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Abstract

Despite the widespread use of Clustering,
there is distressingly little general theory of
clustering available. Questions like “What
distinguishes a clustering of data from other
data partitioning?”, “Are there any prin-
ciples governing all clustering paradigms?”,
“How should a user choose an appropriate
clustering algorithm for a particular task?”,
etc. are almost completely unanswered by
the existing body of clustering literature. We
consider an axiomatic approach to the theory
of Clustering. We adopt the framework of
Kleinberg, [Kle03]. By relaxing one of Klein-
berg’s clustering axioms, we sidestep his im-
possibility result and arrive at a consistent
set of axioms. We suggest to extend these
axioms, aiming to provide an axiomatic tax-
onomy of clustering paradigms. Such a tax-
onomy should provide users some guidance
concerning the choice of the appropriate clus-
tering paradigm for a given task. The main
result of this paper is a set of abstract proper-
ties that characterize the Single-Linkage clus-
tering function. This characterization re-
sult provides new insight into the properties
of desired data groupings that make Single-
Linkage the appropriate choice. We conclude
by considering a taxonomy of clustering func-
tions based on abstract properties that each
satisfies.

1 Introduction

The task of clustering is a basic data analysis technique
in many fields. Whenever one has a set of objects with
an underlying measure of similarity, it is natural to
seek a grouping of these objects in groups that respect
these similarities. While the clustering task thus de-

scribed arises in a very wide range of different applica-
tions, it is, of course, ill defined. Given a specific data
set there are often many different ways to partition
that data in a way that adheres to the above descrip-
tion. Consequently, there is an overwhelming variety
of clustering paradigms and techniques currently in
use.

The majority of work in the study of clustering has
so far been in the context of concrete methods, con-
crete data generative models or concrete data-sets.
However, there is very little research considering clus-
tering from a more general perspective, research into
unifying principles that are common to all clustering
paradigms as well as research comparing different clus-
tering paradigms in terms of their characterizing fea-
tures. Our research aims to address these higher level
aspects of clustering.

We wish to reason about clustering independently of
any particular algorithm, objective function, or gen-
erative data model. We define a clustering function
as one that satisfies a set of properties. This is often
termed as an axiomatic framework. Functions that
satisfy the basic axioms required to be called a clus-
tering function can then further classified according
to other properties to provide its user with guidance
concerning which such function best suits their appli-
cation.

Kleinberg [Kle03] sets forth three properties that one
may expect all clustering functions to satisfy, but then
proves no function can satisfy all three properties. By
shifting the formalism of that discussion to clustering
quality measures, [ABD08] concludes that Kleinberg’s
impossibility result is more an artifact of the formalism
and framework in which the result was stated, rather
than a natural and inherent contradiction in our intu-
ition about clustering. In the current paper, we cir-
cumvent Kleinberg’s impossibility result by relaxing
one of his axioms. We then propose some additional
abstract properties of clustering functions and obtain
a uniqueness theorem, showing that only the Single-



Linkage function satisfies the resulting set of proper-
ties. Our result highlights the aspects of a similarity
measure over a data set that Single-Linkage is focused
on.

We adopt the framework and the axioms proposed
by [Kle03], however, we circumvent the impossibility
result by restricting our attention to clustering algo-
rithms that take the number of clusters to be created
as part of their input. It is known that such a re-
striction suffices to render the resulting set of axioms
consistent. In fact, most of the common clustering
algorithms, such as Single-Linkage and Min-Sum k-
clustering, satisfy this relaxed set of axioms.

It is clear that fixing the number of clusters beforehand
restricts the set of functions that can be described by
the framework. However, one interpretation of Klein-
berg’s impossibility result is that if one does not give
algorithms the number of clusters they are to return,
then the algorithm must be performing some unintu-
itive operations. Furthermore, many algorithms used
in practice require the number of clusters. Indeed,
all objective functions (k-means, k-median, . . .) used
in practice require k, along with many hierarchical
(Single-Linkage, Complete Linkage, . . .) and spectral
algorithms.

