Chapter 13

Decision Trees

In the previous chapter, we introduced key concepts of information theory. In
this chapter, we will see how information-theoretic notions can be used to derive
a powerful form of supervised classification models, known as decision trees.

13.1 Using Binary Tests to Partition Data

In the first part of this course, we focused on methods that specify decision
boundaries. For example, the goal of the perceptron algorithm was to specify
a linear decision boundary that could correctly classify our data. One way of
re-framing such decision boundaries is that they specify tests that we can run
on our data in order to provide information about what class each point belongs
to.

13.1.1 Binary tests
Suppose we have a simple binary classification dataset
D= {(Ih yl)v (x27 y2)7 R (xrw yn)}

with univariate (i.e., one-dimensional) features x; € R. We can think of a linear
decision boundary
wr+b>0 (13.1)

as a binary test b(x) on these features

1 if —b
b(z) = e > (13.2)
0 otherwise.

In other words, we test the data to see if wx > —b. The result of these test is a
binary value: we get a 1 if the test is successful and a 0 otherwise.

97

98 CHAPTER 13. DECISION TREES

In general, we can define all kinds of binary tests on our data. For example,
rather than a test based on a linear decision boundary, we might consider an
even simpler threshold-based test

1 if
b(z) = o (13.3)
0 otherwise.

Alternatively, we could consider building test based on more complex functions,
such as

{1 if log(z) > « (13.4)

0 otherwise.

The key idea is that these binary tests can be used to probe our dataset, e.g., by
allowing us to find all datapoints that have features above a certain threshold.

13.1.2 Partitioning data via information gain

As with decision boundaries, we can use binary tests to partition our data. In
particular, using a binary test b(x), we can partition our data into two sets

Bi={(z,y) € D:bx) =1} By = {(z,y) € D: b(x) = 0}. (13.5)

Now, in a perfect world, such a partitioning could perfectly classify our data,
i.e., we would have that (z,y) € By = y = 1 and that (z,y) € By = y = 0.
In practice, however, we will rarely be able to find a simple binary test (e.g., a
linear decision boundary) that will be able to perfectly classify our data. Thus,
we need some way to choose a good test, even if it is imperfect.

One such way to choose a test is based on the notion of information gain.
Informally, our goal will be to choose the binary test that gives us the most
information about the label y. We can formalize this notion by defining the
information gain (IG) of a binary test b:

1G(b) = KL (P(y[b(=))|| P(y)) (13.6)
= H(y) — H(y|b(x)). (13.7)

Here, P(y) denotes the prior distribution of the class labels (i.e., the class prior),
while P(y|b(x)) is the conditional distribution of the class prior given the test.
Another way of interpreting the information gain is that it computes the
difference between the entropy of the class prior H(y) and the entropy of the
conditional distribution H (y|b(x). In this way, we can measure how many bits of
information we gain by running a particular test of the data. For instance, if our
test perfectly separates the data, then H(y|b(x)) = 0—since y variable can be
perfectly predicted based on the test—and, in this case, the information gained
would be equal to H(y), i.e., the uncertainty in the original label distribution.

13.1. USING BINARY TESTS TO PARTITION DATA 99

Example of information gain Suppose we had the following dataset
D ={(0.5,1),(0.3,1),(-1.1,1),(-0.1,0), (—0.3,0), (0.2,0) }. (13.8)

In this case, we would have that the prior distribution is equal to P(y =
1) = 0.5, since there are equal number of points from each class. The
entropy of the class prior would thus be H(y) = —log(0.5) = 1.

Now, suppose we run the following binary test on the data

1 ifx >0
b(z) = 13.9
(z) {0) (13.9)

In this case, we would end up with the following conditional entropy:

Hylb(z)) =— > > Ply=kb@)=q)log(P(y = klb(z) = q))

ke{0,1} ge{0,1}

(13.10)
= —P(y = 0,b(z) = 0)log (P(y = 0]b(z) = 0))
— P(y =1,b(z) = 0) log (P(y = 1[b(z) = 0))
— P(y =0,b(z) = 1)log (P(y = 0[b(z) = 1))
— Py =1,b(z) = 1)log (P(y = 1|b(z) = 1))
2 2 1 1 1 1 2 2
= —glog <3> ~ 5 log 3) ~ % log (3) ~ % log (3) (13.11)
~ 0.92 (13.12)
Thus, we would have an information gain of
IG(b)=1-0.92=0.08 (13.13)

from this test. In other words, we gain roughly 0.08 bits of information
about the target label by running this test.

