
Excursions in Computing Science:

Book 11d. Forces and Invariants

Part VI. Quantum Computing

T. H. Merrett∗

McGill University, Montreal, Canada

August 1, 2021

∗Copyleft c©T. H. Merrett, 2018, 2019, 2021. Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation in a prominent place. Copyright for
components of this work owned by others than T. H. Merrett must be honoured. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or
fee. Request permission to republish from: T. H. Merrett, School of Computer Science, McGill University, fax 514
398 3883.

1

Part I. Electrostatics and Electromagnetism

1. Central Forces.

2. Gravity vs. Electricity.

3. Energy and momentum scales.

4. Divergence, gradient and ~div ~grad.

5. Electrodynamics departs from gravitation.

6. Invariants, cross-products and convention.

7. Electromagnetic waves.

Part II. Partial Slope Equations and Quantum Mechanics

8. Partial Slope Equations: Laplace’s Equation.

9. The Wave Equation.

10. The Schrödinger Equation I: Physics.

11. The Schrödinger Equation II: Animating in 1D.

12. The Schrödinger Equation III: Animating in 2D.

Part III. Quantum Electromagnetism

13. The electromagnetic Schrödinger equation.

14. Simulating a charged wavepacket moving near a current.

15. Links with geometry.

16. Local action versus action-at-a-distance.

17. Other symmetries, other forces.

Part IV. Quantum Field Theory: Matrix Quantum Mechanics

18. Introduction to Quantum Fields.

19. Small matrices.

20. Tensor products.

21. Spin.

22. Vectors and spinors,

23. Multiple and independent systems.

24. A simple field.

25. The Yukawa potential.

26. Perturbation approximations.

27. Fermions.

28. Slopes and antislopes of 2D numbers, etc.

29. Charge conservation and antimatter.

30. Relativistic quantum field theory redux, so far.

Part V. Functional Integrals

31. Path amplitudes.

32. Functionals.

33. Gaussian integrals.

33. Gaussian integrals.

34. Diagrams and QED.

35. Chirality and electroweak.

36. Green’s functions.

37. Propagators.

2

38. Quantum Computing. A quantum computer is a different piece of hardware from a classical
computer, operating on different principles. We start with the principles because they are based on
now-familiar mathematics. Quantum computing also emphasizes some aspects of quantum physics
which are still unfamiliar to us. We will hint at some hardware in Note 47.

A classical bit has two values which we will call F and T to make a clear distinction from the
numbers that follow.

A quantum bit, or qubit, represents these two values as the two basis vectors of a two-dimensional
space, (1, 0)T and (0, 1)T, respectively.

A classical boolean operation, such as not, maps F into T and T into F. It can be written as a
matrix with only 0 s and 1s

cnot
(

0 1
1 0

)(

F

T

)

=

(

T

F

)

We can use the same matrix to represent the corresponding quantum gate, only now what it operates
on are the two vectors

T F

(

0 1
1 0

)(

1
0

)

=

(

0
1

) and

F T

(

0 1
1 0

)(

0
1

)

=

(

1
0

)

I’ve labelled the qubits with their corresponding bit values for this case, just to emphasize the swap
that the matrix performs.

But now we’re not restricted just to 0 and 1 in the matrix. We are allowed any complex numbers.
(Well, we’ll learn about some restrictions.)

Thus, for example, the other two Pauli matrices may now appear

(

1
−1

)

and
(−i
i

)

An important gate is the matrix that connects two of these Pauli matrices

1√
2

(

1 1
1 −1

)(

1
1

)

1√
2

(

1 1
1 −1

)

=

(

1
−1

)

This is the Hadamard gate and we know it works this way because it is the reflection in the 221
2

o

line. The not matrix is the reflection in the 45o line and the other Pauli matrix is the reflection in
the horizontal line. The Hadamard reflection of the 45o line is the horizontal line.

The Hadamard gate also introduces into computing the central quantum principle of superposition.
It allows a qubit to be a superposition of F and T

1√
2

(

1 1
1 −1

)(

1
0

)

=
1√
2

(

1
1

)

and 1√
2

(

1 1
1 −1

)(

0
1

)

=
1√
2

(

1
−1

)

It introduces a new basis for the qubit space which is sufficiently important to have a name and a
notation.

Standard Basis Hadamard Basis

It is handy to have a new notation for these vectors, which relate them back to the classical F and
T. We let | 0 > stand for F and | 1 > stand for T.

| 0 >=

(

1
0

)

| 1 >=

(

0
1

)

3

Now we can go back to expressing a gate as a single equation.
(

1
1

)(| 0 >
| 1 >

)

=

(| 1 >
| 0 >

)

We can also write the Hadamard basis as | + > and | − >

| + >=
1√
2

(

1
1

)

| − >=
1√
2

(

1
−1

)

But we must be careful. Check this out:
(

1
1

)(| + >
| − >

)

=

(| + >
− | − >

)

So the single-equation trick works in the standard basis but not in other bases.

(What must we change in the above to make a correct matrix equation for “(| + >, | − >)T”?)

It is going to be better to switch to a notation using algebraic combinations of | 0 > and | 1 >.
Thus

not(a | 0 > + b | 1 >) = a | 1 > + b | 0 >
So, in particular for the standard basis

not | 0 >=| 1 > not | 1 >=| 0 >

and for the Hadamard basis

not | + > = not(
1√
2
(| 0 > + | 1 >)) =

1√
2
(| 1 > + | 0 >) =| + >

not | − > = not(
1√
2
(| 0 > − | 1 >)) =

1√
2
(| 1 > − | 0 >) = − | − >

Other unary gates change phase. Calling the Pauli matrices

X Y Z
(

1
1

) (−i
i

) (

1
−1

)

we get the possibilities

eiφZ =

(

eiφ

e−iφ

)

and eiφX =

(

cosφ −i sinφ
i sinφ cosφ

)

as well as the phase gate √
Z =

(

1
i

)

Binary gates. Quantum operators, we have learned, must be unitary (see, e.g., Note 11 in Part
II)

UU † = I

which requires at least that they are reversible and, indeed, effectively their own inverse1. This is
certainly true of reflections FF = 1, so for the Pauli matrices in particular

XX† = I Y Y † = I ZZ† = I

1Unitary matrices are so called because their eigenvalues all lie on the unit circle, e
iφ, as is necessary for UU

† = I

in the coordinate system that diagonalizes U and U
†. Unitary operators conserve the norm (length) of the states.

4

where X and Z are symmetric, X† = X and Z† = Z, and where Y is Hermitian, Y † = Y . Check
that this is true for all the preceding unary gates.

The only partially (self-) reversible binary Boolean operator is xor. But it needs a second output:
one of its inputs will do. This way we get a square matrix for the two bits x and y (⊕ is short for
xor)

xor x y x x⊕ y

1
1

1
1

FF

FT

TF

TT

=

FF

FT

TT

TF

We note that F xor y = y but T xor y = not y. We’ve kept the input x as the other output, so
that xor can be applied again to restore the original input.

If we had kept y as the other output the matrix would have been
xor x y x⊕ y y

1
1

1
1

FF

FT

TF

TT

=

FF

TT

TF

FT

For the quantum gate, in the standard basis, which matrix we get depends on the convention we
use for the tensor product.

With
(

x1

y1

)

←−×
(

x2

y2

)

FF is

(

1
0

)

←−×
(

1
0

)

=

1
0
0
0

FT is

(

1
0

)

←−×
(

0
1

)

=

0
1
0
0

etc., so
FF FT TF TT FF FT TT TF

1
1

1
1

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

=

1
0
0
0

0
1
0
0

0
0
0
1

0
0
1
0

With
(

x1

y1

)

−→×
(

x2

y2

)

we would need

1
1

1
1

Clearly the xor gate is reversible and is its own inverse.