Our characterization of the Single-Linkage (SL) clus-
tering is in terms of two other notions:

• Given a weighted graph, a minimum spanning tree
is a weighted tree which touches every node, while
minimizing the sum of the edges used in the tree.
[GR69] showed that all the information needed
to compute the Single-Linkage k-partitioning of a
graph is present in the minimum spanning tree
(MST) of the graph. Given a weighted graph
and k, the Single-Linkage algorithm returns a k-
partitioning on the nodes. It is easy to see that
Single-Linkage clustering of a data set can be ob-
tained by computing the MST of the induced com-
plete graph (where edges are weighted by the dis-
tance between their end points), then cutting the
k − 1 most expensive edges of the MST; leaving
behind exactly k disconnected components, which
are returned as clusters. It follows, that if two dis-
tance functions give rise to the same MST then
Single-Linkage will return the same clustering on
both. We’ll prove that Single-Linkage is the only
clustering function that has this property, on top
of satisfying some other natural clustering axioms.

• Given a dissimilarity measure, d over some do-
main set X, we define the d-induced path dis-
tance, Pd, by setting, for all x, y ∈ X, Pd(x, y) =
minq∈Px,y maxi<|q| d(q(i), q(i + 1)) (where |q| de-
notes the number of vertices in a path q, and q(i)

is the i’th vertex in the path). We say that a clus-
tering function, F , is path-distance-coherent if, for
any pair of distance measures d, d′ over the same
domain, if d and d′ induce the same path distance
(namely, for all x, y, it is the case that Pd(x, y) =
Pd′(x, y)) then, for all k, F (d, k) = F (d′, k).

It is easy to see that Single-Linkage is a path-
distance-coherent clustering function. Further-
more, it is not hard to realize that if d and d′ give
rise to the same MST then they induce the same
path distance (namely, for all x, y, Pd(x, y) =
Pd′(x, y)). It follows that if a clustering function is
path-distance coherent it is also MST -coherent.
Our characterization of Single-Linkage in terms
of MST therefore implies a similar characteriza-
tion in terms of path coherence. Namely, Single-
Linkage is the only clustering function that is
path-distance-coherent, on top of satisfying some
other natural clustering axioms.

Path distance coherence can be viewed as a natural
property that users may wish their choice clustering
function to satisfy. For example, consider the case a
data set of objects that have been subject to some
noisy perturbations, allowing an object to be replaced
by another if their distance is small. This may be
the case in a data set of DNA sequences of different
species under some edit distance, or a set of folklore
documents that have been copied over and over again.
In such cases, a user may require that a clustering
groups together objects that might have a common
ancestor, and can be formalized as objects with a small
path-distance between them. Our message to the user
is that in such a case, Single-Linkage should be their
choice clustering function.

The outline of this paper is as follows: First we lay
down formal foundations for our properties. After
defining the properties, to investigate the ramifications
of exhibiting algorithms which satisfy a subset of these
properties, in section 2 we introduce the Minimum
Spanning Tree Cuts family of partitioning functions.
Then we prove the uniqueness theorem (theorem 5),
investigate the properties satisfied by the Min-Sum k-
clustering objective in section 3, and conclude with a
proposed taxonomy of partitioning functions (table 1).

More related work

As mentioned above, our formal framework is based
on Kleinberg’s [Kle03]. We also adopt two of the three
axioms proposed in that paper, Consistency and Scale
Invariance. We replace the Richness paper of [Kle03]
by its version for the case of fixed numebr of clusters,
k-Richness.



Another related axiomatic approach is the work of Jar-
dine and Sibson [JS75]. They constrain their view
of clustering functions and only consider hierarchical
functions. They show that Single-Linkage is the only
function satisfying a set of properties; however, this is
primarily a consequence of the fact that one of their
properties is an implicit optimization criterion that is
uniquely optimized by Single-Linkage. Our collection
of properties are drastically different from [JS75] and
do not restrict the formalism to only consider hierar-
chical functions. Furthermore, none of our properties
are implicitly optimizing the Single-Linkage criterion,
and we show that important subsets of our properties
are not enough to characterize Single-Linkage; mean-
ing all 4 properties are necessary to achieve uniqueness.

