
Chapter 14

Clustering

So far in this course, we have focused on the task of supervised learning. In
the supervised setting, we are given a training dataset Dtrn where each example
(x, y) 2 Dtrn contains both input features x 2 Rm as well as a target label y 2 R.

However, in many real-world settings, the target labels are unobserved. For
example, suppose we have a dataset of user activity profiles on a social network.
The features in the dataset might indicate things such as the number of minutes
a user spends online on the social network per week, the number of messages
they send, how many friends they have, how many posts they make, and so
on. Moreover, suppose our goal is to classify all the users into di↵erent activity
categories, such as “content creators”, “sporadic users”, “influencers” , etc.
Now, the challenge in such a task is that we do not know the labels for these
users in advance. There is no training set that provides us with this information.
Instead, we need to somehow classify these users without any examples of what
the classification should look like.

This problem is a variant of unsupervised learning, which we will focus on
in this part of the course. The idea in unsupervised learning is that we want to
infer patterns from data, without having any training labels. In unsupervised
learning, our dataset D consists only of feature inputs D = {x1,x2, ...,xn} and
no labels y.

Latent variables There are many variants of unsupervised learning, and
we will cover several of them in the course. However, many—if not most—
variants of unsupervised learning can be captured via the notion of latent
variables. The idea behind latent variables is as follows: we assume that
there is some label (e.g., the target y) that is associated with all our dat-
apoints x 2 D, but we just assume that these labels are unobserved or
latent. Our goal is to infer these latent (or hidden) variables using machine
learning.

105

106 CHAPTER 14. CLUSTERING

14.1 Clustering

Clustering is perhaps the most quintessential unsupervised learning task. It is
the unsupervised analogue of classification. The goal in clustering is to infer
discrete labels over all the points in our unlabeled set D. More formally, we
assume that all the points in our dataset belong to one of K di↵erent clusters,
giving us a discrete latent variable z over K categorical values Z = {1, 2, ..,K}.1

The goal of clustering is to infer the cluster assignments for the datapoints in
D. In other words, we want a function

f(x) : Rm
! Z (14.1)

that maps each datapoint x to a specific cluster assignment z 2 Z.

14.1.1 A simple approach: agglomerative clustering

The general strategy in most clustering approaches is to cluster together points
that are close together. In other words, we want our final clusters to correspond
to sets of points that have similar features. One of the simplest approaches that
we can use for this is known as bottom-up or agglomerative clustering. The
intuition in agglomerative clustering is that we simply form clusters by merging
together pairs of points that have similar input features.

The basic steps are as follows:

1. Let xi 2 D and xj 2 D be the pair of points that are closest to each other
in the dataset, i.e., the points that optimize the expression

arg min
xi,xj2D:i 6=j

kxi � xjk. (14.2)

2. Merge points xi and xj together into a cluster C = {xi,xj}.

3. Remove xi and xj from D and add a new point xC = xi+xj

2 to D.

4. Repeat the steps 1-3 until |D| < � or d(xi,xj) > ↵, 8xi,xj 2 D : i 6= j,
where � and ↵ are hyperparameters that control the stopping criterion of
the algorithm.

The idea behind agglomerative clustering is that it iteratively merges to-
gether subsets of the data, based on the distance between the points. This
process forms a tree or hierarchy of clusters and is illustrated in Figure 14.1.

14.2 K-means

Agglomerative clustering is simple and intuitive, but it does have certain draw-
backs. Most prominently, agglomerative clustering does not produce a fixed

1We typically use z for latent variables and y for observed target values.

14.2. K-MEANS 107

Figure 14.1: Illustration of agglomerative clustering over a simple dataset with
5 points. Each node in the tree corresponds to a possible clustering of the data,
with the root node representing the full dataset.

set K of clusters; instead, it produces a hierarchy of cluster assignments. For
example, this hierarchical outcome makes it di�cult to interpret the results of
agglomerative clustering from a latent variable perspective: if we are trying to
infer the hidden label y associated with each point, hierarchical clustering is
not as useful since there are many possible cluster assignments, depending on
how we partition the inferred tree. Thus, hierarchical clustering can be useful
in some circumstances, but in many cases, we want to assign our datapoints to
a fixed number of clusters and are not interested in obtaining such a hierarchy.

An alternative approach—and one of the most popular techniques to cluster
points—is known as K-means. Unlike agglomerative clustering, K-means will
always cluster the points into a fixed number of clusters and it has a natural
interpretation in terms of latent variables. The basic idea behind K-means are
as follows:

1. For each of the z 2 1, 2, ...,K clusters, start with a random initial guess
for the cluster centroid µCz

.