Note that it can also be thought of as a controlled-not (cnot) gate: apply not to the “target” bit
but only if the “control” bit is T. We can represent this schematically

5

 1
+

��
��
��
��

��
��
��
��

1
 1

 1
 1

+

x

y

x

y y

yx

x y

x1
 1
 1

So far, the matrices have only 0s or 1s, and so apply equally to bits or to qubits.

But for qubits, if we look at the Hadamard basis, we find more strangeness.

First, let’s apply the Hadamard transformation to each of two bits.
x

y H

H

(H ⊗H)(| x > ⊗ | y >) = (H | x >)⊗ (H | y >)

When we free ourselves from matrices we need no longer worry about the direction of the tensor
product, so we can write it symmetrically, ⊗. A tensor product of operators applied to a tensor
product of states (vectors) just applies each operator to the corresponding state. Thus

(H ⊗H)(| 0 > ⊗ | 0 >) =
1√
2
(| 0 > + | 1 >)⊗ 1√

2
(| 0 > + | 1 >)

=
1

2
(| 0 >| 0 > + | 0 >| 1 > + | 1 >| 0 > + | 1 >| 1 >)

=
1

2
(| 00 > + | 01 > + | 10 > + | 11 >)

where we can abbreviate | 0 > ⊗ | 0 >=| 0 >| 0 >=| 00 >, etc. We can even abbreviate further by
going from binary to decimal so that

H ⊗H | 00 >=
1

2
(| 0 > + | 1 > + | 2 > + | 3 >)

(I’ve left the left-hand vector in binary to remind us that there are 2 qubits. There are other ways
to disambiguate, such as subscript Bs and Ds.)

The other three results, with abbreviations, are

(H ⊗H)(| 01 >) =
1

2
(| 00 > − | 01 > + | 10 > − | 11 >)

(H ⊗H)(| 10 >) =
1

2
(| 00 > + | 01 > − | 10 > − | 11 >)

(H ⊗H)(| 11 >) =
1

2
(| 00 > − | 01 > − | 10 > + | 11 >)

Now look at what cnot does in the Hadamard basis.

cnot | ++ > = cnot H ⊗H | 00 >
= cnot

1

2
(| 00 > + | 01 > + | 10 > + | 11 >)

=
1

2
(| 00 > + | 01 > + | 11 > + | 10 >)

= | ++ >

6

but

cnot | +− > = | −− >
cnot | −+ > = | −+ >

cnot | −− > = | +− >

So if cnot is

 1
+

����x

y x y

x1
 1
 1

in the standard basis, it is

x

��

1
 1

 1
 1

+x

y y

y

in the Hadamard basis.

It is not always clear which is the (unchanged) “control” qubit for controlled-not, or even if there
is a “control” qubit.

The Hadamard transformation applied repeatedly to any number of qubits is called the Walsh or
the Walsh-Hadamard transform, and a short way of writing it is W = H⊗n.

Applied to | 0 > (decimal 0 here) it gives the superposition of all possible states.

W | 0 >= (H ⊗ · · · ⊗H) | 0 · · · 0 >=
1√
2n

(| 0 > + | 1 > + · · ·+ | 2n − 1 >)

This is often a useful state for starting a quantum computation.

Superposition is the first radical departure quantum physics shows from classical physics. Controlled-
not shows the second: entanglement among two or more states.

cnot

(

1√
2
(| 0 > + | 1 >)⊗ | 1 >

)

= cnot

(

1√
2
(| 01 > + | 11 >)

)

=
1√
2
(| 01 > + | 10 >)

= ?⊗?

Here we start with two separable states: the left qubit is in state H | 0 >, the right qubit is in state
| 1 >. The combined initial state is the tensor product of the two.

After cnot the state of the two bits is no longer separable. It cannot be written as a tensor product
of two separate states.

A physical example of the entangled state (| 01 > + | 10 >)/
√

2 is the result of the emission by a
spin-0 atom of two spin-1 photons. Conservation of angular momentum says that the two photons
must have opposite spins, either spin-up and spin-down (| 01 >) or spin-down and spin-up (| 10 >).
If we don’t know which of these two possibilities results, but each is equally likely, then we have
the entangled state (| 01 > + | 10 >)/

√
2.

With enough qubits, there are many more entangled states than pure states. For two qubits a pure
state has the form

(α | 0 > +β | 1 >)⊗ (γ | 0 > +δ | 1 >)

7

while an arbitrary state, either pure or entangled, has the form

a | 00 > +b | 01 > +c | 10 > +d | 11 >

These each have four parameters and so occupy 4-dimensional space—the same. But for normalized
states α2+β2 = 1, γ2+δ2 = 1 and a2+b2+c2+d2 = 1 and the pure states span only two dimensions,
while all the states fill three dimensions.

For three qubits the gap is apparent even if we do not normalize. Pure states occupy 2+2+2=6
dimensions and entangled states make up the difference to 2×2×2 = 8 dimensions. (These numbers
are 3 and 7 if the states are normalized.)

The cnot operation which entangled two qubits, one initially in the Hadamard state | + >and the
other initially | 1 >, is reversible. So, applied again, it can disentangle the result back to the pure
state.

Another way to get a pure state from an entangled one is to measure it.

If we measure the right bit of (| 01 > + | 10 >)/
√

2 we “collapse” the state to one, | 01 >, or the
other, | 10 >, of its components, each with probability (1/

√
2)2 = 1/2 of getting a 1 or a 0 as the

result, respectively.

The respective new state after the measurement is

| 01 >=| 0 > ⊗ | 1 >

or
| 10 >=| 1 > ⊗ | 0 >

and is pure.

Measurement. This example of measurement is oversimplified, It assumes that the measurement
is being made in the standard basis, | 0 > and | 1 >. That is, the measurement operator is somehow
aligned along the (1, 0)T and the (0, 1)T axes—say a polarizer to detect whether photons are ↔ or
l.
We must be more general. We must introduce an operator for each observable. For example, the
operator for “+” polarization could be

(

1
−1

)

Another operator, for “×” polarization, could be

(

1
1

)

(To avoid drawing the pictures

Hadamard PolarizationStandard Polarization

I’ll use “+” and “×” respectively.)

The measurable outcomes correspond to the eigenvalues of the operator. Since these must be real
numbers, the operator must be Hermitian. Thus the eigenvectors are orthogonal and, if normalized,

8

provide a basis for the space. Thus the eigenvalues of

(

1
1

)

are 1√
2

(

1
1

)

and 1√
2

(

1
−1

)

:

(

1
1

)

1√
2

(

1
1

)

=
1√
2

(

1
1

) (

1
1

)

1√
2

(

1
−1

)

=
1√
2

(

1
−1

)

corresponding the the 45o polarization.

Suppose the photon to be measured were in the state

| ψ >=

(

c
s

)

and we are testing the observable (L for “look”)

L =

(

1
1

)

| + >=
1√
2

(

1
1

)

, | − >=
1√
2

(

1
−1

)

L can detect only two states, | + >, to which it attributes value 1, and | − >, for which it sees
value −1.

The probability that the original state | ψ > goes either way, upon measurement, is the square of
the corresponding amplitude, found by taking the inner product.

< ψ | + > = (c, s)
1√
2

(

1
1

)

=
1√
2
(c+ s)

< ψ | − > = (c, s)
1√
2

(

1
−1

)

=
1√
2
(c− s)

We’ve extended our notation: the “bra”, < ψ |, stands for the row vector for the state ψ; the “ket”,
| + >, stands for the column vector for the state +. Together they make a “braket”, which is
always, simply, a (possibly complex) number.

Thus the probabilities are

P+ =
1

2
(c+ s)2 =

1

2
(1 + s2)

P− =
1

2
(c− s)2 =

1

2
(1− s2)

where s2 = 2cs (and as always c2 + s2 = 1).

These give, if we prepare a large number of identical states | ψ >, the proportion of the times
measuring L yields +1 and the number of times it gives −1.

