
Chapter 3

Parametric Learning and

Perceptrons

In the previous chapter, we saw how a model can draw decision boundaries and
make predictions simply by looking at the nearest neighbors of test points. The
basic idea behind these instance-based models is that they can be lazy and just
store the training data to define our decision boundary.

There are downsides to lazy, instance-based approaches such as k-NNs, how-
ever. One issue is that these approaches can be memory intensive. We need to
store the entire training set in order to compute the nearest neighbors during
inference (i.e., at test time), which can be quite memory intensive. Another
issue is that instance-based approaches tend to have large time complexities for
inference. If we assume that we have m-dimensional features and that it takes
time O(m) to compute the distance between two points, then the inference cost
for a k-NN model is O(mn), where n is the number of training points. In other
words, we need to iterate over the entire training set every time we want to
make a prediction!

The key issue with instance-based methods is that they pay a price for not
doing a lot of work up front. Indeed, there is no cost for training these models;
we simply store the training data. However, the cost we pay is that these lazy
models are very expensive during inference.

At the other end of the spectrum—opposite from instance-based learning—
we have parametric models, which can be classified as eager approaches. The
key idea in eager (i.e., parametric) approaches is that we try to do a lot of
work up front to summarize our training idea. In particular, our goal is to
summarize our training data Dtrn into a small set of parameters ⇥, so that
these ⇥ parameters define our decision boundary. Again, the key distinction is
that instance-based models define the decision boundary implicitly based on the
training data, whereas parametric models summarize the training data into an
explicit parametric decision boundary.

17



18 CHAPTER 3. PARAMETRIC LEARNING AND PERCEPTRONS

3.1 Linear Decision Boundaries

Parametric models define their decision boundaries based on a set of parameters,
⇥, which are learned from the training data. But what are these parameters?
And what do these decision boundaries actually look like?

The simplest and by far the most popular kind of decision boundary is a
linear decision boundary. In the case of binary classification between a positive
class 1 and a negative class �1, a linear decision boundary means that the
decision criteria is a linear function of the input features.1 In other words,
assuming that we have a m-dimensional feature vector x for each data point,
we can write the prediction function for a basic linear model as

fLM(x) =

8
><

>:

1 if w>
x+ b > 0

�1 if w>
x+ b < 0

undefined otherwise

(3.1)

= sign
�
w

>
x+ b

�
, (3.2)

which means that we classify the point as positive if the expression w
>
xi + b is

positive and negative if the expression is negative. (The predictions for points
right on the decision boundary are undefined.) Note that the parameter vector

w and the bias term b are the parameters of our linear model (i.e., ⇥ = {w, b}).

Dot products, coe�cients, and bias terms In Equation 3.1, we used
dot-product vector notation to specify the linear decision boundary. We
can expand this notation to as follows:

w
>
x+ b = w[0]x[0] +w[1]x[1] + ...+w[m� 1]x[m� 1] + b, (3.3)

where we array index notation to denote di↵erent entries in them-dimensional
vectors. In other words, we can use the dot product between a feature vec-
tor x and a parameter vector w as a shorthand for a linear function.

Sometimes we will refer to the individual entries in the parameter vector
w[j] as feature coe�cients, since each feature coe�cient specifies the impact
of a particular feature on the prediction outcome. For example, suppose
we are classifying spam email and the fourth feature (i.e., x[4]) encodes the
number of spelling errors in the email. If we have a positive coe�cient for
this feature (i.e., w[4] > 0), then this would mean that increasing the num-
ber of spelling errors in an email would increase our likelihood of classifying
an email as spam.

The bias term b (which is also called the intercept term) is a parame-
ter in our linear model that does not depend on the features. Intuitively,
the bias term allows us to shift the overall predictions to be more positive
or negative; e.g., a large negative bias term b << 0 would bias our model

1We use �1 to denote the negative class—rather than 0—in this chapter because it sim-
plifies notation in many of our derivations. This change has no meaningful impact on the
learning problem.



