Alias Analysis for Optimization of Dynamic
Languages

DLS 2010

Michael Gorbovitski ~ Yanhong A. Liu Scott D. Stoller
Tom Rothamel K. Tuncay Tekle

Vincent Foley-Bourgon
COMP-763 - Fall 2013
McGill University

November 2013

Plan

Ll

The Title
The Big Idea
The Analysis

The Experiments

2/61

Plan

ANl R

The Title

The Big Idea
The Analysis
The Experiments

The Offer

3/61

The Title

The Title

Alias Analysis for Optimization of Dynamic Languages

5/61

The Title

Alias Analysis for Optimization of Dynamic Languages

6/61

The Title

Alias Analysis for Optimization of Dynamic Languages

The Title

Alias Analysis for Optimization of Dynamic Languages

The Title

Alias Analysis for Optimization of Dynamic Languages

The title says it alll
» What do we want? To optimize programs!
» Which programs? Those written in dynamic languages!

» What tool will we use? Alias analysis!

9/61

The Big Idea

The Big Idea

“Dynamic languages such as Python allow programs to be
written more easily using high-level constructs such as
comprehensions for queries and using generic code.”

11 /61

The Big Idea

Efficient execution of these programs requires powerful
optimizations:

» Incrementalization of queries
» Specialization of generic code

Both require precise and scalable alias analysis

12 /61

<Interlude>

Incrementalization

What is incrementalization?

!Source: Efficiency by Incrementalization: an Introduction, Liu 2000
14 /61

Incrementalization

What is incrementalization?

“Given a program f and an operation &, a program f’ is called
an incremental version of f under @ if f’ computes f(z @ y)
efficiently by making use of f(z).”!

!Source: Efficiency by Incrementalization: an Introduction, Liu 2000
15 /61

Incrementalization

Example:
> f = sort
> O = cons

» f' = insort

sort(cons(y,x)) = insort(y, sort(x))
©(nlgn) D BO(n)

16 /61

< /Interlude>

The Big Idea

> InvTS: incrementalization optimization,
(source, alias-analysis result) — target

> Psyco: specializing JIT, modified to accept statically
computed alias and type information

18 /61

The Big Idea

» Perform alias analysis on a program
» Run InvTS || Psyco

> Get a faster program

19 /61

The Big Idea

» Perform alias analysis on a program
» Run InvTS || Psyco
> Get a faster program

Better alias analysis = Faster programs

20/ 61

Question #1

Why would a better alias analysis yield faster programs?

21 /61

Answer #1

Improved precision allows an optimizer more opportunities to
perform more transformations.

22 /61

The Analysis

The Analysis

1. Parse Python program into an AST
2. Analyze types and construct CFG 2

3. Construct a sparse evaluation graph (SEG) from the CFG
by removing CFG nodes that do not affect aliases

4. Do the described alias analysis

2 Apply steps 1 and 2 recursively for import statements
24 /61

The Analysis

Parsing Python
Very easy to do with Python’s stdlib:
import ast
with open("main.py") as f:

root = ast.parse(f.read())
next_step (root)

Done.

25 /61

The Analysis

Precise type analysis
Inference algorithm that computes not only the basic types, but
also values, ranges of values, number of elements in a collection,
etc.

Basic types:
> none

» primitive types: int, float, bool

» collection types: string, list, tuple, set, dict

v

module

class

v Vv

mstance

v

function

> method

» union: combine different types together
T and L

v

26 /61

The Analysis

Precise type analysis

Precise types:

27 /61

The Analysis

Precise type analysis

» Any set {t1,...,t,} has a minimal super type: T if any ¢; is
T, otherwise the maximal type of the union of all ;.

» Limit for the size of type description: no more than 60 type
names.

» Generalization: going from a type to a supertype of smaller
size when the size of a type exceeds a constant.

Example:

union(intval(Q)v intyql (4)7 1Ntyal (8)) =
union(intrange(2,4), intyq(8))

28 /61

The Analysis

Constructing the CFG

Type Analysis
(build CFG)

éax 30 tim%

Refinement

Puntil fixed point

29 /61

The Analysis

Constructing the CFG

Analysis: start at program entry and visit and interpret each
program node. Types of variables and expressions start at L
and go up until fixed-point.