(Of course, if we keep remeasuring the single state | ψ >, we will get an initial +1 or −1 with those
probabilities, followed by repeats of the same value for every subsequent measurement, because the
first measurment changes the state of the photon and

< + | + >= 1 =< − | − >

but
< − | + >= 0 =< + | − > .)

It is reasonable to ask about the expected value of the measurement of state | ψ > by L. This is

< ψ | L | ψ >= (c, s)

(

1
1

)(

c
s

)

= s2

9

which also defines an extension of the bra-ket notation. To check, this should just be

P+v+ + P−v− =
1

2
(1 + s2)× 1 +

1

2
(1− s2)×−1

where v+ and v− are just the eigenvalues—the respective possible outcomes of measurement.

Any hermitian operator can be expressed in terms of its eigenvalues and the projection onto its
eigenvectors.

L = v+ | + >< + | +v− | − >< − |

= 1× 1√
2

(

1
1

)

1√
2
(1, 1) + (−1) × 1√

2

(

1
−1

)

1√
2
(1,−1)

=
1

2

(

1 1
1 1

)

− 1

2

(

1 −1
−1 1

)

We note that the bra-ket notation allows us to express a matrix—an operator—as a ket-bra.

This discussion tells us everything we can know about a given state | ψ > in terms of the basis
| + > and | − > provided by a given observable L. But it’s going to be handy to represent this
view of the state as a density matrix.

ρψL = P+ | + >< + | + P− | − >< − |

=
1

2
(1 + s2)

1

2

(

1 1
1 1

)

+
1

2
(1− s2)

1

2

(

1 −1
−1 1

)

=
1

2

(

1
1

)

+
1

2
s2

(

1
1

)

Note that P+ and P− depend on ψ and | + > and | − >, and that | + > and | − > depend on L.

We can get the expected value also from the density matrix and the observable.

Tr(ρL) = Tr

(

1

2

(

1
1

)

+
1

2
s2

(

1
1

)(

1
1

))

= Tr

(

1

2

(

1
1

)

+
1

2
s2

(

1
1

))

= s2
= < ψ | L | ψ >

where the trace, Tr(), of a matrix is the sum of its diagonal elements.

Density matrices are hermitian because projection is hermitian. They are non-negative and have
trace 1 because the projections are orthogonal and so a basis can be found in which each projection
matrix has all zero entries except for a 1 at a unique point on the diagonal, and because the
probabilities are non-negative and sum to 1.

In the special case that one of the probabilities is 1, the density matrix is its own square, because
there is only one projection and projections are their own square.

Traces have come up twice in this discussion—Tr(ρ) = 1 and Tr(ρL). They are important because
they do not depend on the coordinate system. The trace of a matrix is independent of the basis
used to represent the matrix: trace is basis-invariant.

The trace of a density matrix is probability-weighted and is a form of averaging over the system it
describes.

Density matrices become especially useful for composite systems only part of which can be mea-
sured. We can consider a system S and the environment E (we could call them Syl and Enn) and

10

a state which is entangled between the two.

But first we look at the projection operators for S and E, both of whose states we suppose that
we know.

S E S←−×E
(

c
s

)

1√
2

(

1
1

)

1√
2

c
c
s
s

Compare
(

c
s

)

(c, s)←−× 1√
2

(

1
1

)

1√
2
(1, 1) =

(

c2 cs
cs s2

)

←−× 1

2

(

1 1
1 1

)

1√
2

c
c
s
s

1√
2
(c, c, s, s) =

1

2

c2 c2 cs cs
c2 c2 cs cs
cs cs s2 s2

cs cs s2 s2

All four of these expressions are equal. The first line is before taking the tensor product, the second
line is after.

The traces of the two components before taking the tensor product are c2 + s2 and 1/2 + 1/2
respectively. We can also find these two “partial” traces by looking at the 4-by-4 matrix (call it ρ).

For S
(

ρ00 + ρ11 ρ02 + ρ13

ρ20 + ρ31 ρ22 + ρ33

)

For E
(

ρ00 + ρ22 ρ01 + ρ23

ρ10 + ρ32 ρ11 + ρ33

)

In this special case, ρ is the density matrix for the whole system: only one projection is needed and
its probability weight is 1.

The two 2-by-2 results are the reduced density matrices, ρS and ρE—and note that Tr(ρS) = 1 =
Tr(ρE) as well as Tr(ρ) = 1.

Now let’s look at the reduced density matrices for a system and environment entangled together.
Suppose the overall state is | ψ >= (| 01 > + | 10 >)/

√
2.

ρ =
1√
2

0
1
1
0

1√
2
(0, 1, 1, 0) =

1

2

0
1 1
1 1

0

Since | ψ > is not a product of separate states for S and for E (they are entangled) we cannot
break it into two components and directly find ρS and ρE . But we can use the second method,
extracting ρS and ρE from ρ.

ρS =
1

2

(

1 0
0 1

)

ρE =
1

2

(

1 0
0 1

)

Note that these do not recombine, ρS
←−×ρE 6= ρ,

We note also that | ψ > does not uniquely produce this result. It could be (| 00 > + | 11 >)/
√

2 or
any of the Bell basis states,

So a measurement of observables in the system only, giving expected value Tr(ρSLS) cannot tell us

11

the exact state of system and environment combined. But it tells us everything it is possible for us
to know about the system.

Ternary gates. We do not learn new principles by going to three qubits, but we fill in an important
missing gate.

The only binary operator we have so far is xor. But we know from Boolean algebra that this does
not give us a complete set of gates (see Note 4 of Week 10 and the related Excursion).

We will need at least an and operator. This can be provided by two control lines which are
effectively anded together.

1 1 0 1

��

x
y

z

x

y

xy + z

x y z xy + z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1

1 1 1 0

��

This is the controlled-controlled-not, ccnot, or Toffoli gate. It is also a reflection.

1
1

1
1

1
1

1
1

This Note gives the basics of quantum computing. The qubit brings to the classical bit the quan-
tum concepts of superposition, of amplitude, of entanglement and of measurement. Now some
algorithms.

In Notes 39 to 41 the quantum Fourier transform exploits superposition to achieve exponential
speedup over the classical “fast” Fourier transform. Note 43 uses the linearity of superposition to
prove the “no-cloning” theorem, which is needed in Note 42, along with measurement, to provide
secure key distribution. Note 44 uses amplitudes to get a square-root speedup for unstructured
database search. Note 45 uses entanglement and measurement for error detection and correction.
In Note 46, entanglement shows that quantum physics really is nonlocal. And Note 47 looks at the
basic mathematics of actually building a quantum computer.

39. Binary Fourier transform. What is the effect of the Discrete Fourier Transform (Week 9,
Notes 1–3) on the bits of the function it is applied to? We use F for 0 and T for 1 to stress that
we’re discussing bits and to avoid possible confusion with 0s and 1s.

Here are 1-bit, 2-bit and 3-bit discrete Fourier transforms applied to the 2n numbers 0, 1, · · · , 2n−1
with n = 1, 2 and 3. (For example, n = 2: 0 = FF, 1 = FT, 2 = TF, 3 = TT.)