Formal Preliminaries

A partitioning function acts on a set S of n ≥ 2 points
along with an integer k > 0, and pairwise distances
among the points in S. The points in S are not as-
sumed to belong to any specific set; the pairwise dis-
tances are the only data the partitioning function has
about them. Since we wish to deal with point sets
that do not necessarily belong to a specific set, we
identify the points with the set S = {1, 2, ..., n}. We
can then define a distance function to be any function
d : S × S → R such that for distinct i, j ∈ S , we
have d(i, j) ≥ 0, d(i, j) = 0 if and only if i = j, and
d(i, j) = d(j, i) - in other words d must be symmetric
and two points have distance zero if only if they are
the same point.

Sometimes we write d = 〈e1, e2, . . . , e(n
2)〉 to mean the

set of edges that exist between all pairs of n points.
This list is always ordered by increasing weight. w(e)
is the weight of edge e which connects some two points
i, j. So w(e) = d(i, j).

A partitioning function is a function F that takes a
distance function d on S × S and an integer k ≥ 1
and returns a k-partitioning of S. A k-partitioning
of S is a collection of non-empty disjoint subsets of S
whose union is S. The sets in F (d, k) will be called
its clusters. Two clustering functions are equivalent if
and only if they output the same partitioning on all
values of d and k - i.e. functionally equivalent. Now
we describe the Single-Linkage partitioning function.

It should be noted that the behavior of Single-Linkage
is robust against small fluctuations in the weight of
the edges in d, so long as the order of edges does not
change. This can be seen readily from algorithm 1.

Finally, an edge e of d is called redundant if the two
ends of e (call them x, y) are connected via a path
whose edges are all individually of smaller weight than

Algorithm 1 Single-Linkage(d, k)

Input: d = 〈e1, e2, . . . , e(n
2)〉, k ≥ 1.

Output: The Single-Linkage k-partitioning.

Γ← {{1}, {2}, . . . , {n}}
4: i← 1

while |Γ| > k do
let x, y be the two ends of ei

let cx ∈ Γ, cy ∈ Γ be the clusters of x and y
8: if cx 6= cy then

Merge cx and cy

Γ← (Γ\cx, cy) ∪ {cx ∪ cy}
end if

12: i← i + 1
end while
Output Γ

w(e). These are exactly those edges which have cx =
cy, and thus fail the line 8 condition of algorithm 1.

2 Uniqueness Theorem

Now in an effort to distinguish clustering functions
from partitioning functions, we lay down some proper-
ties that one may like a clustering function to satisfy.
Here is the first one. If d is a distance function, then we
define α · d to be the same function with all distances
multiplied by α.

Scale-Invariance. For any distance function d,
number of clusters k, and scalar α > 0, we have

F (d, k) = F (α · d, k)

This property simply requires the function to be im-
mune to stretching or shrinking the data points lin-
early. It effectively disallows clustering functions to be
sensitive to changes in units of measurement - which
is desirable. We would like clustering functions to
not have any predefined hard-coded distance values
in their decision process. This property was initially
used in an axiomatic clustering framework by [JS75].

The next property is one that is exhibited by algo-
rithms such as {Single, Complete, Average}-linkage.
Let the order of edges in a distance function d be de-
fined as the ordering induced by the weights of the
edges.

Order-Consistency. For any two distance
functions d and d′, number of clusters k, if the order
of edges in d is the same as the order of edges in d′,

then F (d, k) = F (d′, k)

This essentially means that the only way that the func-
tion uses edge weights is by comparing them against
each other. Functions that do arithmetic on the edge



weights (e.g. the k-median objective function) of-
ten do not satisfy this property, whereas algorithms
such as Complete-Linkage do. Notice that Order-
Consistency implies Scale-Invariance - meaning that
any function which satisfies Order-Consistency will
also satisfy Scale-Invariance. For this reason, when-
ever a function satisfies Order-Consistency as well as
Scale-Invariance, we don’t mention Scale-Invariance
explicitly. This property was initially considered by
[JS75].