3.2. PERCEPTRON LEARNING ALGORITHM 19

0 20 40 60 80 100
0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100

Figure 3.1: Example of dataset of positive points (red circles) and negative
points (blue squares) that can be perfectly separated by a linear decision bound-
ary. Note that having a bias term is essential to define a correct linear decision
boundary (right figure). Without a bias term, the decision boundary must go
through the origin, which makes perfect classification impossible on this dataset
(right figure).

towards making negative predictions overall. Including a bias term is essen-
tial. For example, there are datasets that can be perfectly separable using
a linear decision boundary, but where it is impossible to do so without a
bias term (see Figure 3.1).

In geometric terms, a linear decision boundary means that the feature space
is partitioned into two regions based on a linear boundary: a positive region and
a negative region. In two dimensions, it is easy to visualize this idea as a line
separating space into two regions (Figure 3.1). In higher dimensions, we must
use a hyperplane, which generalizes the notion of a straight line, to separate the
di↵erent regions (Figure 3.2).

Note that this kind of decision boundary is very di↵erent from the partition-
ing we obtained using k-nearest neighbors in the previous chapter. Whereas
k-NNs partitioned space into regions around each training point, the linear de-
cision boundary approach summarizes all the training data into a single decision
boundary, specified by the feature coe�cients w and the intercept term b.

3.2 Perceptron Learning Algorithm

In the previous section, we introduced the idea of making predictions based on a
linear decision boundary. But how can we actually learn this decision boundary?
In this section, we will introduce the simplest parametric learning algorithm:
the perceptron algorithm.

2Image credit: http://www.cs.cornell.edu/courses/cs4758/2012sp/materials/



20 CHAPTER 3. PARAMETRIC LEARNING AND PERCEPTRONS

Figure 3.2: Visualization of a hyperplane in a 3D space.2

Intuition: Learning from mistakes

The basic intuition behind the perceptron algorithm is that we want to learn a
decision boundary from our training data by iteratively correcting the predic-
tions that our model makes.

Suppose we start with a random guess for our decision boundary; e.g., we
start by guessing that w = 1 and that b = 1. If we use this naive decision
boundary to make a prediction on a training point (xi, yi), then we will likely
end up making an incorrect prediction. In particular, we will have that

sign(w>
xi + b) 6= yi, (3.4)

which is equivalent to the having that

yi(w
>
xi + b) < 0, (3.5)

i.e., an incorrect prediction implies that the sign of the prediction and true value
are opposite.

Given that we have made such an incorrect prediction, how can we improve
our model? The logic behind the perceptron algorithm is as follows.

• If we incorrectly classify a negative training point as positive, then we
need to shift our weights to make the prediction more negative for that
point.

• If we incorrectly classify a positive training point as negative, then we
need to shift our weights to make the prediction more positive for that
point.

• If we correctly classify a training point, then we should keep our parame-
ters as they are.



3.2. PERCEPTRON LEARNING ALGORITHM 21

One simple way to guarantee these properties is to update our model on incorrect
classifications using the rules

w
(new) = w

(old) + yixi (3.6)

b(new) = b(old) + yi. (3.7)

If we do such an update, we can guarantee that

yi

✓⇣
w

(new)
⌘>

xi + b(new)

◆
� yi

✓⇣
w

(old)
⌘>

xi + b(old)
◆
, (3.8)

which means that our model is never getting worse (i.e., always monotonically
improving) on this training point after such an update. Intuitively, we can think
that the update moves our parameters in the direction so that the prediction
and target have the same sign. This improvement guarantee follows from the
fact that

yi

✓⇣
w

(new)
⌘>

xi + b(new)

◆
= yi

⇣
(w(old) + xiyi)

>
xi + (b(old) + yi)

