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Abstract

The introduction of loopy belief propagation
(LBP) revitalized the application of graphical
models in many domains. Many recent works
present improvements on the basic LBP algo-
rithm in an attempt to overcome convergence and
local optima problems. Notable among these
are convexified free energy approximations that
lead to inference procedures with provable con-
vergence and quality properties. However, em-
pirically LBP still outperforms most of its con-
vex variants in a variety of settings, as we also
demonstrate here. Motivated by this fact we
seek convexified free energies that directly ap-
proximate the Bethe free energy. We show that
the proposed approximations compare favorably
with state-of-the art convex free energy approxi-
mations.

1 Introduction

Computing likelihoods and marginal probabilities is a crit-
ical subtask in applications of graphical models. As com-
puting the exact answers is often infeasible, there is a grow-
ing need for approximate inference methods. An important
class of approximations are variational methods [7] that
pose inference in terms of minimizing the free energy func-
tional. In the last decade, loopy belief propagation (LBP), a
simple local message passing procedure, proved to be em-
pirically successful and was used in a variety of applica-
tions [10]. The seminal work of Yedidia et al. [20] merged
these lines of work by formulating loopy belief propagation
in terms of optimizing the Bethe free energy, an approxi-
mate free energy functional.

LBP suffers from two inherent problems: it fails to con-
verge in some cases, and may converge to local optima due
to the non-convexity of the Bethe free energy. Several ap-
proaches have been introduced to fix the non-convergence
issue, so that LBP provably converges to a local optimum
of the Bethe free energy [17, 22]. However, this still leaves

the problem of local optima, and therefore the dependence
of the solution on initial conditions. To alleviate this prob-
lem, several works [2, 6, 13, 15] construct convex free en-
ergy approximations, for which there is a single global opti-
mum. Convexity also paved the way for the introduction of
provably convergent message-passing algorithms for calcu-
lating likelihood and marginal probabilities [3, 4]. More-
over, some of these approximations provide upper bounds
on the partition function [2, 13].

Despite their algorithmic elegance and convergence
properties, convex variants often do not provide better em-
pirical results than LBP. While this observation is shared
by many practitioners, it does not have firm theoretical jus-
tification. Motivated by this observation, our goal in this
work is to construct approximations that are both convex
and directly approximate the Bethe free energy. We show
how to approximate the Bethe in L2 norm and how to find
the best upper bound on it for a given random field. We
then illustrate the utility of our proposed approximations
by comparing them to previously suggested ones across a
variety of models and parameterizations.

2 Free Energy Approximations

Probabilistic graphical models provide a succinct language
to specify complex joint probabilities over many variables.
This is done by factorizing the distribution into a product
over local potentials. Let x ∈ Xn denote a vector of n dis-
crete random variables. Here we focus on Markov Random
Fields where the joint probability is given by:

p(x;θθθ) =
1

Z(θθθ)
exp

{∑
α

θα(xα) +
∑
i

θi(xi)

}
(1)

where α correspond to subsets of parameters (or factors),
and Z(θθθ) is the partition function that serves to normal-
ize the distribution. We denote marginal distributions over
variables and factors by µi(xi) and µα(xα), respectively,
and the vector of all marginals by µµµ.

Given such a model, we are interested in computing the
marginal probabilities µµµ, as well as the partition function



Z(θθθ), which is required for calculating the likelihood of ev-
idence, especially in the context of parameter estimation.
Finding exact answers for these tasks is theoretically and
practically hard and thus many works often resort to ap-
proximate inference.

A class of popular approximate inference approaches
are the variational methods that rely on the following ex-
act formulation of logZ(θθθ) [14]:

logZ(θθθ) = max
µµµ∈M(G)

{
θθθTµµµ+H(µµµ)

}
(2)

The setM(G) is known as the marginal polytope associ-
ated with a graph G [14]. A vector µµµ is in M(G) if it
corresponds to the marginals of some distribution p(x):

M(G) =
{
µµµ
∣∣∣∃p(x) s.t.