1√
2

(

1 1
1 −1

)(

F

T

)

=
1√
2

(

F + T

F− T

)

1 0

1

2

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

FF

FT

TF

TT

=
1

2

FF + FT + TF + TT

FF+ iFT− TF− iTT
FF− FT + TF− TT

FF− iFT− TF + iTT

12

=
1

2

(F + T)(F + T)
(F− T)(F + iT)
(F + T)(F − T)
F− T)(F− iT)

2 1 0 2 1 0

1√
23

1 1 1 1 1 1 1 1
1 ω i iω −1 −ω −i −iω
1 i −1 −i 1 i −1 −i
1 iω −i ω −1 −iω i −ω
1 −1 1 −1 1 −1 1 −1
1 −ω i −iω −1 ω −i iω
1 −i −1 i 1 −i −1 i
1 −iω −i −ω −1 iω i ω

FFF

FFT

FTF

FTT

TFF

TFT

TTF

TTT

=
1√
23

(F + T)(F + T)(F + T)
(F− T)(F + iT)(F + ωT)
(F + T)(F − T)(F + iT)

(F − T)(F− iT)(F + iωT)
(F + T)(F + T)(F− T)

(F− T)(F + iT)(F − ωT)
(F + T)(F − T)(F − iT)

(F − T)(F− iT)(F − iωT)

In the n = 3 case, ω = (1 + i)/
√

2 is the 8th root of 1,

ω

1

ω

i

i

−i

−i

−1

ω

ω−

The pattern in this is that the 0 bit cycles through all 2nth roots of 1 in the form F + (2
n√

1)T.
The 1 bit cycles twice through the 2n−1st roots of 1. And so on, with the period halving and the
number of cycles doubling.

40. Quantum Fourier transform. In a quantum computer we can make each qubit simultaneously
take on all possible values such as those we’ve computed above, and all the qubits together can
simultaneously take on all the possible combinations above.

We just need quantum logic “gates” to do this to each qubit, controlled by its position, i.e., by the
other qubits.

The n = 1 case tells us that we need the Hadamard gate

H =
1√
2

(

1 1
1 −1

)

1√
2

(

1 1
1 −1

)(

1
0

)

=
1√
2

(

1
1

)

1√
2

(

1 1
1 −1

)(

0
1

)

=
1√
2

(

1
−1

)

We’ll see that the rest can be accomplished with H and a set of phase change gates

Rk =

(

1

e2πi/2
k

)

13

R0 =

(

1
1

)

R2 =

(

1
i

)

R1 =

(

1
−1

)

R3 =

(

1
ω

)

But these will have to appear in controlled form so that the qubit positions will tell us which Rk
to use and when to use it.

Since we have moved from bits, which can take on only the values F and T, to qubits, which can take
on these values plus an infinity of intermediate values, we change notation to one using vectors.

F corresponds to

(

1
0

)

written | 0 >

T corresponds to

(

0
1

)

written | 1 >

Applying the matrices representing H and R2 gates to these vectors

| 0 > H→ 1√
2
(| 0 > + | 1 >)

| 1 > H→ 1√
2
(| 0 > − | 1 >)

| 0 > R2→ | 0 >
| 1 > R2→ i | 1 >

(| 0 >
| 1 >

)

H→ 1√
2

(| 0 > + | 1 >
| 0 > − | 1 >

)

(| 0 >
| 1 >

)

R2→ 1√
2

(| 0 >
i | 1 >

)

On the right above is a “compact” notation which should be taken only as a way of writing pairs
of transformations together; we’ve seen in Note 38 that subtleties arise in different bases.

Using the notational equivalents (for bits) F ↔| 0 > and T ↔| 1 > we see that the 1-bit Fourier
transform is just given by the Hadamard gate.

For more bits we’ll need a controlled phase shift. Here qubit 0 controls the phase shift of qubit 1.

c
0 1

|00>
|01>
|10>
|11>��

1 0

qubit 1

qubit 0

|00>
|01>
|10>

i |11>

R22R

Only when the control qubit is T (1) does R2 come into action. And then it affects only T (1) values
of the controlled qubit.

(Recall that | 00 > is just shorthand for | 0 >| 0 >, etc.)

Let’s try the following circuit for the 2-qubit Fourier transform.

qubit 0

qubit 1

�� H

RH 2

0

|00>
|01>
|10>
|11>

1 0

1
2

|00>+|10>
|01>+|11>
|00>−|10>
|01>−|11>

R
c

2

0 1

H
1

1
2

|00>+ |10>
|01>+i|11>
|00>− |10>
|01>−i|11>

H
0

1
2

(|0>+|1>)(|0>+|1>)
(|0>+i|1>)(|0>−|1>)
(|0>−|1>)(|0>+|1>)
(|0>−i|1>)(|0>−|1>)

1

14

This is the same as the binary Fourier transform except that the qubits must be swapped at the
end.

It is tedious but now straightforward to show that

qubit 0 ��

qubit 1

qubit 2

����

��
��
��
��

R2

R

H

2

H

H

3R

gives the same result as the 3-bit binary Fourier transform, except with the final bits in reverse
order.

So we must learn how to swap bits. Let’s introduce a swap gate.

x

y

We need (n− 1)n/2 swap gates to reverse n bits.

qubit 3

qubit 0

qubit 1

qubit 2

That makes 3(n− 1)n/2 controlled-not gates if we follow Excursion Implement swap gate.

The cost of Fourier-transforming N = 2n qubits is O(n2) quantum gates: n Hadamard gates,
(n− 1)n/2 phase-change gates and 3(n− 1)n/2 controlled-not gates ((n − 1)n/2 swap gates).

That is O((lgN)2). The Fast Fourier Transform (FFT) of Note 5 in Week 9 is O(N lgN). The
Quantum Fourier Transform (QFT) is exponentially faster.

This speedup is due to the ability of the entangled quantum states involved to hold all possibilities—
e.g., | 00 > + | 01 > + | 10 > + | 11 > or | 00 > − | 01 > +i | 10 > −i | 11 >—simultaneously.
The QFT exemplifies the exponential parallelism sometimes possible with quantum computing.

41. Finding periods. For the moment, the results of the quantum Fourier transform are still
buried and inaccessible in the entangled state of the qubits. How do we use this QFT to find out,
say, the period of a function?

Indeed, we haven’t even applied the QFT to any function whose period we might wish to find.

Let’s revisit the classical discrete Fourier transform (Week 9) to see how it finds periods. Suppose
a 2-bit function is

x 0 1 2 3
f(x) 2 1 2 1

Then its Fourier transform is

1

2

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

2
1
2
1

=

3
0
1
0

15

where the 0-component, 3, of the result gives the mean value of f()—or would if we had normalized

by 1/N instead of 1/
√
N (N = 2n = 4 in this example). The other nonzero component gives the

period of f(). Being the 2-component, it tells us P = N/2 = 2.

(This relationship between N , P and the indices of the nonzero Fourier results becomes clearer
in an example with N = 8. Here is a function with period P = 4 and the result of the Fourier
transform (the matrix is given in Note 39).

x 0 1 2 3 4 5 6 7
f(x) 2 1 3 0 2 1 3 0√
2×FT 6 0 −(1 + i) 0 4 0 −(1 + i) 0

Note that the FT is nonzero for indices

N

P
= 2, 2

N

P
= 4, 3

N

P
= 6

(and, of course, for index 0). So if we can find the indices of the nonzero results, the denominator
gives the period. We needed something like this to crack secret codes in Excursion Cracking RSA
in Week i—via Excursion How many intervals?.)

Now let’s provide a function and see how the QFT can find its period.

A functionf() can be represented as a single quantum state by entangling its values:
∑N−1
x=0 | x >| f(x) >. For our earlier example

x 0 1 2 3
f(x) 2 1 2 1

this is, in decimal then in binary

1

2
(| 0 >| 2 > + | 1 >| 1 > + | 2 >| 2 > + | 3 >| 1 >) =

1

2
(| 00 >| 10 > + | 01 >| 01 > + | 10 >| 10 > + | 11 >| 01 >)

We could go further and replace, say, | 00 >| 10 > by | 0010 > but it is helpful to keep x and
f(x) visually separate. We’ll talk about the “x-register” and the “f -register”. (The 1/2 is the
normalization factor.)