⌘

= yi

✓⇣
w

(old)
⌘>

xi + b(old) + x
>
i xiyi + yi

◆

= yi

✓⇣
w

(old)
⌘>

xi + b(old)
◆
+ x

>
i xiy

2
i + y2i

� yi

✓⇣
w

(old)
⌘>

xi + b(old)
◆
, (3.9)

where the last inequality holds due to the fact that x
>
x and y2i are always

positive. Note that if we want to further divide the yi term from the inequality
in Equation 3.9 then we need to account for the fact that the the inequality
would flip in the case where yi is negative, which gives rise to the natural
outcome that
8
<

:

⇣�
w

(new)
�>

xi + b(new)
⌘
�

⇣�
w

(old)
�>

xi + b(old)
⌘

if yi = 1
⇣�

w
(new)

�>
xi + b(new)

⌘


⇣�
w

(old)
�>

xi + b(old)
⌘

if yi = �1.
(3.10)

In other words, our prediction increases if the label is positive and decreases if
the label is negative.

Simplifying notation for the intercept term You may have noticed
that the notation for the linear model can become a bit cumbersome, since
we need to keep track of both the parameter vectorw as well as the intercept
term b. Indeed, for this reason it is actually quite common for researchers
to simply ignore the intercept term in their mathematical expressions.

Formally speaking, we do not simply ignore the intercept term. Instead,
we can assume that the data has a dummy feature added to account for the



22 CHAPTER 3. PARAMETRIC LEARNING AND PERCEPTRONS

intercept. To do this we simply add a new constant feature to all our
training points, i.e., every training point has a dummy feature x[0] = 1
prepended to its feature vector. Assuming that we have added this dummy
feature, we do not need to explicitly add a intercept term to the model,
since the coe�cient w[0] now plays this role, i.e.,

w
>
x = w[0]x[0] +w[1]x[1] + ...+w[m]x[m]

= w[0] +w[1]x[1] + ...+w[m]x[m],

since x[0] = 1 by design for all our training points. Note that adding
this dummy feature means that the dimension of our parameter vector is
now m + 1, assuming that our original dataset had m features. Unless

otherwise specified, it is always safe to assume that a dummy

feature has been added to the data in order to account for the

intercept term. Of course, sometimes we will explicitly write out the
intercept term (when it is useful for calculations), but we will much more
often use the simplification discussed above.

Formalizing the perceptron algorithm

The idea of correcting the models prediction on a single training point can be
extended to a general training algorithm. Instead simply making an update on a
single training point, we loop over the entire training data and iteratively update
our model. The full perceptron algorithm is summarized below. (Following the
discussion above, we omit the explicit intercept term for notational simplicity.)

Algorithm 1: Basic Perceptron Algorithm

input : training set Dtrn = {(xi, yi), i = 0, ..., n� 1};
max updates K

output: Parameters of a linear decision boundary ⇥ = {w}

w
(0) = 0

misclassifiedPoint = True
k = 0
while misclassifiedPoint and k < K do

misclassifiedPoint = False
for i = 0 to n� 1 do

if yi(w(k))>xi  0 then

misclassifiedPoint = True
w

(k+1) = w
(k) + yixi // update parameters

k = k + 1
break

end

end

end

Return w
(k)



3.3. ANALYZING THE PERCEPTRON ALGORITHM 23

As an input to this algorithm, we must provide the training data, as well
as one algorithm hyperparameter. In the case of the perceptron algorithm, our
single hyperparameter is the maximum number of updates we should do before
stopping the algorithm. This parameter ensures that the algorithm does not
end up in an infinite loop and allows us to specify an upper bound on the
computation time.

3.3 Analyzing the Perceptron Algorithm

One important attribute of the perceptron algorithm is that it comes with some
convergence guarantees, and this convergence analysis also reveals interesting
perspectives on how hard it is to separate a particular dataset using a linear
decision boundary.

Linear separability

Several times throughout this chapter, we have mentioned the idea of “sep-
arating” a dataset using a linear decision boundary. Here, we formalize this
notion.