The next property ensures that the clustering function
is “rich” in types of partitioning it could output. For
a fixed S and k, Let Range(F (•, k)) be the set of all
possible outputs while varying d.

k-Richess. For any number of clusters k,
Range(F (•, k)) is equal to the set of all k-partitions

of S

In other words, if we are given a set of points such
that all we know about the points are pairwise dis-
tances, then for any partitioning Γ, there should ex-
ist a d such that F (d, k) = Γ. By varying distances
amongst points, we should be able to obtain all possi-
ble k-partitionings.

The next property is more subtle and was initially in-
troduced in [Kle03], along with richness. We call a
partitioning function “consistent” if it satisfies the fol-
lowing: when we shrink distances between points in
the same cluster and expand distances between be-
tween points in different clusters, we get the same re-
sult. Formally, we say that d′ is a Γ-transformation of
d if (a) for all i, j ∈ S belonging to the same clus-
ter of Γ, we have d′(i, j) ≤ d(i, j); and (b) for all
i, j ∈ S belonging to different clusters of Γ, we have
d′(i, j) ≥ d(i, j). In other words, d′ is a transforma-
tion of d such that points inside the same cluster are
brought closer together and points not inside the same
cluster are moved further away from one another.

Consistency. Fix k. Let d be a distance function,
and d′ be a F (d, k)-transformation of d. Then

F (d, k) = F (d′, k)

In other words, suppose that we run the partitioning
function F on d to get back a particular partitioning
Γ. Now, with respect to Γ, if we shrink in-cluster dis-
tances or expand between-cluster distances and run F
again, we should still get back the same result - namely
Γ.

The difference between these and the properties de-
fined in [Kle03] is that at all times, the partitioning
function F is forced to return a fixed number of clus-
ters: k. If this were not the case, then the above 4
properties could never be satisfied by any function. In

most popular clustering algorithms such as k-means,
Single-Linkage, and spectral clustering, the number of
clusters to be returned is determined beforehand – by
the human user or other methods – and passed into the
clustering function as a parameter. Kleinberg men-
tions this fact, but since the goal of [Kle03] was an im-
possibility result, k was not provided to partitioning
functions, thereby making the properties unsatisfiable.

Proving characterization of an object by some axioms
always comes in two parts: satisfiability and unique-
ness. Since satisfiability is suspect as a result of
[Kle03], we now prove that our properties are simul-
taneously satisfiable, even though a simple modifica-
tion of the framework would render them unsatisfiable.
An overview of clustering functions and the properties
each satisfies is given in table 1.

Theorem 1. Single-Linkage is Consistent, k-Rich,
Scale-Invariant, and Order-Consistent.

Proof. Single-Linkage is Order-Consistent because it
performs all its decisions by simply comparing two
edges to see which is smaller/larger. Under Order-
Consistent changes to the input, the decisions made by
SL do not change, and therefore neither will its out-
put. Scale-Invariance follows immediately since Order-
Consistency is satisfied.

For k-Richness, when aiming to obtain a k-partitioning
Γ, it is enough to set Γ in-cluster distances to 1, and
between cluster distances to 2 - then SL will return Γ.
What remains is to show Consistency.

To show show consistency for SL, let SL(d, k) = Γ.
With respect to Γ, we call edges with each side in two
different clusters outer edges, and edges with both
ends inside a cluster inner edges. Consider that to
construct Γ, SL sorts all the edges of the graph, and
successively looks at each edge: while there are more
than k clusters, SL turns the smallest outer edge into
an inner edge (therefore reducing the number of clus-
ters by 1). An inner edge that is larger than any outer
edge is called a redundant inner edge because during
the Single-Linkage process, the edge is not considered
for merging, but nevertheless becomes an inner edge as
a result of transitivity. Let the edges of the input graph
be represented as E = 〈e1, e2, . . . , e(n

2)〉, in ascending
order. Each of these edges can either be an outer edge,
a non-redundant inner edge, or a redundant inner edge.
By the SL process, we know that there exists prefix of
E (call it P ) which will be all inner edges, and will be
enough to define Γ. If k = n, then P will be empty
as there are no inner edges. Now consider all possible
Γ-transformations of d. If we shrink a non-redundant
inner edge of d, then P will not change and the SL
process will still produce Γ. If we shrink a redundant