Refinement:

» Clone functions so that there is one clone for each different
combination of basic types of arguments

» Eliminate code that is dead for the argument types, and fix
the call sites

» Inline function calls when that doesn’t increase the number
of program nodes.

30 /61

The Analysis

Dynamic features

Authors claim that handling of most nodes is obvious, but give
some details on how to handle the dynamic features of Python.

I won’t go into all of them, but let’s look at our friend eval.

31 /61

Question #2

There are two cases to handle for eval:

» What do you think are the two cases?
(Hint: remember Ismail’s first presentation)

» How do you handle each case?

32/ 61

The Analysis

Eval

The analysis distinguishes two cases:

» If the argument type is a union of constant strings, inner
function nodes are created and edges are added
appropriately. Return type is the minimum super type of
the newly-created functions.

» Otherwise, the return type of evalis T.

33 /61

The Analysis

Question #3

What is alias analysis?

34 /61

The Analysis

Alias analysis: compute pairs of variables and fields that refer

to the same object.?

int o = 42;
int xp, xq;
p = &o;
q = &o;

p

42

3Undecidable in general.

35 /61

The Analysis

Their proposed alias analysis:

» “May” analysis (over-approximation)

v

Inter-procedural

Is flow-sensitive

v

Is context-sensitive (trace sensitivity)

v

» Uses precise type analysis

» Uses a compressed representation

36 /61

The Analysis

Flow sensitivity

#iremoves all instances of 0O from collection C
def removeObject(C,0):
if isinstance(C,set):
if 0 in C:
C.remove (0)

if isinstance(C,list):
for n in range(C.count(0)):
C.remove (0)

Incrementalization is going to add guards before the remove
method calls; with flow sensitivity, the alias set of C can be
different at the two different call sites, and if the alias set has
only one member, the guard can be removed.

37 /61

The Analysis

Types to improve precision

Only allow alias pairs that have compatible types.

“Our experiments show that using precise types significantly
increases alias analysis precision compared to using basic

types.”

38 /61

The Analysis

Types to improve precision

Only allow alias pairs that have compatible types.

“Our experiments show that using precise types significantly
increases alias analysis precision compared to using basic

types.”

Mais pourquoi!?

39 /61

The Analysis

Trace sensitivity

Context sensitivity necessary for precise alias analysis.
Traditional n-CFA not great with dynamic languages:

» If n is small, precision suffers

» If n is larger, memory usage becomes unacceptably high

10 / 61

The Analysis

Trace sensitivity

v

Inline non-recursive calls

» Inline recursive calls once

v

Merge alias pairs from the inlined procedures into the
corresponding SEG node

v

Remove inlined nodes (save memory)

11 /61

The Analysis

Trace sensitivity

“Our trace-sensitive analysis is always at least as precise as, and
in our experiments always more precise than,
context-insensitive analyses. The increased precision is because
our algorithm distinguishes aliasing information in different
contexts during analysis, even though it subsequently merges
information for different contexts.”

The Analysis

Compressed representation

To reduce memory usage, they introduce a “simple, but
important optimization”.

If a node as a single predecessor, the alias pairs are not stored
directly, but as a diff of the predecessor node.

Reduces memory consumption by 10x

13 /61

The Experiments

The Experiments

Disclaimer

All tables and figures are taken from the article.

45/ 61

The Experiments

The setup

18 variants of the analysis:
» Flow-insensitive + Context insensitive

» Flow-insensitive + Context sensitive

v

Flow-sensitive + Context insensitive

v

Flow-sensitive + Context sensitive

v

Flow-sensitive 4+ Trace sensitive

4

v

Flow-sensitive + Trace sensitive + extra clones

Each is combined with no type checking, basic type checking
and precise type checking.

