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Question 1 [6 points]
Recall that the k-NN model is defined by the prediction function

fionn (%) =MAT ({i : (%, 9i) € Don A F<k (Y5, X5) € Doan : d(x,%;) > d(x,%5)}), (1)

where MAJ is the majority vote function. Assume that we are using the Euclidean distance function, con-

sidering a binary 0-1 classification task with two-dimensional features, and that we are evaluating accuracy

using the 0-1 loss:

0 ify=4y
; (2)

1 otherwise.

Lastly, assume that ties in the majority vote function are broken randomly with a 50/50 probability (i.e.,

if we have equal positive and negative classes in the nearest neighbor set, then we flip a coin to make the

prediction), and assume that we are evaluating the expected accuracy in light of this randomness.

Prove or provide a counter-example to the following claim: if we assume that our dataset is linearly
separable with geometric margin «y, then the expected training error of a k-NN monotonically increases as a
function of k for k > 1.

Hint: Remember that the nearest neighbor of a training point is always itself!

Solution. The claim is false. For example, suppose we have the following training dataset:

point 1:
point 2:

point 4:
point 5:

(
(
point 3: (
(
(
(

point 6:

Now, for k = 2 we will have that point 1 is misclassified with 50% probability, since its two nearest neighbors
are itself and point 4. All other points will be correctly classified: points 2/3 and points 5/6 are identical
and from the same class, guaranteeing correct classification; point 4 is correctly classified because its nearest
neighbors are points 5/6. Moving up to k = 3, point 1 is now correctly classified, since points 2/3 are included
in its set of nearest neighbors. All the other points remain correctly classified, since the points added to their
nearest neighbor set are from the same class.



Question 2 [6 points]

For this question, you should refer to the details and notation for the perceptron algorithm (i.e., Algorithm
1) in Chapter 3 of the notes. Provide a proof for the following lemma, which we we used to prove the
perceptron convergence theorem:

Lemma 1. Assume that there exists some v > 0 and some set of optimal parameters w* such that
yi(w*)Tx; > 7 for all (xi,y;) € Diyn. The norm of the weight vector |w®)| increases at most linearly
with each update in Algorithm 1. In particular, if assume that ||x;|| < R,Vi € Dy, then |[w®)|? < Rk,
where k denotes the number of updates in Algorithm 1.

Solution. By the definition of the perceptron update on a point (x,y) we have that

lw® ]2 = (W) Tw® (3)
.

= (w’c 1)+yx> (w(kfl)erx) (4)

= (w~ 1>) w42y Tw (=1 4 g2 T (5)

< (WD) Tw =D 4 xTx (6)

< [w*V)? + R (7)

Note that we only make updates when we make mistakes, so we can safely assume that 2yx' wk=1 < 0,
since y and x' w1V must have opposite signs. The proof is completed by simple induction on k. The
inductive step is given by Equation 7 and the base case for k = 0 is given by |[w(®||?> = ||0]|> = 0 = 0R2.



Question 3 [6 points]

In class, we were introduced to Bernoulli Naive Bayes and the Gaussian Naive Bayes models. In this question,
you will derive that maximum likelihood parameters for a Poisson Naive Bayes model. In a Poisson Naive
Bayes model, the feature likelihoods are defined following distribution:

ex[j] 79_7‘)]@
p(xlj] |y =Fk) = Gk 8
(i} [y = k) = 24 (8)
As in the Bernoulli Naive Bayes model, the 0;; parameter determines the likelihood for the jth feature,
assuming the point belongs to class k.

Part 1 [2 points]

Assume we are in a binary classification setting. Write an expression for the log-odds ratio of the Poisson
Naive Bayes model. Use the notation from Equation 8 above and use 8, = P(y = k) to denote the estimated
class likelihoods.

Part 2 [4 points]

Derive the maximum likelihood estimates for the Poisson Naive Bayes parameters, i.e., give maximum
likelihood estimates for the §; ;, parameters.

Solution.

Part 1
The log-odds ratio is given by

log(p(y = 1| x)

= log(01) — log(6p) 1 (1 — log(6; —0; 0;
log(p(y =0 | X) Og( 1 Og 0 + ;X Og Js 1 Og( J7O)) J,1 + 3,0

Part 2

To derive the mazimum likelihood estimates for the 0; 1 parameters, we only need to consider the parts of the
log-likelihood that depend on the 0; ) term. All other terms will be zero. Moreover, without loss of generality
we assume that k = 1. Given these simplifications we have that

0 0 .
3 log L(D; 0) = Z y(x[j]log(0;,1) — 0;,1)
J,1 1
(x,y)€D
(x,y)€D g1



and setting this to zero and solving we get

And in general we get that

Question 4

Answer each question with 1-3 sentences for justification, potentially with equations/examples for support.

a) True or false: Bernoulli Naive Bayes always correctly classifies all training points if the dataset is linearly

separable.

b) Consider the following dataset:

> (32
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point 1:

point 2:

point 3:

point 4:

|(x,y) €D :y =k

In other words, we just take the average value of the feature for points belonging to class k.

[short answers; 2 points each]

Is the perceptron algorithm guaranteed to converge on this dataset?



c) Consider the following dataset:

point 1: ([0.5,1],1)

point 2: ([0.2,0.5],1)
point 3: ([0.9,0.9],0)
point 4: ([1.5,1.5],0)

What class will a Gaussian Naive Bayes model predict for point [1.1,1.1]?

Solution.

a) This is false. If there are many more points from one class then the class priors can lead to a misclas-
sification even if the data is separable. For example, suppose we have a dataset consisting of 5 identical
points ([1,0],1), & identical points ([0,1],1), and one point ([1,1],0). This dataset is linearly separable, but
the model will predict class 1 for the training point ([1,1],0), since 0.5 x 0.5 x % >1x1x ﬁ

b) The data is not linearly separable. (It is the exclusive-or function). Thus, the perceptron is not guaranteed
to converge.

¢) The GNB model will predict class 0, since the input point is closer to the mean of the points from class 0.