Scale-Invariance Consistency k-Richness MST-Coherence Order-Consistency
Single-Linkage X X X X X

MST cuts family X × X X X
Min-Sum k-clustering X X X × ×
Constant partitioning X X × X X

Table 1: Overview of discussed partitioning functions. Even if one were to consider more partitioning functions, as a
consequence of theorem 5, the only row which can have all entries X is Single-Linkage.

inner edge, then P may change and become P ′, but
the clustering produced will not change as a result of
transitivity. Finally, if we expand an outer edge of
E, then again P will not change thereby leaving Γ in-
tact. So in all possible Γ-transformations of d, we have
SL(d, k) = SL(d′, k). 1

MST-Coherence and the MST Cuts family

As we observed from theorem 1, Consistency, Scale In-
variance, and k-Richness do not uniquely determine a
Single-Linkage since at least SL and MSKC – which
are different clustering functions – satisfy all 3 prop-
erties. Two clustering functions are equivalent if and
only if they output the same partitioning on all values
of d and k. To uniquely characterize SL, we introduce
a new property. For ease of notation, let MST(d) be
the minimum spanning tree of the graph induced by
d. MST(d) is defined as the output of Kruskal’s algo-
rithm, with some some arbitrary tie-breaking strategy
that is universal to all mentions of MST.

MST-Coherence. If d and d′ are distance
functions such that MST(d) = MST(d’), then for all

k, F (d, k) = F (d′, k)

In other words, if two datasets have the same mini-
mum spanning tree, then for a partitioning function
F to be MST-Coherent, it must be that F returns
the same partitioning on both datasets. Note that for
two minimum spanning trees to be equal, we must all
have all nodes, edges, and edge weights involved be
equal and of the same weight. MST-Coherence is ef-
fectively forcing algorithms to ignore redundant edges,
as is apparent in step 6 of the proof of theorem 5.
MST-Coherence is not a property that we expect of
all clustering functions, so we will never refer to it as
an axiom. It is important to see that the properties
are simultaneously satisfiable.

Theorem 2. Single-Linkage satisfies MST-
Coherence, Consistency, k-Richness, and Order-
Consistency.

1Kleinberg [Kle03] treated SL as a Consistent function
without exhibiting a proof; we include a proof here for
completeness.

Proof. Consistency was proven in theorem 1. k-
Richness, MST-Coherence, and Order-Consistency are
proven as part of a more general result in the proof of
theorem 3.

We will prove the main uniqueness theorem shortly.
Before doing this, we reflect on the relationships be-
tween subsets of these properties and show that in ad-
dition to Single-Linkage, there exist other partitioning
functions satisfying three of the four properties. But
the only function that can satisfy all four is Single-
Linkage. For the purpose of theorem 3, a property X
is ‘necessary’ if all remaining properties together (3 of
the 4) are not enough to characterize Single-Linkage.

Theorem 3. Consistency, and k-Richness are neces-
sary to characterize Single-Linkage.

Proof. For each of the mentioned properties, we show
that all the other properties are not enough to uniquely
characterize Single-Linkage. For each of the proper-
ties, we exhibit an algorithm that acts differently than
Single-Linkage, and satisfies all the properties except
for one. In other words, we show that without each of
these properties, the remaining ones do not uniquely
characterize Single-Linkage.

We describe the Minimum Spanning Tree Cuts
(MSTC) procedure, which in fact defines a family of
clustering functions. As usual, the task is to par-
tition n points into k clusters. Consider the fam-
ily of clustering functions produced by computing the
minimum spanning tree of the graph, and then cut-
ting away k − 1 predefined edges in set Ck. These
k − 1 edges are defined by the ascending order of
their length in the minimum spanning tree. For ex-
ample, if the set of edges to be cut were defined by
Ck = {1, 2, 3, . . . , k − 1}, |Ck| = k − 1, the algorithm
would cut the shortest edge of the MST, then the
second shortest edge, the third, all the way until the
(k−1)’th edge has been cut, leaving exactly k compo-
nents, each representing a cluster. As another exam-
ple, setting Ck = {n − 1, n − 2, n − 3, . . . , n − k + 1}
defines Single-Linkage, since SL is exactly the algo-
rithm where we compute the MST then cut away the
k−1 most expensive edges. The entire family of MSTC
functions are obtained by varying Ck. As we will see,



Single-Linkage is the only Consistent member of the
MSTC family.