4Recursive functions are inlined twice

16 / 61

The Experiments

Effect on incrementalization

Ixml - Valid Parent

Ixml - No Shared Child

Ixml - Indexing

n
31 alias checks

97 alias checks 81 alias checks 1451 alias checks

flow context type runtime checks analysis | runtime checks analysis | runtime checks analysis | runtime checks analysis
sensitive sensitivity sensitivity | overhcad removed time | overhead removed time | overhead removed time | overhead removed time
no 92% 1236 95% 12 39 | 440% 35 49 | 119% 719

no no basic 93% 12 36 95% 13 38 | 429% 35 50 [119% 7 19
precise 91% 14 36 95% 13 39 | 381% 41 49 | 112% 9 19

no 88% 16 60 94% 15 62| 364% 55 97 110% 9 83

no yes basic 88% 17 64 93% 17 62 | 350% 61 97 96% 1 82
precise T4% 26 61 90% 23 61 323% 89 99 91% 13 84

no 87% 17 42 93% 19 42| 340% 79 62 93% 12 30

yes no basic 86% 17 43 91% 20 43 | 331% 81 6l 89% 13 30
precise 73% 28 43 90% 28 46 | 219% 122 61 89% 13 30

no 83% 18 59 93% 20 57| 310% 103 98 91% 13 80

yes yes basic 82% 18 61 90% 23 63 303% 112 95 86% 14 82
precise 3% 30 61 89% 29 61 192% 199 98 81% 14 81

no 82% 20 81 91% 19 85 160% 246 103 90% 12 63

yes trace basic 75% 28 82 88% 28 85 133% 344 109 7% 14 62
precise 14% 68 82 85% 40 86 85% 836 104 3% 16 63

no 67% 37308 85% 37 312 | 124% 455 783 8% 14119

yes trace extra basic 19% 61 308 85% 38 310 99% 603 780 T4% 15 119
precise 14% 72 310 83% 41 311 83% 892 791 70% 17 118

Table 1. Runtime overhead, number of alias checks removed, and analysis time (in seconds) in InvTS experiments. Runtime
overhead is t“%f,;f‘%‘ where time; and time, are running times of the transformed and original programs, respectively.

47 /61

The Experiments

Effect on incrementalization

520r 1 flow-insensitive, context-insensitive
280 [flow-insensitive, context-sensitive
3 flow-sensitive, context-insensitive
3 440} EEE flow-sensitive, context-sensitive
E E flow-sensitive, trace-sensitive
£ 400/ mmmm flow-sensitive, trace-sensitive with extra clones
g -
=3
2 360
3
E -
g 320
2
£ 280
<
2
5 240
°
2 200
&
£
S 160]
°
3
2120
£
[
2
S 80
40
Ixml Ixml Ixml nftp
Valid Parent No Shared Child Indexing

Figure 1. Runtime overhead of transformed programs, us-
ing precise-type-sensitive alias analysis, varying flow and
context sensitivity.

48 /61

The Experiments

Effect on specialization

flow context type [program uncompiled analysis
sensitive sensitivity sensitivity | speedup procedures time
no 3.8% 27 1.8

no no basic 4.8% 26 1.9
precise 6.7% 23 2.2

no 7.2% 24 26.6

no yes basic 7.7% 23 26.9
precise 10.9% 21 27.0

no 7.2% 25 4.0

yes no basic 7.2% 23 4.1
precise 11.3% 20 4.2

no 6.7% 24 23.1

yes yes basic 7.7% 23 24.1
precise 13.4% 18 23.8

no 8.2% 24 51.1

yes trace basic 10.0% 22 51.4
precise 15.5% 16 52.6

no 9.9% 22 331.1

yes trace extra basic 11.3% 20 335.7
precise 15.9% 15 339.3

Table 2. Program speedup, number of procedures left un-
compiled at compile-time, and analysis time (in seconds) in
Psyco experiments. Program speedup is
time, is the running time using Psyco wnh alias 1nf0rma-
tion, and time, is the time using the original Psyco, which

leaves 30 procedures uncompiled.

lum —lun(

, where

49 /61

The Experiments

Alias set size

Yariablesin order ofincreasing average alias el size

>300
300
150

with extra clones trace- smsmvc Wllh exira clones

Alias Set Size

Program CFG node in orde)

Figure 2. Alias set size for each variable (shown horizomal]y) for each CFG node (shown vertically) for flow-sensitive analysis
variants for tarfile. Variables are ordered by increasing average alias set size in the context-i sitive precise-typ itive
analysis.