Now let’s apply QFT to the x-register in this sum, so that, say, the first | 00 > becomes (see Note
40)

1

2
(| 00 > + | 01 > + | 10 > + | 11 >)

In the following I’m going to write these sums vertically for reasons that should become clear. The
result of the QFT is

1
4(| 00 >| 10 > + | 00 >| 01 > + | 00 >| 10 > + | 00 >| 01 >
+ | 01 >| 10 > +i | 01 >| 01 > − | 01 >| 10 > −i | 01 >| 01 >
+ | 10 >| 10 > − | 10 >| 01 > + | 10 >| 10 > − | 10 >| 01 >
+ | 11 >| 10 > −i | 11 >| 01 > − | 11 >| 10 > +i | 11 >| 01 >)

= 1
4(| 00 > (| 10 > + | 01 > + | 10 > + | 01 >)

+ | 01 > (| 10 > +i | 01 > − | 10 > −i | 01 >)

+ | 10 > (| 10 > − | 01 > + | 10 > − | 01 >)

+ | 11 > (| 10 > −i | 01 > − | 10 > +i | 01 >))

16

= 1
2(| 00 > (| 10 > + | 01 >)

+ | 01 > 0

+ | 10 > (| 10 > − | 01 >)

+ | 11 > 0)

Now if we measure the x-register we have zero amplitude for | 01 > and for | 11 > so we can only
get 0 (| 00 >) or 2 (| 10 >) as the answer.

In the example with period 4 (N = 8) above, x would measure to be 0, 2, 4 or 6. The last three
give, respectively,

N

P
= 2 2

N

P
= 4 3

N

P
= 6

from which in each case

P =
N

2
= 4

But we do not know which of the multipliers 1, 2 or 3 applies when we’ve made just one measure-
ment, so the best we can do to find P is to divide N by the result of the measurement.

The three possibilities are (still excluding 0—if we got 0 we’d have to run the Fourier transform
again)

N

2
= 4

N

4
= 2

N

6
=

4

3
In two of these cases the numerator gives the period, 4. In the middle case we will mistakenly think
that the period is 2.

We discussed this kind of reasoning in Week i, Excursion How many intervals? and what to do
about it. (The full machinery of that Excursion is particularly germane if the period is not a power
of 2.)

The upshot is that we have a reasonable chance of finding the period of a function from one
measurement of its QFT.

This can be used to crack Rivest-Shamir-Adelman (RSA) encryption, which is the basis for almost
all the encryption algorithms that keep our Internet transactions secure. RSA depends on the
computational difficulty of factoring large integers, which can however be done by finding the
period of a certain modular-arithmetic function—see Week i, Excursion Cracking RSA.

42. Quantum key distribution. Having cracked RSA can we replace it with a really secure
system? RSA supports a public/private key pair with which anybody can encrypt (public key) a
message which only one person can decrypt (private key). The security of RSA was provided by
the apparent difficulty of factoring a large integer.

RSA is ultimately used to transmit a separate, one-time key which can be used to encrypt the
actual message to be sent from, let’s call her Fran, to, let’s call him Tom. A random key, used only
once, is guaranteed to be secure, as Claude Shannon has shown.

Such a “key distribution” can be done by quantum bits (qubits) directly, with security guaranteed
by physics, not just by computational difficulty.

The idea proposed by Charles Bennett and Gilles Brassard (BB84) is to use two qubit encodings at
random, transmit a number of qubits, then subsequently compare the encoding methods—but not
the actual qubits.

Fran and Tom need a quantum channel, one-way from Fran to Tom, for the qubits, and a classical
channel, two-way, subsequently to compare the encoding methods.

Let’s suppose Fran wants to send Tom an N = 4 bit one-time key. They agree beforehand that

17

each bit will be encoded, say as a polarized photon, randomly as either + or × (recall that + rep-
resents the standard basis and × represents the Hadamard basis and is obtained by the Hadamard
transformation—a 22.5o reflection or effectively a 45o rotation). Fran’s encoding sequence is not
known to Tom so Tom must also randomly select one base or the other in sequence, to decode the
photons.

To allow for incompatible coding steps, the number of qubits actually sent must double to 2N = 8.
And a further test for eavesdroppers, which we’ll come to, will also expose N qubits, so the total
must double again to 4N = 16.

Here is an example.

Fran encodes + × + × × + × + × × + + + × × +
Fran sends 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0
Tom decodes + × × + × × + × + × × + + + × ×
Tom receives 0 1 ? ? 1 ? ? ? ? 0 ? 0 1 ? 0 ?

On later comparison of the sequence of coding methods, both Fran and Tom discard the bits where
the methods differed—those marked “?” in Tom’s stream—whose results can agree only half the
time because of the inherently probabilistic nature of quantum physics. So in this example they
can use 7, or about 2N = 8 qubits.

If there is an eavesdropper, both channels are vulnerable. We can do nothing to protect the classical
channel but Fran and Tom can detect Eve eavesdropping on the quantum channel.

Eve knows the two coding methods but not their sequence, so she can do no better than to sequence
them at random herself. Having absorbed Fran’s photon at any step, Eve must send to Tom photons
representing her own results using her same coding sequence.

Here is the same example, plus Eve.

Fran encodes + × + × × + × + × × + + + × × +
Fran sends 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0
Eve decodes + × + × + × + × + × + × + × + ×
Eve receives and sends 0 1 0 0 ? ? ? ? ? 0 1 ? 1 1 ? ?
Tom decodes + × × + × × + × + × × + + + × ×
Tom receives 0 1 ? ? ©? ? ? ? ? 0 ? ©? 1 ? ©? ?

This time, when Tom and Fran compare coding sequences, there may be disagreement in two places
(the circled question marks, for qubits 5, 12 and 15) about the values of the qubits. Of course they
won’t detect this yet because none of the qubits have been compared. But suppose they do compare
some, say N , of the qubits associated with the agreeing coding steps, say bits 1, 5, 12 and 15 (the
selection should be at random). For any bit Eve and Tom choose the same encoding methods with
probability 1/2 in which case they get the same bit—which is what Fran sent. Or they choose
different coding methods, in which case they will get the same bits half the time. So there is a 3/4
chance that Eve’s snooping will not be noticed but a 1/4 chance that Eve will be caught. So Eve
alters N/4 qubits on the whole, which is one qubit in this example. That could be any of the qubits
5, 12 or 15, And, of course, the more qubits the greater the likelihood of catching Eve.

If an eavesdropper has been detected, Fran and Tom can look for another channel and try again.

So BB84 gives us a probabilistically guaranteed secure communication algorithm which can be used
to transmit one-time keys to encrypt messages (of the same length) over insecure classical channels.

43. No cloning. So why does Eve not just copy the qubits she receives, keeping one copy and
passing the other on to Tom, then wait for Tom and Fran to compare coding methods over the
(insecure) classical channel?

Because she can’t. Unlike classical bits, qubits cannot, in general, be copied.

We would need a gate U which maps, say | ψ0 > to | ψψ > thus making a copy of the first qubit,

18

| ψ >, in the second qubit which was originally zero.

The cnot gate does this if | ψ >=| 0 > or if | ψ >=| 1 >

cnot :| 00 > → | 00 >
| 10 > → | 11 >

but it does not copy an arbitrary qubit | ψ >= α | 0 > +β | 1 >

cnot :| ψ0 >→ α | 00 > +β | 11 >

whereas
| ψψ >= (α | 0 > +β | 1 >)(α | 0 > +β | 1 >)

so these two are not the same, as they should be if cnot really mapped | ψ0 > to | ψψ >.

Wooters and Zurek (1982) and Dicks (1982) extended this argument to show that no gate will do.

Suppose
U :| ψ0 >→| ψψ >

and that
| ψ >= α | φ > +β | θ >

so, by linearity
U :| ψ0 >→ α | φφ > +β | θθ >

but, by hypothesis
U :| ψ0 >→ (α | φ > +β | θ >)(α | φ > +β | θ >)

These two conclusions contradict each other.