Consistency is necessary. We claim that the entire
MSTC family of partitioning functions are all MST-
Coherent, k-Rich, and Order-Consistent. However,
it is not true that all members of MSTC are consis-
tent - the only consistent function in MSTC is Single-
Linkage. Thus Consistency is necessary to characterize
SL.

We prove k-Richness is satisfied because we can design
the edges we need to be cut to be exactly the edges
in Ck: consider a target partitioning Γ. We may con-
struct a d such that all distances are very large, except
for exactly one spanning tree T . Within T , we could
like to cut any edge e that is not an in-cluster edge
with respect to Γ. We may do so by picking the size
of e such that its position with respect to the other
edges in the MST is inside Ck, thus guaranteeing e
will be cut by the particular MSTC function. Once
such a d has been constructed, we can see that indeed
F (d) = Γ.

MST-Coherence follows as a result of the fact the de-
cisions made by an MSTC function are entirely depen-
dent on the minimum spanning tree of the input - so
if the MST doesn’t change, then neither will the out-
put. Order-Consistency is satisfied because the order
and identity of the edges in the MST do not change,
even though their absolute weights might, and cut-
ting elements of Ck is done by referring to the posi-
tion of the edges in the edge-ordering. However, theo-
rem 5 tells us that the only Consistent function within
the MSTC family is Single-Linkage. As an example
of a member of MSTC that is not Consistent, take
Ck = {1, 2, 3, . . . , k − 1}.

k-Richness is necessary. Now consider the Constant
clustering function which always returns the first n−
k + 1 elements of S as a single cluster and returns the
remaining k−1 as singleton clusters with one point in-
side each cluster, making a total of k clusters. Because
this function does not look at d, it is trivially MST-
Coherent, Consistent, and Order-Consistent. How-
ever, it is not k-Rich because it always returns some
singletons - i.e. we could never reach a k-partitioning
that has no singletons (a singleton is a cluster with a
single in it).

Now that we have seen our properties do not trivially
characterize Single-Linkage, we can move onto proving
the uniqueness theorem.
Lemma 4. Given a Consistent partitioning function
F , and a distance function d with edges in ascending
order of weight

d = 〈e1, e2, . . . , ep, eq, . . . e(n
2)〉

then for all k > 0, if ep and eq are both inner edges or
both outer edges (w.r.t. F (d, k)), we have

F (〈e1, e2, . . . , eq, ep, . . . e(n
2)〉, k) = F (d, k)

Proof. In other words, whenever we have two edges
of the same type (inner or outer), in neighboring po-
sitions in the edge ordering of d, we can swap their
positions while maintaining the output of F . This is
true because if both ep and eq are outer edges, then we
can expand ep until w(ep) > w(eq) all the while pre-
serving the output of F (by Consistency). Similarly, if
both ep and eq are inner edges, we can shrink eq until
w(ep) > w(eq).

Theorem 5. Single-Linkage is the only Consistent,
k-Rich, MST-Coherent, Order-Consistent partitioning
function.

Proof. Let F be any Consistent, k-Rich, MST-
Coherent partitioning function, and let d be any dis-
tance function on n points. We want to show that that
for all k > 0, F (d, k) = SL(d, k). For this purpose, we
introduce the partitioning Γ as whatever the output of
SL is on d and k, so SL(d, k) = Γ. Whenever we say
“inner” or “outer” edge for this proof, we mean with
respect to Γ.

By k-Richness of F , there exists a d1 such that
F (d1, k) = SL(d, k) = Γ. Now, through a series of
transformations that preserve the output of F , we
transform d1 into d2, then d2 into d3, . . ., until we
arrive at d. Let di be represented by an ordered list of
its edges in ascending order di = 〈ei

1, e
i
2, . . . , e

i

(n
2)
〉.