13.1.3 Generalizing to more complex features

In the above discussion, we assumed that our data was a simple univariate
dataset, i.e., with one-dimensional real-valued features. However, the idea
of binary tests can easily be generalized to handle general datasets with m-
dimensional feature vectors x. Typically, when designing tests for m-dimensional
feature vectors, we will focus each test on a specific feature. For example, we
might have a threshold-based test that focuses on the jth feature:

b(x) = ! i x{j - (13.14)
0 otherwise,

100 CHAPTER 13. DECISION TREES

Contains image?

no yes
Word count < 10? From verified sender?
no yes
no yes
spam not spam
Use all-caps? Contains spelling
no yes mistake?
no yes
not spam spam
not spam spam

Figure 13.1: Simple example of a decision tree for spam email classification.

but we can also have tests that consider interactions between multiple features,

e.g.,
1 if x[j
b(x) = 1 X[j]x.[k] - (13.15)
0 otherwise.

Moreover, tests can easily be designed for binary and categorical features, in
addition to real-valued features. Indeed, for binary features, one typically just
tests if the feature is equal to zero or one.

13.2 From Binary Tests to Binary Decision Trees

The notion of information gain allows us to quantify how much information a
binary test gives us about our target label. We can formalize this idea into a
machine learning model, called decision trees.

The intuition behind binary decision trees is that we want to determine a
set of binary tests that we can use to classify our data. The idea is that we start
from the root of the binary decision tree, and we run our first test. Depending on
the outcome of the first test, we then might run further tests until we can classify
the data, with each test taking us down a different branch of the decision tree.
An example of a decision tree for spam email classification is shown in Figure
13.1. The challenge of course is how we learn such a decision tree from data.

13.2.1 Learning a decision tree

One of the most popular strategies for learning a binary decision tree involves
recursively finding the binary tests that provide the most information gain. This
idea can be summarized via the following steps:

1. Generate a candidate set S of binary tests for dataset D.
2. Select the test b € S that gives the highest information gain.

3. Partition the dataset D into two sets By and B based on the test b.

13.2. FROM BINARY TESTS TO BINARY DECISION TREES 101

4. Recurse and repeat the steps independently on the each of the two parti-
tions By and Bj.

The idea is that we choose the best test based on information gain, use this test
to partition our data, and then recursively search for the best tests within each
of the newly generated partitions. This recursive process naturally generates a
binary tree of tests.

Typically, the learning process stops once our partitions at the leaves of the
binary tree are pure, i.e., once the data is perfectly separated at the leaves of the
binary tree. However, one can also stop the learning process early; in that case,
the majority vote function can be used to classify the examples at the leaves of
the tree.

13.2.2 Selecting candidate tests

One of the key steps in the decision tree algorithm is selecting the set of candi-
date tests to run over the data. In general, there can be infinitely many possible
tests that we could run on any given dataset, so we must have a strategy for
generating a finite number of candidate tests. The way that candidate tests are
generated is one of the key distinguishing factors between different decision tree
algorithms. Typically, efficient decision tree algorithms only consider single fea-
tures for each test and limit themselves to threshold-based tests for real-valued
features, using a finite set of possible thresholds.

13.2.3 The decision boundary of decision trees

Like all the machine learning methods discussed in this course, decision trees
can be interpreted based on the decision boundaries that they specify. Unlike
the linear methods that we previously introduced, decision trees do not specify
a single decision boundary. Instead, decision trees induce a partitioning of the
input space into a set of distinct regions. An example of such a partitioning is
shown in Figure 13.2.

T

03

02

61 04 I1

Figure 13.2: Partitioning induced by a decision tree.

102 CHAPTER 13. DECISION TREES

13.2.4 More general decision trees

In this chapter, we introduced basic binary decision trees, which are learned via
information gain. It is important to note, however, that there are many variants
of decision trees in the literature, and not all decision trees use information gain
as the metric to select tests. We will not cover all such variants in this course.
In general, decision tree approaches use the general recursive learning strategies
introduced here, but there is much room for diversity, including approaches that
generate random candidate tests (e.g., Random Forests).