44. Database search. Suppose we want to find the person with phone number 1111 in the
telephone book

Name Phone
Ann 4444

Bob 5555

Cat 1111

Don 7777

Eve 3333

Flo 2222

Gio 8888

Hal 6666

N P
A 4

B 5

C 1

D 7

E 3

F 2

G 8

H 6

Name Phone
0001 0100

0010 0101

0011 0001

0100 0111

0101 0011

0110 0010

0111 1000

1000 0110

(The middle table abbreviates the telephone book and the table on the right translates that to
“nybbles” of ASCII: ‘A’ is 41 in hexadecimal or the byte 01000001; ‘1’ is 31 in hexadecimal or
00110001; and so on.)

If we had wanted to look up ‘Cat’, for example, we would exploit the structure of the telephone
book—its alphabetical order. For example a systematized version of what we do with a physical
telephone book is a “binary search”: start in the middle, see which way to go from there and iterate
with each new half of the previous interval,

However, the telephone book is not structured for using phone numbers as the look-up key, so we’ll
essentially have to scan the whole book sequentially from beginning to end. Well, on the average
over many searches, since we might succeed anywhere from entry number 1 to entry N (8 in this
example), we must check N/2 entries. Compare this with lgN for the binary search.

N 4 8 16 32 64 128 256 · · · K · · · M · · · G
N/2 2 4 8 16 32 64 128 · · ·
lgN 2 3 4 5 6 7 8 10 20 30

19

For a quantum telephone book, however, this unstructured search is much less a problem. We can
create a state which contains the result of all comparisons. For a Giga-entry file this would require
30 qubits.

For our first quantum telephone book let’s take just four entries. We’ll let f() name the function
we must represent. It has two values: 1 for a match and 0 for a non-match.

x Name Phone f
00 Ann 4444 0
01 Bob 5555 0
10 Cat 1111 1
11 Don 7777 0

I’ve added an extra column x which is sinply the relative address, in computer memory, of each
entry, so that f(x) can be taken as a function of x = 0, · · · , 3.
Now we do the usual thing and make a reversible gate using exclusive-or, ⊕.

Uf :| x >| q >→| x >| q ⊕ f(x) >

So for the two possible values of the single qubit q

x q q ⊕ f(x)
00 0 0
00 1 1
01 0 0
01 1 1
10 0 1
10 1 0
11 0 0
11 1 1

Note that the result (apart from x, which just gets repeated) is the same as q where there is no
match (f(x) = 0) but is flipped where f(x) = 1 (shown in bold). We can exploit this.

To see how to proceed we must think about the vectors given by the quantum amplitude of the
state describing the quantum telephone book.

This is a multidimensional vector (N = 4 dimensions in the case of our reduced telephone book).
Fortunately, the problem is essentially two-dimensional: whether there is a match or not.

We’ll need two basis vectors.

| α >=
1√

N −M
∑

x

(1− f(x)) | x >=
1√
3
(| 00 > + | 01 > + | 11 >)

for non-matches, and

| β >=
1√
M

∑

x

f(x) | x >=| 10 >

for match (M is the number of entries which match a general query, M = 1 in this example, leaving
N −M non-matching entries).

It is plausible to start our search with equal weights for all possibilities.

| ψ0 > =
1√
N

∑

x

| x >

=
1√
4
(| 00 > + | 01 > + | 10 > + | 11 >)

20

= cos θ/2 | α > + sin θ/2 | β >

=

√

N −M
N

| α > +

√

M

N
| β >

=

√

3

4
| α > +

√

1

4
| β >

The middle line introduces the angle (called θ/2 for reasons which will become clear next) that
| ψ > makes with | α > in the 2-dimensional space. In this example clearly θ/2 = 30 degrees.

If we can rotate | ψ0 > by 60 degrees, it will wind up pointing exactly along | β >, which gives us
the match we want.

o

|α>

|β>

|ψ >

θ/2 = 30
θ=60 0

o

Rotations are not quantum gate operations but reflections are, and two reflections make a rotation.
To get the rotation by θ we make two steps:

• a) reflect | ψ0 > in | α;

• b) reflect the result in | ψ0 >.

2

|α>

|β>

|ψ >0

1

Recall (from Note 19, Part IV) that a projection is the mean of the identity and the reflection

P =
1

2
(I + F)

so
F = 2P − I

And projection onto a vector ~v is given by the matrix that is the product of ~v with itself

P = ~v~v†

For example, projection onto ~v = (c, s)T is

(

c
s

)

(c, s) =

(

c2 cs
cs s2

)

21

Thus, reflection in the vector (c, s)T is

2

(

c2 cs
cs s2

)

− I = 2

(

c2 cs
cs s2

)

−
(

c2 + s2

c2 − s2
)

=

(

c2 − s2 2cs
2cs −(c2 − s2)

)

=

(

c2 s2
s2 −c2

)

as we found in Note 19 (Part IV).

The notation we introduced in Note 38 extends to allow us to express both dot products of vectors

~v · ~v = ~vT~v

and this new “outer product”
~v~vT

We’ve been writing | v > for the column vector ~v. Now we write < v | for the corresponding row
vector, ~vT.

So
< v | v >= ~vT~v = ~v · ~v

is just a number, but
| v >< v |= ~v~vT

is a matrix, or operator.

The first reflection we want, therefore, is

2 | α >< α | −I

since | α >< α | is the projection onto vector | α >.

To get this, we go back to the operator for the match function.

Uf =| x >| q >→| x >| q ⊕ f(x) >

We now exploit the flip we observed in the values of q when f(x) = 1. We define

| q0 >=
1√
2
(| 0 > − | 1 >)

x
√

2 | q0 >
√

2 | q0 ⊕ f(x)
00 | 0 > − | 1 > | 0 > − | 1 >
01 | 0 > − | 1 > | 0 > − | 1 >
10 | 0 > − | 1 > | 1 > − | 0 >
11 | 0 > − | 1 > | 0 > − | 1 >

This just changes the sign on | q0 >, and hence on | x >| q0 >, when there is a match. But that
component of any vector is just the | β > component, so the effect if Uf with | q0 > is just the
reflection we wanted in the | α > axis.

We don’t use the 2 | α >< α | operator.

(And since | q0 > is unchanged by Uf , except for that change of sign, it is often simply left out of
the specification of Uf

Uf :| x >→ (−1)f(x) | x >

22

.)

How do we get the second reflection

1 | ψ0 >< ψ0 | −I

out of implementable quantum gates?

A clue comes from the fact that
| ψ0 >= W | 0 >

where W is the Walsh-Hadamard transformation of Excursion Representing functions:

W | 00 · · · 0 >= H ⊗H ⊗ · · ·H

So
W (2 | 0 >< 0 | −I)W = 2 | ψ0 >< ψ0 | −I

since W is its own inverse.

And that kernel just changes the sign of every amplitude except that of state | 0 >. It can be
written as a π phase change for all but x = 0

2 | ψ0 >< ψ0 | −I = Cπ

with
Cπ | x >= (−1)δx0−1 | x >

From all this we get the Grover operator

G = WCπWUf

(Lov Grover, 1996).

For the 4D case of our example we need only one application of the Grover operator to come up
with the quantum state that gives the search result exactly. A measurement of G | ψ0 > then gives
us 2 (from state | 10 >) with certainty.

For the 8D case
√

N −M
N

=

√

7

8
= cos θ/2

and
√

M

N
=

√

1

8
= sin θ/2

giving θ/2 = 20.7o and θ = 41.48o.

Then the Grover operator brings us to 3θ/2 = 62.1o and a second rotation brings us to 5θ/2 =
103.5o. Of these, 103.5o is closer to 90o and any further iteration will take us away from the match
state. So we stop there and measure GG | ψ0 >. The result is not guaranteed this time to give 2
because the amplitude of | 10 > in the state is not 1 although it is close: 0.97.