Definition 1. A dataset D is linearly separable if and only if there there exists

some � > 0 and some set of parameters w
⇤
such that

yi(w
⇤)>xi � � (3.11)

for all (xi, yi) 2 D

Intuitively, a dataset is linearly separable if there exists a linear decision
boundary that can correctly classify all the points in the datasets. Of course,
not all datasets are linearly separable, and many datasets require non-linear

decision boundaries (see Figure 3.3 for an illustration).

Figure 3.3: Illustration of linear and non-linear decision boundaries.3

3Image credit: https://jtsulliv.github.io/perceptron/



24 CHAPTER 3. PARAMETRIC LEARNING AND PERCEPTRONS

Perceptron convergence theorem

A key property of the perceptron algorithm is that it is guaranteed to converge in
a finite number of iterations on linearly separable data. Note that by converged,
we mean that the algorithm is able to correctly classify all points in the training
set and reach the stopping condition for the while loop before timing-out due to
the maximum iterations hyperparameter. In other words, if we have a linearly
separable training dataset Dtrn, then we can guarantee that the perceptron
algorithm will be able to perfectly classify this dataset after running for a finite
number of iterations. However, if the dataset is not linearly separable, then we
cannot make any guarantees.

Formally, we can prove the following theorem.

Theorem 1. Assume that there exists some � > 0 and some set of optimal

parameters w
⇤
such that yi(w⇤)>xi � � for all (xi, yi) 2 Dtrn then there exists

some finite k⇤ such that perceptron algorithm will converge after k⇤ parameter

updates.

Proof. The proof of Theorem 1 relies on two lemmas.

Lemma 1. The inner product (w⇤)>w(k)
increases at least linearly with each

update. In particular, we have that (w⇤)>w(k)
� �k, where k denotes the

number of updates in Algorithm 1 and � and w
⇤
are defined as in Theorem 1.

Lemma 2. The squared norm of the weight vector kw
(k)

k
2
increases at most

linearly with each update. In particular, if we assume that kxik < R, 8i 2 Dtrn,

then kw
(k)

k
2
 R2k, where k denotes the number of updates in Algorithm 1 and

w
⇤
is defined as in Theorem 1.

We defer the proof of these lemmas as exercises to the student (but note that
solutions will eventually be provided). Given these two lemmas, we can prove
Theorem 1 by showing that the cosine of the angle between w

(k) and w
⇤ must

increase with each update. In particular,

cos(w(k),w⇤) =
(w(k))>w⇤

kw(k)kkw⇤k
(3.12)

�
k�

kw(k)kkw⇤k
(by Lemma 1) (3.13)

�
k�

p
kR2kw⇤k

(by Lemma 2) (3.14)

Thus, we know that:

1. The cosine between the updated weight vector w
(k) and the separating

weight vector w⇤ must increase by a finite amount at each update (Equa-
tion 3.14).

2. Cosines are bounded above by 1 (by definition).



3.3. ANALYZING THE PERCEPTRON ALGORITHM 25

Figure 3.4: Visual illustration of the geometric margin.4

Together, these two facts imply that the algorithm must converge in a finite
number of updates. The cosine must hit the upper bound of 1 after a finite
number of updates. Moreover, we can bound the number of iterations required
for convergence by combining Equation 3.14 and the fact that cosine is bounded
by 1:

1 �
k�

p
kR2kw⇤k

, k 
R2

kw
⇤
k
2

�2
(3.15)

The geometric margin and the di�culty of classification

One interesting side result in the proof of Theorem 1 is the fact that we can
bound the number of iterations required for the perceptron algorithm to con-
verge (Equation 3.15). We found that the number of iterations is inversely
proportionally to the ratio �

kw⇤k , which suggests that this ratio might somehow
relate to the di�culty of the classification task. In fact, we can interpret this ra-
tio as specifying the distance between the separating hyperplane and the closest
point to this hyperplane. We will call this ratio the geometric margin, denoted
by ⌘ = �

kw⇤k .
The key insight is that ⌘ gives the distance between the decision boundary

and the points xi that are closest to the decision boundary. These points are
the points xi where w

