
Chapter 10

Generalization and

Overfitting

Throughout this course so far we have described various approaches to learn a
model from training data. However, we have not given deep attention to the
challenge of ensuring that our model will also generalize well to unseen test data.
We have hinted at the challenge of generalization, but we have not analyzed it
in detail. In this chapter, we will formalize some notions surrounding gener-
alization, and—in the next chapter—we will introduce some general strategies
that can promote generalization capabilities in machine learning models.

10.1 Features and Complexity

Imagine we are working on a regression problem with a single input feature (see
Figure 10.1 for an example). Examining our training data, we might decide
that a simple linear function is not complex enough (e.g., the data is clearly
non-linear).

Figure 10.1: A simple example of a regression dataset.

77

78 CHAPTER 10. GENERALIZATION AND OVERFITTING

A primer on feature design

As discussed in Chapter 3, one common way to increase the complexity of a
linear model is to add more complicated features. For example, we might add
higher-order polynomial features to our linear model by replacing our original
model

f(x) = w
>
x+ b (10.1)

with a higher-order variant

f(x) = b++w1x+ w2x
2
...+ wkx

k
. (10.2)

This is equivalent to replacing the original feature inputs x with k-dimensional
feature vectors [x, x2

, ..., x
k]>. There are many ways to add new features to our

model. We might add polynomial features as in the above example, we might
add the logarithm of our original input, or–depending on the application—we
might even collect and define new features from our raw data (e.g., new text
features for spam classification). In general, this idea is called feature design,
and we will discuss it in more detail in Chapter 16.

Adding features increases complexity

In this chapter, we will focus on the example of adding polynomial features,
but our discussion will apply to adding new features in general. The key idea is
that adding new features is the most common way to increase the complexity
of a machine learning model. In fact, nearly every machine learning model used
in practice can be interpreted as a linear model acting on some complex set of
features! As long as the features we add have some correlation with the target,
adding these features will improve the ability for a model to fit the training
data. Figure 10.2 illustrates this idea using our simple regression dataset. It
shows the best fit line generated by a regression model as we add more and
more high-order polynomial features.

Figure 10.2: Regression fit using a linear model with increasing high-order poly-
nomial features.

10.2. OVERFITTING 79

Figure 10.3: The training error decreases as we increase the model complexity,
but at some point the testing error begins to increase.1

A key point to recognize is that adding these more complicated features
improves the fit on the training data, but this does not guarantee that the
model will achieve better performance on unseen data. In terms of empirical risk
minimization, adding more complicated features will achieve a lower minimum
for the empirical risk, but this might not actually reflect an improvement on
the true underlying distribution. If we look at the order-9 fit in Figure 10.2 it
seems obvious that this regression model is far too erratic and will not actually
generalize well—despite the fact that it can fit the training data near perfectly.

10.2 Overfitting

In machine learning terms, we would say that the order-9 model in Figure 10.2
has overfit the training data. The term overfitting is used to describe a situation
in which our training error is much lower than our error on held out (i.e., test)
data. Our risk of overfitting increases as the complexity of our model increases
(e.g., as we add more data). This idea is illustrated in Figure 10.3. They key
point is that our training error will always decrease as we increase the model
complexity, but at some point our generalization performance (i.e., our test
error) will start to increase due to overfitting.

10.3 Bias and Variance

In the case of regression using the mean-squared error, we can gain some sta-
tistical insight into overfitting based on the notions of bias and variance.

10.3.1 Decomposing the mean-squared error

Suppose we want to compute the expected mean-squared error on a test point
(x, y). One way of doing this is computing the expectation assuming that our

1Image credit: https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-
overfitting-in-machine-learning-820b091dc42

80 CHAPTER 10. GENERALIZATION AND OVERFITTING

model ŷ = f(x) is trained on a dataset sampled from the true distribution
Dtrn. In other words, we want to compute the expected risk of our trained
model, assuming that we draw a random training set from the underlying data
distribution:

EDtrn,(x,y)⇠PD [(y � ŷ)2] = EDtrn,(x,y)⇠PD [(y � f(x))2]. (10.3)

We use Dtrn, (x, y) ⇠ PD in the denominator to denote that this expectation is
taken with respect to two random variables: the training dataset Dtrn and test
datapoint (x, y), both of which are independently sampled from the underlying
data distribution PD. In terms of empirical risk minimization, Equation 10.3
gives the expected risk under the assumption that we are optimizing our model
f using a finite training set. By incorporating the sampling of training dataset
into this expectation, this measure of risk captures two sources of stochasticity:
the stochasticity from sampling test points and the stochasticity from training
our model on a finite data sample.