2. For each point x 2 D in the dataset, assign that point to the cluster with
the closest centroid. That is, form clusters sets

Cz = {x 2 D : kx� µCz
k < kx� µCj

k, 8j 2 [K], j 6= z} (14.3)

3. Recompute the cluster centroids based on the (new) assignments:

µCz
=

1

|Cz|

X

x2Cz

x (14.4)

4. Repeat steps 2 and 3 until the cluster assignments stabilize (i.e., until no
points are re-assigned in step 2).

Thus, K-means is essentially an iterative refinement approach: we start with an
initial guess for the clusters, and then we iteratively update these guesses until
the algorithm converges.

108 CHAPTER 14. CLUSTERING

14.2.1 Convergence of K-means

One important aspect of the K-means algorithm is that it is guaranteed to con-
verge. In order to show that this is the case, we must first define the sum-squared
error of a particular cluster z by measuring the squared distance between points
in the cluster and the cluster centroid µCz

:

S(Ck,µCz
) =

X

x2Ck

kx� µCz
k
2
. (14.5)

We can then measure the overall squared error S⇤ of K clusters by summing
these scores:

S⇤ =
X

k21,2,...,K

S(Ck,µCz
). (14.6)

We can then show that K-means converges by proving that S⇤ monotonically
decreases, except when no nodes are re-assigned, which is the stopping criterion.

To see that S⇤ monotonically decreases, we must use the following lemma:

Lemma 3. Let C = {x1, ...,x|C|} be a set of points xi 2 Rm
and let

µC =
1

|C|

X

xi2C
xi (14.7)

denote the mean of the points in this set. Then, we have that 8q 2 Rm

X

xi2C
kxi � µCk 

X

xi2C
kxi � qk. (14.8)

In other words, Lemma 3 states that the sum-squared error for a fixed cluster
is minimized when the centroid is defined as the mean of the points. The proof
of Lemma 3 is left as an exercise.

Using Lemma 3 we can then prove a convergence theorem for K-means:

Theorem 4. K-means converges in a finite number of iterations.

Proof. Suppose that the algorithm does not terminate after an iteration t. This
means that at least one point was re-assigned to a new cluster. We will show that

this also implies that S
(t+1)
⇤ < S

(t)
⇤ , where S

(t)
⇤ and S

(t+1)
⇤ denote the squared

error of the clusters (Equation 14.6) before and after iteration t, respectively.

Showing that S
(t+1)
⇤ < S

(t)
⇤ is su�cient to prove convergence, since (i) this

monotonic decrease in the squared error guarantees that no clustering can be
revisited and (ii) there are a finite number possible clusterings (K |D| to be
exact).

Now, to show that S
(t+1)
⇤ < S

(t)
⇤ , we must consider the both steps 2 and 3

in the K-means algorithm. We use C
t
k to denote the cluster at the beginning of

iteration t and C
t+1
z to denote the cluster after performing the re-assignment of

points. Similarly, we use µCt
z
and µCt+1

z
to denote the means/centroids of these

clusters.

14.2. K-MEANS 109

First, for step 2 of the K-means algorithm, we can see that
X

k2[K]

S(Ct+1
k ,µCt

k
) <

X

k2[K]

S(Ct
k,µCt

k
), (14.9)

i.e., we know that the re-assignment step must decrease the sum-squared error.
Otherwise, we would not make a re-assignment. To complete the proof, we
simply combine the above inequality with Lemma 3:

S
t
⇤ =

X

k2[K]

S(Ct
k,µCt

k
) (14.10)

<

X

k2[K]

S(Ct+1
k ,µCt

k
) by Equation 14.9 (14.11)

=
X

k2[K]

X

x2Ct+1
k

kx� µCt
k
k (14.12)



X

k2[K]

X

x2Ct+1
k

kx� µCt+1
k

k by Lemma 3 (14.13)

= S
t+1
⇤ . (14.14)

14.2.2 Soft K-means

One drawback of the K-means approach that we introduced previously is that
it only provides hard assignments. In other words, every point is assigned to
a cluster, but we have no notion of how strongly a point belongs to a certain
cluster. One way to get around this is to use soft K-means. The key di↵erence
between (hard) K-means and soft K-means is that in the soft version, we assign
a probability to each point belonging to each cluster. The steps in soft K-means
are as follows:

1. For each of the z 2 1, 2, ...,K clusters, start with a random initial guess
for the cluster centroid µCk

.

2. For each point x 2 D in the dataset compute a score r(x, z), corresponding
to how likely it is to belong to each cluster:

r(x, z) =
e
�kx�µCz

k2

P
j2[K] e

�kx�µCj
k2 . (14.15)

Here, we use a softmax normalization approach (see Chapter 6) to ensure
that these scores correspond to probabilities.

3. Recompute the cluster centroids based on the (new) soft assignments:

µCz
=

P
x2D xr(x, z)P
x2D r(x, z)

(14.16)

110 CHAPTER 14. CLUSTERING

4. Repeat steps 2 and 3 until the cluster assignments stabilize (e.g., until the
change in assignment scores is less than ✏ for all points).

Thus, in the soft K-means approach, we end up with each point having a prob-
ability r(x, z) of belonging to each cluster z.