µi(xi) = p(xi)
µα(xα) = p(xα)

}
(3)

H(µµµ) is defined as the entropy of the unique exponential
distribution of the form in Eq. (1) consistent with marginals
µµµ. Finally, the objective in Eq. (2) is the negative of the free
energy functional, denoted F [µµµ,θθθ].

The solution to the optimization problem in Eq. (2) is
precisely the desired vector of marginals of the distribution
p(x;θθθ).

In itself, this observation is not sufficient to provide an
efficient algorithm, since the maximization in Eq. (2) is as
hard as the original inference task. Specifically, M(G) is
difficult to characterize and the computation of H(µµµ) is
also intractable, so both need to be approximated. First,
one can relax the optimization problem to be over an outer
bound on the marginal polytope. In particular, it is natural
to require that the resulting pseudo-marginals obey some
local normalization and marginalization constraints. These
constraints define the local polytope

L(G) =
{
µµµ ≥ 0

∣∣∣ ∑xi
µi(xi) = 1∑

xα\xi µα(xα) = µi(xi)

}
(4)

As for the entropy term, a family of entropy approxima-
tions with a long history in statistical physics is based on a
weighted sum of local entropies Hc(µµµ) =

∑
r crHr(µr),

where r are subsets of variables (regions) and the coeffi-
cients cr are called counting numbers [21]. The approxi-
mate optimization problem then takes the form:

log Z̃(θθθ) = max
µµµ∈L(G)

{
θθθTµµµ+Hc(µµµ)

}
(5)

The entropy approximation is defined both by the choice
of regions and by the choice of counting numbers. This
poses two complementary challenges: defining the regions,
and assigning counting numbers for these regions. Here we
focus on the second problem, which arises for any choice
of regions. For simplicity, we limit ourselves to a common
choice of regions — over variables and factors, although

the results to follow can be generalized to more elaborate
region choices (e.g., [16, 18]). In this case the approximate
entropy takes the form:

Hc(µµµ) =
∑
i

ciHi(µi) +
∑
α

cαHα(µα) (6)

where ci and cα are the counting numbers for variables and
factors, respectively.

Each set of counting numbers will result in a different
approximation. The Bethe entropy approximation Hb(µµµ)
is defined by choosing cα = 1, ci = 1 − di (where di =
|{α : i ∈ α}|) [21].

Concave Entropy Approximations

One shortcoming of the Bethe entropy is that it is not con-
cave, and thus Eq. (5) may have local optima. It is possible
to consider instead entropy approximations that are prov-
ably concave. Such approximations have been studied ex-
tensively in recent years, along with provable convergent
algorithms for solving Eq. (5) in these cases. One of the
first concave entropy approximations introduced was the
tree-reweighting (TRW) method of Wainwright et al.[13].
The TRW entropy approximation is a convex combination
of tree entropies and is concave. Furthermore, it is an up-
per bound on the true H(µµµ) so that the optimum of Eq. (5)
yields an upper bound on logZ(θθθ).

More recently, Heskes [5] derived a set of sufficient con-
dition for cα, ci to yield a concave function. He showed
that an entropy approximation Hc(µµµ) is provably concave
for µµµ ∈ L(G) if there exist auxiliary counting numbers
cαα, cii, ciα ≥ 0 such that

cα = cαα +
∑
i:i∈α

ciα ∀α (7)

ci = cii −
∑
α:i∈α

ciα ∀i (8)

3 Message Passing Algorithms

The optimization problem in Eq. (5) can be solved using
generic optimization tools. However, message passing al-
gorithms have proved especially useful for this task. Start-
ing with the work of Yedidia et al.[20] many message pass-
ing algorithms have been proposed for optimizing varia-
tional approximations. Although not all these algorithms
are provably convergent, if they do converge, it is to a fixed
point of Eq. (5). Furthermore if the entropy Hc(µµµ) is con-
cave, this is the global optimum of Eq. (5).