In 16D three iterations bring us to 101.3o and the match amplitude sin(101.3) = 0.98 for 96%
probabiity of finding the match.

In general, we take steps of size θ from θ/2 to π/2 which will be

round

(

1

θ

(

π

2
− θ

2

))

= round

(

π

2θ
− 1

2

)

23

Since sin(θ/2) =
√

M/N and, for θ/2 < 90o, sin(θ/2) ≤ θ/2 we can say

π

2θ
=

π

4invsin(
√

M/N
) ≤ π

4

√

N

M

and so the number of iterations of the Grover operator is O(
√
N)

Thus the cost of Grover’s algorithm for searching an unstructured database is much better than
the classical O(N).

N 100 10000 mega
N/2 50 5000 500kilo

π
√
N/4 8 78 785

Note that the square root over the N in this complexity result is purely a quantum effect. It is this
because the amplitude is given by square roots.

45. Detecting and correcting errors. Qubits are susceptible to errors in transmission and pro-
cessing, just as are classical bits, and even more so. The no-cloning theorem of Note 43 seemed to
present an obstacle to using redundancy—copy the bit, transmit all copies and compare them on
reception—to detect and fix an error. But there are ways.

The cnot gate cannot duplicate an arbitrary state, but it can duplicate the basis vectors. In order
to be able to test for a majority after transmission, we triplicate them.

1

c

|0>

|ψ>

|0>

�
�
�
�

�
�
�
�

|ψ00> = (α|0> + β|1>) |0> |0>
= α |0> |0> |0> + β |1> |0> |0>

α |0> |0> |0> + β |1> |1> |1>
3 1

α |0> |0> |0> + β |1> |1> |0>
3 2

= α |000> + β |111>

c

α |000> + β |111>

3 12

3

2

This does not give us a product state of three copies of the original state |ψ >, but an entangled
state of three qubits.

That’s the setup. Next, the three qubits are transmitted and in transmission are subject to noise,
N . The kinds of error could be a bit-flip, N = X, corresponding to a classical bit error. Or it
could be a continuous phase rotation, N = eiαX = I cosα + iX sinα Or it could be a phase flip,
N = Z (remember from Note 38 that X and Z are Pauli matrices). And so on. We will discuss
these three kinds of error.

Note that the noise in each case operates on each transmitted qubit independently and, we assume,
with sufficiently low probability p that p2 ≈ 0 (well, p2 ≪ 1) and so we can assume that only one
of the three qubits has been affected, if at all.

Thus, a majority comparison will tell us not only if there has been a single-qubit but also which
qubit and how to correct it.

We start with a bitflip

N (α | 000 > +β | 111 >) =

α | 000 > +β | 111 >
α | 001 > +β | 110 >
α | 010 > +β | 101 >
α | 100 > +β | 011 >

24

each alternative having probability p(1− p)2. except the first, no-error, case, which has probability
(1− p)3. (I’ve left out the four other possibilities, involving probabilities p2(1− p) and p3 because
they are negligible by assumption.)

Note that the bitflip works on both terms: 0→ 1 and 1→ 0 for whichever qubit gets flipped.

Now the receiver (I guess we’re talking about Tom again, along with Fran, and Chas as the channel
in case we must personify that too) must detect any error without disturbing the transmitted
message. So Tom cannot just measure any of the incoming qubits because that would immediately
disentangle the state, say

from to prob or to prob
α | 000 > +β | 111 > | 000 > | α |2 | 111 > | β |2
α | 100 > +β | 011 > | 100 > | α |2 | 011 > | β |2

etc.

What Tom must do is entangle them further, and break that entanglement by measuring. Tom
uses four more cnot gates with two | 0 > “ancilliary” qubits as targets. Let’s say

|0>

c

132 5 4

c

c

c

132132

132 5 4

�
�
�
�

��
��
��
��

��
��
��
��

����

3

3

2

1

(α |010> + β |101>)|00>

= α|01000> + β|10100>

α |01000> + β |10110>
5

= (α |010> + β |101>)|10>

α |01010> + β |10110>
1 4

3 4
α |01010> + β |10111>

α |01010> + β |10110>
2 5

5

4|0>

This restores the original state and gives a combined state which is the product of the original state
and | 10 >, and hence disentangled. Furthermore, | 10 >=| 2 >, telling Tom directly that qubit 2
had been flipped. All Tom must do is measure the new ancilliary qubits 4 and 5 to find this out
with probability 1 and without further disturbing the original state.

To establish that this sequence,
35
cX,

25
cX ,

34
cX ,

14
cX, applied to complementary bases | x3x2x1 > and

| x′3x′2x′1 > will a) give the same ancilliary results and b) identify the minority qubit, we need to
know three things.

First, the sequence
35
cX,

25
cX applied to x5 = 0 yields x5 = x3⊕ x2 and the sequence

34
cX ,

14
cX applied

to x4 = 0 yields x4 = x3 ⊕ x1.

Second, x ⊕ y = x′ ⊕ y′ simply tells us that x and y are different—true for both x,y and the
complements x′,y′.

Third, if we rename y = y1y0 = x5x4 and x = x3x2x1, then y1 = x3 ⊕ x2 tells us x3 and x2 differ,
while y0 = x3 ⊕ x1 tells us x3 and x1 differ. So if x3 is the minority qubit, y = y1y0 = 11 = 3; if x2

25

is the minority qubit, y = y1y0 = 10 = 2; and so on down to y = 0 if there is no minority qubit.

After Tom measures qubits 4 and 5 the answer tells him which qubit to correct, which he does with
the appropriate not, Xy, y = 1, 2, 3; if y = 0 no correction is needed.

Finally it is polite—indeed dangerous not—to disentangle the three transmitted bits. This can be
done by repeating Fran’s original cnots since they are self-inverses,

Here is the whole error-correction process schematically.

Tom

X

X

X

2

1

3

ChasFran

��������������

��������������

��������������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� |Ψ>

|0>

|0>

|Ψ>

|0>

|0>

�
�
�
�

��
��
��
��

��
��
��
��

����

3

2

1

5

4|0>

|0>

3

2

1 NX

NX

NX

What if the channel noise were not a classical bitflip 0 ↔ 1 but some quantum superposition of
single bitflips? Tom’s “error syndrome” will now be a linear combination

α | 000 > +β | 111 >error→ c0(α | 000 > +β | 111 >)
check→ c0(α | 000 > +β | 111 >) | 00 >

c1(α | 001 > +β | 110 >) c1(α | 001 > +β | 110 >) | 01 >
c2(α | 010 > +β | 101 >) c2(α | 010 > +β | 101 >) | 10 >
c3(α | 100 > +β | 011 >) c3(α | 100 > +β | 011 >) | 11 >

where | c0 |2 + | c1 |2 + | c2 |2 + | c3 |2= 1.

Tom’s measurement of the last two qubits will collapse this linear combination into one of the four
components. That result gives unambiguous corrections—either X3 if the measurement picks out
the (α | 100 > +β | 011 >) | 11 > state, or X2 or X1 or no correction at all. In any case the result
will be Fran’s original qubit because the | x > component of the state is selected along with the
| y > component.

The phase flip error,

NZ :
1√
2
(| 0 > + | 1 >)↔ 1√

2
(| 0 > − | 1 >)

is just a bitflip error | + >↔| − > in the Hadamard basis. So the bitflip circuit can be modi-
fied easily to a phase flip circuit by putting Hadamard gates on each bit immediately before and
immediately after the channel.

Any linear combination of phase flip errors can also be corrected by this modified circuit.

Peter Shor in 1995 combined bitflip and phase-flip error corrections in a circuit which transmits
nine qubits for each original qubit. He collaborated with others to reduce that requirement to seven
then to five qubits. This involved formulating for qubits classical error-correcting codes such as
Hamming’s. Let’s start with parity bits.