>
xi = �, meaning that the inequality in Equation 3.11

reaches its lower bound.
The geometric interpretation of ⌘ = �

kw⇤k holds based on the following rea-
soning. First, we know that w⇤ specifies the normal to the decision boundary,
since the expression (w⇤)>x = 0 defines the separating hyperplane. Now, given
a point xi that satisfies w

>
xi = �, we can compute the distance between this

point and the decision boundary by drawing a line that (a) goes between this

4Figure adapted from Tommi Jaakkola’s course materials for 6.867 Machine Learning, Fall
2006.



26 CHAPTER 3. PARAMETRIC LEARNING AND PERCEPTRONS

point and the decision boundary and (b) is parallel to w
⇤. We will use x� to

denote the point where this line intersects the decision boundary, and ⌘ will
correspond to the length of this line. Now, we have that

x� = xi �
⌘w⇤

kw⇤k
(3.16)

because subtracting ⌘w⇤

kw⇤k translates us by a distance of ⌘ towards the decision

boundary (since w⇤

kw⇤k is a unit vector normal to the decision boundary). Fi-
nally, we have assumed that x� is on the decision boundary, which implies that
x
>
� w

⇤ = 0. Taking these facts together, we can solve for ⌘:

x
>
� w

⇤ = 0 (3.17)
✓
xi �

⌘w⇤

kw⇤k

◆>
w

⇤ = 0 (3.18)

x
>
i w

⇤
� ⌘

(w⇤)>w⇤

kw⇤k
= 0 (3.19)

� � ⌘
kw

⇤
k
2

kw⇤k
= 0 (3.20)

⌘ =
�

kw⇤k
(3.21)

Thus, ⌘ = �
kw⇤k can be geometrically interpreted as the distance between the

decision boundary and the closest point to this decision boundary. This geo-
metric margin determines the upper bound on the number of iterations we need
to find a separating hyperplane using the perceptron algorithm and gives a nat-
ural notion of di�culty for a classification. Many more sophisticated notions of
classification di�culty in machine learning build upon this idea.

Convergence and generalization

There are some important points to caveat regarding the above analysis. First,
it is important to note that all our analysis above was with regards to the train-
ing data. We showed that the algorithm will converge on a linearly separable
training set, but this does not guarantee that we will perfectly classify test ex-

amples. We can, however, ensure generalization in an infinite data scenario. In
particular, suppose we have an infinite source or stream of data points xi, all of
which are assumed to satisfy (w⇤)>xi � � for some optimal hyperplane w⇤ and
have bounded norm kxik  R. The perceptron convergence theorem guarantees
that under these assumptions, we will only need to update our model a finite
number of times, after which it will correctly classify any point it is given.

Convergence, uniqueness, and support vector machines

A second important caveat is the issue of uniqueness. In all our discussions, we
assumed that there is some optimal parameter vector w⇤ and that we will con-
verge to some separating hyperplane in a finite number of iterations. However,



3.3. ANALYZING THE PERCEPTRON ALGORITHM 27

there may be an infinite number of such separating hyperplanes, and we can
never guarantee that we will converge to a particular, unique value. This is a
fundamental issue in the perceptron approach.

In fact, there is an entire branch of machine learning dedicated to under-
standing how we can select the best separating hyperplane, under the assumption
that we have many di↵erent choices. The idea of selecting the best hyperplane
is the key goal behind machine learning models such as support vector machines

(SVMs), which, for example, try to find a separating hyperplane with the largest
possible geometric margin. The details of such approaches rely heavily on ad-
vanced optimization techniques and are beyond the mathematical scope of this
course.