Most existing algorithms make the assumption that
cα = 1. Since in this work we want to explore a broader
range of approximations, we derive message passing up-
dates for the more general case (for any cα 6= 0). Our
derivation, which follows closely the one of Yedidia et al.,
results with the following update rules:



Figure 1: Illustration of the counting number space with different
regions and point of interest labeled (see text).

mα→i(xi) = m0
α→i(xi)

cα
cα−qi+1n0

i→α(xi)
qi−cα
cα−qi+1 (9)

ni→α(xi) = m0
α→i(xi)

qi−1
cα−qi+1n0

i→α(xi)
1

cα−qi+1 (10)

Where qi = 1−ci
di

and:

m0
α→i(xi) =

∑
xα\xi

e
1
cα
θα(xα)

∏
j ∈ α
j 6= i

nj→α(xj)

n0
i→α(xi) = eθi(xi)

∏
β : i ∈ β
β 6= α

mβ→i(xi)

Note that by plugging in the Bethe counting numbers,
where cα = 1 and ci = 1 − di , this reduces back to the
standard BP messages. Furthermore, if we set cα = 1 as in
Yedidia et al. [21], then Eq. (9) and Eq. (10) reduce to the
two-way algorithm defined there.

The above updates are not guaranteed to converge even
if Hc(µµµ) is concave. However, we have found that with
dampening of messages it did converge for all the cases we
studied.

4 Properties of Counting Number Space

Given a specific model, different choices of counting num-
bers lead to different entropy approximations. But what
are good counting numbers and how can we find those for
a specific model?

One desirable property of counting numbers is that they
result in concave entropies, as discussed in Section 2.
There are several rationales for choosing those. One is
clearly that optimization is globally optimal. The other is
that the true entropy H(µµµ) is itself concave [14].

Another approach to deriving good counting numbers is
to restrict ourselves to c such that optimization with Hc(µµµ)
is exact for at least some values of θθθ. For example, suppose
we have a model where θα(xα) = 0 for all α (i.e., a com-
pletely factorized model). How should we constrain c such

that these models are optimized correctly? It is easy to see
that if c satisfies:

ci +
∑
α,i∈α

cα = 1 ∀i (11)

then the corresponding Hc(µµµ) will solve the factorized
model exactly. We call c values that obey Eq. (11) variable-
valid, as the variables are counted correctly in Hc(µµµ) [21].

In a similar way we can define factor-valid approxima-
tions that satisfy:

cα = 1 ∀α (12)

Intuitively, approximations that satisfy both Eq. (11) and
Eq. (12) are valid [21] as they have the appealing prop-
erty of not over- or under-counting variables and factors
in the approximate entropy Hc(µµµ). Furthermore, for tree
structured distributions it has been shown that only valid
counting numbers can yield exact results [11].

Figure 1 illustrates the structure of the above constraints
in the space of counting numbers. Note that the Bethe ap-
proximation is the single choice of counting numbers that
is both factor- and variable-valid. The TRW approximation
is, by definition, always variable-valid, and any distribution
over spanning trees results in a different value of cα. Fi-
nally, we note that for different model structures the count-
ing number space looks different. For example, the Bethe
approximation for tree structured distributions is convex.

To better understand the properties of different counting
numbers, we perform an experiment where the counting
number space is two dimensional and can be visualized.
For this we use 5× 5 toroidal grids in which each variable
is connected to four neighboring variables by pairwise fac-
tors. The joint probability distribution of the model is given
by: p(x;θθθ) = 1

Z(θθθ) exp
{∑

i θixi +
∑

(i,j)∈G θi,jxixj

}
with xi, xj ∈ {±1}. The field parameters θi were drawn
uniformly from the range [−ωF , ωF ], and the interac-
tion parameters θi,j were drawn either from the range
[−ωI , ωI ] or from [0, ωI ] to obtain mixed or attractive po-
tentials respectively [2, 13]. This model structure has inher-
ent symmetry as all factors are pairwise and each variable
appears in exactly four factors. Hence, if we choose the
counting numbers of the approximation based solely on the
structure of the model, we get the same ci for all variables
and the same cα for all factors.

Figure 2 shows the performance of various approxima-
tions on two models. The first model is sampled in an easy
regime with relatively weak interaction parameters while
the second model is sampled from a more difficult regime
with stronger interaction parameters.