50 /61

The Experiments

Memory usage

context-insensitive context-sensitive
AST imi.
Program LOC Nodes time memory| time memory time memory time memory| time memory time memory
chunk 172 493 101 31.06 128 3104 258 39.07 310 39.07
bdb 609 2026 120 3325 1.48 32.03 452 4171 507 40.85
pickle 1392 4239 1.65 76.20 1.98 36.51 10.04 121.43 10.11 49.48
tarfile 1796 7877 not applicable 323 1964.09 416 267.70 not applicable | 20.69 2384.95 23.11 34145
Fortran 6503 15955 1194 928.16 1277 157.25 7771 114245 80.97 188.16
bitTorrent 22423 102930 63.01 8134.75 90.01 1198.93 298.86 11555.96 | 330.44 1574.81
std. lib. 51654 420654 outof memory | 317.44 2434.01 out of memory | 1519.68 3726.77
trace-sensitive trace-sensitive with extra clones
AS imi:

Program _LOC Nodes Gme memory| time memory | time memory || time memory| time memory | time memory
chunk 172 493 4.09 41.74 497 39.16 5.65 39.13 7.10 4226 889 39.26 1037 39.15
bdb 609 2026 7.60 4376 761 4140 876 40.18 1290 49.46| 1391 4615 1608 40.85
pickle 1392 4239 1112 291.61 13.94 88.60 15.97 59.74 2111 81211 34.69 294.06 43.13 16291
tarfile 1796 7877 31.36 4203.29| 4590 1751.84 5238 688.53 out of memory | 236.76 8631.85 | 283.45 2570.28
Fortran 6503 15955 123,65 3018.57| 262.93 1202.04 | 29823 62741 out of memory [2687.26 8645.29 |3389.17 3602.21

bitTorrent 22423 102930 out of memory | 1068.36 10618.39 | 1211.87 2909.11 out of memory out of time out of time

std. lib. 51654 420654 out of memory out of memory |3401.69 13124.52 out of memory out of time out of time

Table 3. Running time (in seconds) and maximum memory usage (in MBytes) for flow- and precise-type-sensitive alias
analysis variants. “unoptimized” means that trace optimization and compression are both disabled; trace optimization is
enabled for all other trace-sensitive variants; “not applicable” means that trace optimization is not applicable to trace-insensitive
variants; “out of memory” means that the memory usage of the analysis exceeded 16 GB; “out of time” means that its running
time exceeded 4 hours.

51 /61

< /presentation>

The Ofter

We’ve seen in presentations this semester that
dynamically-typed languages present hard challenges:

54 /61

We’ve seen in presentations this semester that
dynamically-typed languages present hard challenges:

» Optimizations are harder

55 /61

We’ve seen in presentations this semester that
dynamically-typed languages present hard challenges:

» Optimizations are harder

> Static analyses are less precise

56 /61

We’ve seen in presentations this semester that
dynamically-typed languages present hard challenges:

» Optimizations are harder
> Static analyses are less precise

» Development tools are more rudimentary

57 /61

We’ve seen in presentations this semester that
dynamically-typed languages present hard challenges:

» Optimizations are harder
> Static analyses are less precise
» Development tools are more rudimentary

» No machine-checked form of “documentation”

58 /61

We’ve seen in presentations this semester that
dynamically-typed languages present hard challenges:

» Optimizations are harder

v

Static analyses are less precise

v

Development tools are more rudimentary

v

No machine-checked form of “documentation”

v

No safety net for maintenance and refactorings

59 /61

We’ve seen in presentations this semester that
dynamically-typed languages present hard challenges:

» Optimizations are harder

v

Static analyses are less precise

v

Development tools are more rudimentary

v

No machine-checked form of “documentation”

v

No safety net for maintenance and refactorings

v

No ability to encode compiler-checked invariants

60 /61

Cost of dynamic typing

These represent the price of using dynamically-typed languages.
1. What does it buy us?
2. Is it worth the price?

You have answers or opinions? Come see me and let’s discuss
this over a beer!

61 /61