By the definition of Single-Linkage, we know that a
prefix p = 〈e1, e2, . . . , et〉 of d are all inner edges, where
t is exactly how many edges were considered for merg-
ing by the SL algorithm until k clusters were formed.
Once the edges of p have all been declared inner edges,
then all other inner edges will follow by transitivity.
Since all inner edges of Γ are identified by p, then p is
enough to define Γ.

Recall that redundant edges were defined earlier. We
define redundant inner edges to mean any inner edges
that have weight greater than some outer edge. Such
inner edges are not part of p. Redundant inner edges
cannot be part of the minimum spanning tree for d,
since during Kruskal’s algorithm for MST, the two
components that a redundant inner edge connects have
already been connected by non-redundant and cheaper
inner edges. Since redundant inner edges are not part
of the MST of d, increasing their weights will main-
tain this property, and so by increasing the weight of
a redundant inner edge we do not change the MST.



Since we didn’t change the MST, the output of F will
be preserved, by MST-Coherence.

Now we begin the Γ-preserving transformations on d1

to eventually transform d1 into d while at each step i
maintaining F (di, k) = Γ.

1. By k-Richness, we know there exists a d1 such
that F (d1, k) = SL(d, k) = Γ.

2. Since all edges of p are inner edges, we can shrink
them in d1 until their position in the edge order-
ing of d1 is ≤ t. Call this newly created dataset
d2. d2 has the same first t edges as d, though not
necessarily in the same order. This step maintains
F (d2, k) = Γ by Consistency (we only shrank in-
ner edges).

3. Now we reorder the first t edges of to be in the ex-
actly the same order as they appear in d. Call the
new dataset d3. This step maintains F (d3, k) = Γ
by lemma 4 (all the first t edges are of the same
type - namely inner edges, so we may reorder them
freely). Now the first t edges of d3 are the same
edges (their weights may differ, but their iden-
tities match). Now we deal with the remaining(
n
2

)
− t edges.

4. We expand all outer edges until they are larger
than all inner edges and call the result d4. This
step maintains F (d4, k) = Γ by Consistency.

5. Now we reorder all outer edges until their order in
relation to each other is as they appear in d, and
call the result d5. This step maintains F (d5, k) =
Γ by lemma 4. Now, d5 has all the non-redundant
inner edges in the same position as they appear
in d, and has all the outer edges in the same order
relative to one another as they appear in d. The
only edges that are out-of-place are the redundant
inner edges. The redundant inner edges need to be
put into their correct position amongst the outer
edges.

6. The redundant inner edges need to have their
weights increased by the exactly the right amount
so that they end up in the correct position in d.
This can done simply by expanding these edges.
As we mentioned earlier, by MST-Coherence, ex-
panding redundant inner edges maintains Γ. So
we call the this new data set d6, and note that by
MST-Coherence F (d6, k) = Γ.

7. At this point in the edge ordering of d6, all the
edges lie in the same position as they do in d.
However, their weights might be different than
what appears in d. By using Order-Consistency,
we can turn the weights of d6 into exactly those of

d, and call the result d7. Since we didn’t change
the order of edges from d6, by Order-Consistency
we have that F (d7, k) = Γ. It should be clear that
d7 = d.

8. Thus we have F (d7, k) = F (d, k) = Γ.

We started with any d and k, and showed that

F (d, k) = Γ = SL(d, k)

Also, in theorem 1 we showed that Single-Linkage sat-
isfies all 4 properties. Thus it is uniquely character-
ized.

Note that in the current paper when we mention Span-
ning Trees, we include the weights of the edges in-
volved in the spanning tree as part of the identity of
the tree - meaning that for two spanning trees to be
equal they must have all edge weights equal. If we
were to relax this requirement, then MST-Coherence
would imply Order-Consistency, but then even Single-
Linkage would not satisfy MST-Coherence. By con-
sidering edge weights when evaluating equality of two
spanning trees we weaken the restrictions imposed on
the partitioning function; which is desirable because it
expands the applicability of theorem 5.