We observe that most convex free energy approxima-
tions have large errors both in the estimate of the log-
partition and in that of the marginal beliefs. When look-
ing at subspaces that tend to empirically perform better



Figure 2: Quality of different approximations for two instances of the 5 × 5 toroidal grid from different parametric scenarios. In each
matrix the x-axis denotes the counting number for nodes (ci) and the y-axis denotes the counting number for edges of the grid (cα).
Each pixel in the matrix is the result of running belief propagation with these counting numbers. The subspace of provably convex
approximations is bound by solid lines, and the variable-valid subspace is marked by a dotted line. The left column shows the error in
approximate log-partition function (| logZ(θθθ) − log Z̃(θθθ) |), the middle column shows the average L1 error in approximate marginals
over factors and variables. The rightmost column shows in more detail the approximation quality in the variable-valid subspace. The
colored stars show various approximations (see Figure 1 and text).

than others, the convex subspace does not seem to gener-
ally give good approximations. However, we notice that
variable-valid approximations stand out as the main re-
gion of relatively low error. In fact, we note that to the
best of our knowledge all free energy approximations sug-
gested in the literature obey this variable-valid constraint
[2, 4, 13, 19, 21].

The rightmost column of Figure 2 shows performance
of variable-valid approximations. We notice that for al-
most all models tested the approximation improves as the
counting numbers get closer to the Bethe counting num-
bers. However, in most cases the Bethe approximation
outperforms its convex counterparts. We obtained similar
results for fully connected graphs and other non-pairwise
models (not shown).

5 Approximating Bethe

The experiments in the previous section demonstrate that
the Bethe free energy performs well across a variety of pa-
rameter settings. Since we would like to work with convex
free energies, a key question is which of the convex free
energies comes closest to the performance of Bethe.

In what follows, we describe several approaches to ob-
taining counting numbers that satisfy the above require-
ments. We divide these into static approximations that de-
termine the counting numbers based only on the structure

of the model, and adaptive approximations that also take
the model parameters into account.

5.1 Static Approximations

Following the insights of the previous section, it is natural
to try to combine the convexity constraints of Eq. (7) and
Eq. (8) with the validity constraints defined by Eq. (11).
Inside this subspace, a straightforward choice is to find the
counting numbers that are closest in terms of Euclidean dis-
tance to the Bethe counting numbers. For clarity we denote
by b the vector of Bethe counting numbers with bi = 1−di
and bα = 1. We define the convexBethe-c approximation
as the solution to the optimization problem

argmin
c
‖c− b‖2 (13)

s.t. ci, cα satisfy Eq. (7,8,11).

This constrained optimization problem can be formulated
as a quadratic program and solved using standard solvers.
A similar approach was recently studied by Hazan and
Shashua [4].

However, it is not clear that the L2 metric in counting
number space is adequate for approximating Bethe. In prin-
ciple we would like to approximate the Bethe entropy itself
rather than its counting numbers. Since Hb(µµµ) is a func-
tion of µµµ we would like to find a function Hc(µµµ) that is



Figure 3: Comparison of estimation errors the partition function (left column) and the marginal probabilities (right column) for several
approximation schemes. In the first row we take ωF = 0.05 and attractive potentials, and in the second row ωF = 1 and mixed
potentials. In each graph the x-axis corresponds to the interaction meta-parameters ωI , and the y-axis shows the error in the log partition
estimation (left column) and marginal estimation (right column). Each line describes the average errors over 20 5 × 5 grid models
sampled with the corresponding meta-parameters. The TRW approximation in this graph corresponds to the uniform distribution over
four spanning trees.

closest to it when integrating over all µµµ values. We can put
this formally as:

argmin
c

∫
L(G)

(Hb(µµµ)−Hc(µµµ))2 dµµµ (14)

s.t. ci, cα satisfy Eq. (7,8).

