

2�2

◆
(9.18)

=
X

(x,y)2Dtrn

� log(
p
2⇡�)�

(y �w
>
x)2

2�2
(9.19)

/ �

X

(x,y)2Dtrn

(y �w
>
x)2, (9.20)

where as usual we ignore the constant terms that do not depend on the parame-
ter in the final expression. Thus, under this probabilistic model, we can recover
that the maximizing the log-likelihood is equivalent to minimizing the MSE.