A key insight is that we can use some algebra and the properties expected
values, variances, and covariances2 to rearrange the expectation in Equation 10.3
in a pleasing form. Note that for notational simplicity, we drop the subscript
from the expectations, variances, and covariances in what follows. However,
it is important to note that all the distributional measures are computed with
respect to sampling both a training dataset and a testing point. 3

E[(y � ŷ)2] = E[y2]� E[2yŷ] + E[ŷ2]
= E[y2] + E[ŷ2]� 2E[yŷ]
= E[y2] + E[ŷ2]� 2(Cov(y, ŷ) + E[ŷ]E[y])
= E[y2] + E[ŷ2]� 2Cov(y, ŷ)� 2E[ŷ]E[y]
= Var(y) + E[y]2 +Var(ŷ) + E[ŷ]2 � 2Cov(y, ŷ)� 2E[ŷ]E[y]
= Var(y � ŷ) + E[y]2 + E[ŷ]2 � 2E[x]E[y]
= Var(y � ŷ) + (E[y]� E[ŷ])2. (10.4)

Thus, in the end we can decompose the expected mean-squared error as a com-
bination of two terms. A squared bias term

(E[y]� E[ŷ])2 (10.5)

that measures the di↵erence between the expected model prediction and true
expected value of the distribution. And a variance term

Var(y � ŷ) = E[((y � ŷ)� E[y � ŷ])2], (10.6)

2We will make use of the following well-known properties: Var(x) = E[x2] � E[x]2 ,
E[xy] = E[x]E[y] + Cov(x, y), and Var(x� y) = V ar(x) + V ar(y)� 2Cov(x, y).

3Many online references—including Wikipedia—do not properly deal with the distribu-
tional assumptions when deriving their bias-variance trade-o↵ expressions for prediction mod-
els (e.g., they ignore the fact that both the true value y and the prediction ŷ depend on the
sampled training point). Caution is urged when referring to online references for this topic.

10.3. BIAS AND VARIANCE 81

Figure 10.4: Illustration of bias and variance.4

that measures how much the prediction errors vary, depending on both the
random sample of training data used and what the prediction target is. A
model with high bias tends to make systematic errors when predicting for the
test point. A model with high variance will have prediction errors that vary
wildly. An intuitive visualization of bias and variance is given Figure 10.4.
High bias and low variance predictions are consistently o↵ target. In contrast,
high variance and low bias predictions are erratic but tend to average out to a
correct prediction.

Breaking down the variance term The variance term (Equation 10.6)
measures how drastically our prediction errors tend to vary. It is impor-
tant to note that such a variance can come from two sources. On the one
hand, our model might be overly complicated and tend to make erratic
predictions. On the other hand—however—it might simply be that the
prediction task is inherently noisy, meaning that our model will occasion-
ally have large or small errors for reasons that are outside of our control.
Indeed, for many prediction tasks it is unreasonable to assume that achiev-
ing perfectly consistent generalization performance is possible. Thus it is
important to distinguish between modeling variance and inherent noise in
the data.

We can formalize this distinction by assuming that some optimal pre-
diction function f

⇤ exists, which is able to consistently predict the targets
up to some noise level

y = f
⇤(x) + ✏, (10.7)

where ✏ is a random noise variable with zero mean. This assumption im-
plies that the target values in our data distribution PD can be generated

4Image credit: https://www.oreilly.com/library/view/hands-on-transfer-learning/

82 CHAPTER 10. GENERALIZATION AND OVERFITTING

by combining a deterministic prediction function f
⇤ to the input features

and adding a small amount of noise ✏. Note that E[✏] = 0 implies that
E[f⇤(x)] = y, as expected. Now, we can further decompose the variance
term in Equation 10.6 relative to the optimal predictor f⇤:

Var(y � ŷ) = Var(f⇤(x) + ✏� ŷ) (10.8)

= Var(f⇤(x)� ŷ) + Var(✏) + 2Cov((f⇤(x)� ŷ), ✏) (10.9)

= Var(f⇤(x)� ŷ) + Var(✏), (10.10)

where we used the fact that the noise is assumed to be independent from
our prediction function. Thus, we see that variance comes from two sources.
First, we have a variance due to our model

Var(f⇤(x)� ŷ) = Var(f⇤(x)� f(x)) (10.11)

which assesses how drastically our predictions vary, compared to an optimal
model. Second, we have an intrinsic noise term

Var(✏), (10.12)

which measures how intrinsically noisy our prediction problem is. Gener-
ally, when we discussing the bias-variance trade-o↵ in machine learning, we
are referring to the model variance and are ignoring the intrinsic noise.