3 Building a taxonomy of clustering
functions

Now that we know there is a single function satisfying
all 4 properties in table 1, it is natural to ask which
clustering functions satisfy subsets of these properties.
We consider one example, the Min-Sum k-clustering
objective function. Variations on the Min-Sum k-
clustering objective are widely used. For now we focus
on the Min-Sum k-clustering objective function itself
leave the variations for future work. The objective is
to minimize

Λd(Γ) =
∑
C∈Γ

∑
i,j∈C

d(i, j)

Which is equivalent to the balanced k-median and
Graph Cuts objective functions [BCR01, vL07]. Now,
we investigate which properties are satisfied by MSKC.

Theorem 6. Min-Sum k-clustering is Consistent,
k-Rich, and Scale-invariant, but is neither Order-
Consistent nor MST-Coherent.

Proof. Scale-Invariance follows as a result of the opti-
mal argument of the objective function being invariant
to linear scaling. For k-Richness, when aiming to ob-
tain a k-partitioning Γ, it is enough to set Γ in-cluster
distances to 1, and between cluster distances to 2 -



then MSKC will return Γ. What remains is to show
Consistency.

To show consistency for MSKC, we observe that for a
fixed k, the set of all k-partitionings is an anti-chain
as defined in [Kle03]. Therefore by the construction in
proof of theorem 3.2 in [Kle03], MSKC is Consistent.
Now we show that MSKC is neither MST-Coherent
nor Order-Consistent.

We prove this for k = 2, the case for k > 2 is similar.
Consider the distance d function on n (even) points.
We arbitrarily split the points into 2 parts each of size
n/2, called A and B. Now we will construct d. For
all x, y ∈ B, d(x, y) = ε for some 0 < ε < 1. And for
all points x ∈ A, y ∈ B, we have d(x, y) = 2. Finally,
all points inside x, y ∈ A have distance d(x, y) = ε
except for a single edge, between x0 ∈ A, and y0 ∈ A,
for which we have d(x0, y0) = 3. So it is clear that
all edges are either of length ε or 2, and there is a
single edge of length 3. We now use this d to show
Min-Sum k-clustering is neither Order-Consistent nor
MST-Coherent.

For sufficiently large n, if we run Min-Sum on d
with k = 2, we get back as answer the partitioning
Γ = {A,B}, since it is cheaper to group x0 and y0

together than to pay n/2×2. Notice that the edge be-
tween x0 and y0 is the largest edge of d. Thus, increas-
ing the weight of (x0, y0) is both an MST-Coherent and
Order-Consistent transformation of d. Now, if we ex-
pand (x0, y0) until its weight is larger than 3n, then
Min-Sum k-clustering will put x0 and y0 into differ-
ent clusters, thus outputting a partitioning different
from Γ, which violates Order-Consistency and MST-
Coherence.

4 Conclusions & future directions

In this paper we make a step towards the important
and ambitious goal of developing a general theory of
clustering. More concretely, we aim to build a suite
of abstract properties of clustering that will induce a
taxonomy of clustering paradigms. Such a taxonomy
should serve to help utilize prior domain knowledge to
allow educated choice of a clustering method that is
appropriate for a given clustering task.

At this point, we present a consistent axiomatic basis
for clustering, and, under that framework, we go on to
offer a concrete set of properties that characterize the
Single-Linkage clustering algorithm. Our contribution
provides new insight into the connection between Mini-
mum Spanning Trees and the Single-Linkage clustering
functions. This uniqueness result is set in a framework
similar to one used for the purpose of showing impos-
sibility, showing that there is no inherent impossibility

in formalizing clustering. By considering the listing
in table 1, we demonstrate the type of desired tax-
onomy of clustering functions based on the properties
each satisfies. To investigate the ramifications of algo-
rithms which satisfy only a subset of our properties,
we introduced the Minimum Spanning Tree Cuts fam-
ily of partitioning functions, of which Single-Linkage is
the only Consistent member. The uniqueness theorem
came about as a result of forcing functions to ignore
redundant edges in the course of their operation.

We hope that this work spurs new research in build-
ing a more solid theory of Clustering, especially an
axiomatic theory. Future considerations that will be
valuable are the addition of new clustering functions
and properties to table 1. We have characterized
Single-Linkage in a useful way, leaving the characteri-
zation of other clustering functions (such as Min-Sum
k-clustering) for future work.
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