We integrate over L(G) since this is the optimization range
in Eq. (5) and thus the relevant domain of approximation.
Although this integration seems daunting, we can simplify
the problem by noticing that Hb(µµµ) and Hc(µµµ) can be
written as bTHµµµ and cTHµµµ respectively, where Hµµµ is
the vector of local entropies. This results in the following
quadratic optimization problem:

argmin
c

(b− c)TA(b− c) (15)

s.t. ci, cα satisfy Eq. (7,8).

where
A =

∫
L(G)

HµµµHT
µµµdµµµ

is the matrix of integration of all pairwise products of lo-
cal entropy terms. Exact calculation of A is intractable
and so we resort to MCMC methods1, by performing a ran-
dom walk inside L(G). Starting with a random point inside

1Volume computations over such polytopes are generally dif-
ficult, but in some special cases may be solved in closed form [8].

L(G) (i.e., a set of consistent marginals µµµ) we sample a le-
gal direction, find the two boundaries along this direction,
and then sample uniformly a new point from within the
bounded interval. A straightforward argument shows that
the stationary distribution of this walk is uniform within
L(G). To determine when the random walk is close to the
stationary distribution, we apply a heuristic convergence
test by running in parallel several chains from different ran-
dom starting points and comparing their statistics [1]. Once
we determine convergence, we then use samples from the
different runs to estimate A. Finally, we solve the opti-
mization problem in Eq. (15) with and without enforcing
the variable-valid constraints of Eq. (11), and term these
approximations convexBethe-µvv and convexBethe-µ , re-
spectively.

We evaluate the quality of these approximations for cal-
culating the marginals and partition function in 5× 5 non-
toroidal grids with various parameterizations. We com-
pare their performance with the Bethe approximation and
the TRW approximation using a uniform distribution over
four spanning trees (see [13]) 2. Following Wainwright et
al. [13], in each trial we set ωF to a fixed value and grad-
ually increase the interaction strength ωI . For each com-

2We also used uniform TRW weights over all spanning trees
and got similar results (not shown).



Figure 4: Comparison of estimation errors in partition function and marginals of the adaptive free energy approximations. The experi-
mental setting is similar to that of Figure 3.

bination of ωF and ωI we sample 20 random models and
measure the estimation errors of each approximation (see
Figure 3).

We first observe that the Bethe approximation outper-
forms its convex counterparts in terms of partition func-
tion approximation under all settings. However we see
that when the field meta-parameter is small (ωF = 0.05)
and the interaction meta-parameter is large (ωI ≥ 0.8),
the convex approximations do better than Bethe in terms
of marginal probabilities estimates. These results are con-
sistent with previous studies [2, 4, 13].

Among the convex free energies optimal L2 approxima-
tion of the Bethe free energy (convexBethe-µ ) does better
than optimal L2 approximation of the Bethe counting num-
bers (convexBethe-c ) in most of the range of parameters.
convexBethe-µ does not perform well in the low interac-
tion regime (small ωI ). This is presumably due to the fact
that it is not forced to be variable-valid, and thus will not
be exact for independent (or close to independent) models.

When averaging across all parameter settings,
convexBethe-µ yields the best performance among
the convex approximations. We conclude that if one seeks
a convex c that performs across a range of parameters, it is
advantageous to approximate the Bethe entropy function
rather than its counting numbers. However, this comes at
a price of lower approximation quality in some regimes.
Regarding computation time, both heuristics require extra
calculations. We note however, that as the computation
does not depend on the model parameters, these extra cal-

culations need to be performed only once for each model
structure. Once the counting numbers are determined, the
optimization of the approximate free energy is exactly the
same as in standard BP. In addition, the performance of the
convexBethe-µ approximation depends on the quality of
the estimation of the matrix A in Eq. (15). This introduces
a trade-off between the cost of the MCMC simulation and
the quality of the approximation, which can be controlled
by the MCMC convergence threshold.

5.2 Adaptive Approximations

The approximations we examined so far were based on the
structure of the model alone, and were not tuned to its pa-
rameters. Intuitively, a good approximation should assign
more weight to “stronger” interactions than to weaker ones.
Indeed, Wainwright et al. [13], introduce a method for find-
ing the optimal weights in TRW (denoted TRW-opt). The
TRW entropy upper bounds the true entropy H(µµµ) and
thus the corresponding variational approximation in Eq. (5)
results in an upper-bound on the true partition function.
Wainwright et al. thus seek counting numbers that min-
imize this upper bound.