10.3.2 The bias-variance trade-o↵ and overfitting

The bias-variance decomposition is closely related to the notion of overfitting.
Models that overfit have high variance and low bias. Due to their complexity,
these models are able to perfectly fit the training data (i.e., they achieve low
bias in training), but their complexity means that their predictions tend to vary
drastically on the testing set. In contrast, models that are high bias and low
variance are often said to underfit. These models make stable but incorrect
predictions.

The bias-variance decomposition is referred to as a trade-o↵ because these
two error terms are inherently in conflict. In general, strategies that decrease
bias will increase model complexity (and thus variance). On the other hand,
strategies that seek to stabilize model predictions tend to induce bias. In fact,
in many contexts it can be proved that asymptotically unbiased models will
have unbounded variance.

10.4 Complexity and Generalization

Bias and variance provides one statistical perspective on the notion of overfit-
ting, but it is rooted in the mean-squared error metric. There are also more

10.4. COMPLEXITY AND GENERALIZATION 83

general notions of complexity in the context of empirical risk minimization. For
example, the following theorem relates model complexity to the underlying risk
of a statistical model.

Theorem 3. Suppose we are optimizing over a finite model class F . Let R
⇤(f)

denote the true risk of the model f (Equation 7.1) and let R(f) denote the

empirical risk (Equation 7.3). Assume that our loss function L is bounded in

[0, 1]. Then with probability at least 1� � we have that

R
⇤(f) R(f) +

s
log(|F|) + log(2�)

2n
, (10.13)

where n is the number of examples used to compute the empirical risk R(f).

The proof of Theorem 3 is beyond the scope of this course, but it can be found
in various textbooks. The key idea is that we can probabilistically bound the
gap between the empirical risk and the true risk, as long as our model comes
from a finite model class F . We can think of this as a generalization gap. If a
model has a large generalization gap, then strong performance on a training set
will not be a reliable indication of strong performance on unseen data.

Theorem 3 tells us that the generalization gap tends to increase as the size
of the model class |F| increases, i.e., as the model class becomes more complex.
Indeed, another way of interpreting the log(|F|) term is that it measures how
many bits of information it takes to encode our model. For example, one of the
simplest classification models would be a majority class model, which simply
predicts the majority class in the training data. Such a majority class model
would require only one bit to encode (i.e., whether we are predicting true or
false) and the size of the model class would be two. Thus, models that require
more information to encode tend to have higher generalization gaps. On the
other hand, generalization gaps tends to decrease as we get more training data.
Intuitively, we can accommodate more complicated models as long as we have
more data to train them.

Thus, this theorem illustrates two key points. It illustrates how more com-
plex model classes tend to be noisier (i.e., higher variance) and prone to overfit-
ting, in that they give us less reliable estimates of the true risk. It also illustrates
how adding more training data can reduce this variance.

Of course, one issue in Theorem 3 is that no popular or practical ma-
chine learning models belong to a finite model class. For example, even linear
models—which are some of the simplest machine learning models—have an in-
finitely large model class, since there are infinitely many lines (or hyperplanes)
in any continuous space. Nonetheless, if we replace the log(|F| term in Theo-
rem 3 with some general notion of “model complexity”, then the key idea of the
theorem still holds in general: the more complex a model is, the harder it is to
guarantee that it will generalize, especially when training on small datasets.

Theorem 3 is a simple example of a probabilistically approximately correct
(PAC) bound. We obtain a bound that tells us that our estimate will be approx-
imately correct, but only with a probability 1 � �. PAC bounds are a primary

84 CHAPTER 10. GENERALIZATION AND OVERFITTING

focus of statistical learning theory. Statistical learning theory also provides
many ways to characterize the complexity of model classes, since most model
classes (e.g., linear models) have continuous parameters and are thus infinite.
For example, many of these notions build upon the idea of geometric margins
and separating hyperplanes, which we discussed in Chapter 3.