Here we present a different and simpler approach for
adaptively setting the counting numbers. As in the previ-
ous section, our motivation is to approximate the perfor-
mance of the Bethe approximation via convex free ener-
gies. One strategy for doing so is to consider only c where
Hc(µµµ) ≥ Hb(µµµ). This implies that the optimum in Eq. (5)
will always upper bound the Bethe optimum. To come as
close as possible to the Bethe optimum, we can then min-



Figure 5: Comparison of partition function and marginal probabilities estimates for several free energy approximations. In each panel
the x-axis spans values of ωF and the y-axis spans values of ωI (attractive setting). Each pixel shows the difference between average
absolute errors over 20 random trials for these meta-parameters. That is, red pixels show parameterizations where the error of the first
approximation is larger, and blue pixels show parameterizations where the error of the second approximation is larger.

imize the optimum of Eq. (5) over the counting numbers
c.

How can we constrain c to upper bound the Bethe free
energy? It turns out that there is a simple condition on c
that achieves this, as we show next.

Proposition 5.1: If c ∈ Cvv then the difference between the
approximate free energies can be written as:

Hc(µµµ)−Hb(µµµ) =
∑
α

(1− cα)Iα(µα)

Where Cvv is the variable-valid subspace and Iα(µα) =∑
i∈αHi(µi)−Hα(µα) is the multi-information of the dis-

tribution µα (see also [9]).

Since Iα(µα) ≥ 0 always holds, we get that if cα ≤ 1 for
all α, then Hc(µµµ) is an upper bound on the Bethe entropy.
This property is not only sufficient but also necessary if we
want to find counting numbers for which the bound holds
regardless of µµµ. Note that the TRW counting numbers sat-
isfy this constraint and thus the TRW approximation is also
an upper bound on the Bethe free energy. Finally, we notice
that due to the convexity constraints (Eq. (7) and Eq. (8))
the resulting entropy approximation is always non-negative
(unlike Bethe).

We now show how to minimize the upper bound on the
Bethe free energy. For this we generalize a result of Wain-
wright et al.[13]:

Proposition 5.2: Let F̃c[µµµ,θθθ] be free energy approximation
with c ∈ Cvv. The subgradient of maxµµµ F̃c[µµµ,θθθ] is:

∂maxµµµ F̃c[µµµ,θθθ]
∂cα

= −Iα(µ∗α)

where µµµ∗ maximizes F̃c[µµµ,θθθ].

Given this gradient, we can use a conditional gradient al-
gorithm as in [13] to minimize maxµµµ F̃c[µµµ,θθθ] over the set
of c that gives an upper bound on Bethe. Our algorithm is
identical to TRW-opt except for the choice of search direc-
tion within the conditional gradient algorithm. In TRW-opt
this involves finding a maximum weighted spanning tree
while in our case it involves solving a LP (argminc−cTI
subject to the constraints). We denote the result of this op-
timization process by convexBethe-u . Empirically we find
that this method is faster than the TRW iterative optimiza-
tion algorithm and requires less calls to the inference proce-
dure. More importantly, while finding the optimal counting
numbers in TRW is computationally hard for non-pairwise
models [14], our method is naturally applicable in the more
general setting.

To evaluate the above adaptive strategy, we compare it
with the convexBethe-c approximation and with the Bethe
approximation in the same setting we used for the static ap-
proximations (see Figure 4). In addition, Since the choice
of the field meta-parameter ωF greatly influences the rela-
tive performance of the approximation we conduct exper-
iments to better understand its role. Instead of fixing the



field meta-parameter and varying the coupling strength we
plot a two-dimensional map where both meta-parameters
are free to change (see Figure 5).

As we can see in Figure 4 both adaptive heuristics im-
prove on the static ones. Moreover, our convexBethe-u
procedure is often more accurate than TRW-opt. Yet, both
adaptive methods are still inferior to Bethe approximation
for most models we tested, except for the particular regions
we discuss above. More extensive comparison for differ-
ent choices of parameters (Figure 5) reinforces the obser-
vation that the accuracy of the approximations differ un-
der various model parameters. This suggests that given the
model structure, there is no single “best” choice of count-
ing numbers which is better under all parametric settings.
We do see, however, that the Bethe approximation gives
better or equivalent estimates of the log-partition function
compared to the convex approximations (negative values
in the map) except for the region with a very weak field
meta-parameter (ωF ≈ 0) and a strong interaction meta-
parameter (ωI > 1.5). Furthermore, we see that the ad-
vantage of convex approximations over Bethe in marginals
estimation is also in the region where ωF is weak and ωI is
strong.

To examine the generality of these observations, we re-
peated the experiments described here for models with a
structure of fully connected graph over 10 nodes (see Ap-
pendix A). These dense models differ from the sparse grid
structured models, yet we get very similar results. We also
conducted similar experiments for smaller and larger grids
(see Appendix A) and for models with non-pairwise poten-
tials (not shown), again with very similar results. We there-
fore believe that the conclusions we draw here are valid for
a wide range of models.

6 Discussion

The study of convex free energies was originally motivated
by the realization that loopy belief propagation was opti-
mizing the non-convex Bethe free energy. It thus set out to
alleviate the non-convexity problem in the Bethe optimiza-
tion procedure, and indeed has resulted in elegant algorith-
mic message-passing solutions for convex free energies.
Another interesting application of convex free-energies was
for optimizing Bethe (or Kikuchi) free energies via se-
quences of local convex approximations [6]. Although this
resulted in faster optimization, it still inherited the local-
optima problem of the Bethe optimization. More recently,
convex free energy variants were shown to be particularly
useful in the context of model selection [12].

Despite these merits, in terms of quality of the approxi-
mation, convex free energies are still often not competitive
with Bethe and in fact result in poorer performance over
a wide range of parameter settings, as we also show here.
This leads to the natural question, which we address in this
work: what is the best convex approximation to the Bethe

free energy?
As we have shown, there are several approaches to this

problem, depending on whether we seek a set of counting
numbers that is independent of the model parameters, or
one that can be tuned adaptively. Our results show that
convex Bethe approximations often work better than other
schemes. For example, the counting numbers that approxi-
mate the Bethe entropy inL2 norm across all µ values often
work better than other choices. Furthermore, our adaptive
strategy for choosing the best counting numbers for a given
model often works better than other methods such as TRW.
Our adaptive procedures are also easily extendible to non-
pairwise regions, unlike TRW which becomes intractable
in these cases.

One might argue that it is more reasonable to directly
approximate the true entropy H(µµµ) rather than the Bethe
entropy. The main difficulty with this approach is that
H(µµµ) is not generally known, and thus its approximations
are typically quite loose. For example, it is not clear how
to go about approximating it in L2 norm, as we do for
Bethe here. The Bethe free energy, on the other hand, is
tractable and as we show can be approximated in various
ways. Thus, even though we lose by not approximating the
true entropy, we gain by obtaining tighter approximations
to the Bethe entropy, which typically provides good perfor-
mance.

Another conclusion from our results is that variable-
valid counting numbers usually outperform non-valid ones.
One possible explanation for this fact is that they are guar-
anteed to give exact results for independent models. An
interesting open question is what other constraints we can
pose on counting numbers to enforce exactness in different
scenarios, and whether we can optimize over the set of such
numbers.
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A Results for other graphs

We show results for adaptive approximations on fully con-
nected graphs over 10 nodes in Figure 6. As can be seen,
results are very similar to those of grids.

Figure 6: Comparison of estimation errors of the adaptive free
energy approximations in the case of fully connected graphs. The
experimental setting is similar to that of Figure 4.

Figure 7 shows similar results for 10× 10 grids.

Figure 7: Comparison of estimation errors of the adaptive free
energy approximations in the case of 10 × 10 grids. The experi-
mental setting is similar to that of Figure 4.