A way to detect a single-bit error in a code of n bits is to append an n + 1st bit and insist that
the total number of 1-bits be even. Thus for n = 3 the value 2 would be encoded 0101 where the
left three bits d2d1d0 are data, and the rightmost bit p is the parity bit, set to 1 to ensure an even
number of 1-bits. On the other hand, the value 5 would be coded 1010.

If any of the bits is flipped during transmission, including the parity bit, the count will no longer

26

be even and we will know there has been an error.

However, unlike the case of triple redundancy, we don’t know where the error is.

In 1950 Richard Hamming noticed that we can employ multiple parity bits, A,B,C, · · ·, to detect
and locate errors if we name the data bits AB,AC,BC, · · · , ABC, · · ·. Let’s see how it works with
three parity bits and four data bits.

data parity
AB AC BC ABC A B C
1 0 1 1 0 1 0

The idea is that the number of 1-bits with A in their name must be even, the number of 1-bits
with B in their name must be even, and so on for each letter.

Now if there is a bitflip in data bit AB, re-running the parity check will show that parity bits A
and B disagree with the received values. This points us straight to the data bit AB. And so on for
each of the four data bits.

Note that if a data bit has been flipped then at least two parity bits disagree. If a parity bit has
been flipped in transmission then that parity bit alone disagrees.

Implementing Hamming code classically is straightforward because any parity bit is simply the xor
of all the bits it is checking. And since xor is fundamental to quantum computing this extends
readily to qubits.

It is worth introducing a special xor gate which combines controlled-nots. For our 3-bit example
we have

|0>

y

z

x x

y

z

xor(x,y,z)

��
��
��
��

��
��
��
��

��
��
��
��

|0>

z

y

x

parity

Then Hamming’s 7-bit encoding with 3 parity qubits just requires us to number the qubits carefully.

1 A

|0>

7 ABC

|0>

5 AC

4 C

|0> xor(ABC,AC,AB)

xor(ABC,BC,AB)

xor(ABC,BC,AC)

6 BC

3 AB

2 B

That is at Fran’s end. When the qubits are transmitted to Tom, he uses three auxiliary qubits,
initially | 0 >, to recalculate the parity qubits, then measures the differences (xor again) between
each one and the corresponding transmitted parity qubit. The resulting number, cba with a =
A xor A′, etc., identifies the qubit, if any, flipped by the transmission.

As well as transmission errors, of course, there are processing errors. Fault-tolerant processors
use redundancy and error-correcting codes to catch faults at each qubit for each gate before they

27

propagate to other gates. A robust process must tolerate faults in preparing initial states, gate
processing, measurement, and even error correction.

46. Nonlocality: Einstein-Podolsky-Rosen. If we take two entangled particles such as the pair
we introduced in Note 38, in state

1√
2
(| 01 > + | 10 >)

and separate them far enough, we encounter the nonlocality of quantum physics.

For if we measure the first particle, say at position X, the state will collapse to | 01 > or to | 10 >.
This determines the value of the second particle, say at position Y . A measurement at position Y ,
even if far enough from X that a light signal could not connect the two measurements, will show
the second particle as complementary to the first.

This does not imply faster-than-light communication, however. The results at both X and Y will
appear random. Only if those results are later brought to a common place and compared will it
become clear that the sequences of measurements are always complementary.

Maybe it’s not all that bad. If I mailed a pair of gloves, one glove to Melbourne and the other
glove to London, and if I instructed the recipients to open their packages at one fixed time (say,
midnight and noon on a certain day in their respective time zones), then one would find a left glove
and know that the other has a right glove, or vice-versa. But nobody would suppose that opening
a package in any way influenced the other package.

Well, it is that bad, because polarization (or spin) states are not gloves. Each measurement can be
made in a multitude of ways. not just left versus right, but spin in any one of an indefinite number
of directions. And finding “spin-up” in a given direction at X immediately requires “spin-down”
in the same direction at Y .

Albert Einstein, Boris Podolsky and Nathan Rosen in 1935 considered this “spooky action at
a distance”—or nonlocality—to offend common sense to the point of establishing that quantum
physics is incomplete. (Schrödinger in the same year coined the term “entanglement” to describe
the binding of the two particles.) A complete theory, they said, must credit the particles with
advanced knowledge of how they would respond to measurements, via what are called “hidden
variables”.

To look at this a little more closely it may be clearer to discuss an entangled state with both
particles behaving the same.

1√
2
(| 00 > + | 11 >)

We can talk in terms of photons and polarization.

If we have a polarizer at X whose direction can be randomly set in any one of three different
directions, and ditto at Y , what does quantum physics say will happen?

There are nine possible combinations. We look at probabilities—not of measurements being made
in any particular direction, but just of the two measurements being the same, namely both photons
get through the respective polarizers or both are blocked. If the polarizer directions are 30o, 90o

and 150o at both X and Y positions, here are the probabilities for a match in each case.

X\Y 30o 90o 150o

30o 1 1/4 1/4
90o 1/4 1 1/4
150o 1/4 1/4 1

Here is where those probabilities come from.

28

3/2

1/2 1/2

60 60

90

30
150 o

o

o

The projection of each direction on each other direction is 1/2 (positive or negative doesn’t matter:
the polarization doesn’t distinguish → from ←). These are the amplitudes, whose squares are the
probabilities.

Thus if the polarization measured at X collapses the state in the 30o direction then the polarization
at Y will also be in the 30o direction. But if the measurement at Y were made with the 150o

polarizer, we see only the amplitude, 1/2, of the 30o direction in the 150o polarizer.

This diagram shows all the possibilities for both photons passing their respective polarizers. The
diagram for absorption is just rotated 90 degrees and gives the same numbers.

So the overall probability of both photons passing, or both photons being absorbed by, their re-
spective polarizers, is 1/9 of the sum of these

1

9

(

3 +
6

4

)

=
1

2

John Stewart Bell in 1964 worked out the corresponding probabilities supposing that there are
hidden variables. These could work any way we can imagine or even ways we cannot imagine, but
in the end they record a predisposition for the two photons to pass (P for pass) or be absorbed
(A for absorb) by each of the three polarizers. There are eight possible predispositions a photon
can have for the 30o, 90o and 150o directions, respectively: PPP, PPA, PAP, PAA, APP, APA, AAP

and AAA.

These can be related to the nine possible measurements. A check means that the predispositions
of that row gives matching measurements, i.e., P and P or A and A, for that column.

30,30 30,90 30,150 90,30 90,90 90,150 150,30 150,90 150,150
PPP

√ √ √ √ √ √ √ √ √
PPA

√ √ √ √ √
PAP

√ √ √ √ √
PAA

√ √ √ √ √
APP

√ √ √ √ √
APA

√ √ √ √ √
PPA

√ √ √ √ √
AAA

√ √ √ √ √ √ √ √ √

Apart from the PPP and AAA rows, which give probability 1 for a match, all the other rows give
probability 5/9 for a match.

Thus any hidden-variable theory predicts that the probability for a match must be > 5/9. This
contradicts the result from quantum physics, and can be tested by experiment.

All the experiments agree with quantum physics.

Quantum physics then does invoke spooky action at a distance. It is nonlocal.

47. Building a quantum computer. How to do this is a discussion involving more physics than

29

we are prepared for. But we can say one important thing in general.

Our quantum gates so far have been reflections.

not

(

1
1

)

Hadamard

1√
2

(

1 1
1 −1

)

cnot

1
1

1
1

But the physical operations needed by an implementation are, by and large, rotations. For example
a quantum computer based in NMR (nuclear magnetic resonance) uses radio-frequency pulses to
rotate nuclear spins. A quantum computer based on cooled (almost motionless) ions trapped
by electromagnetic fields use laser pulses to alter the excitations of the ions—still waves with
rotating phases. Any two-state quantum system—which is what we need to represent qubits—is
mathematically equivalent to a spin with operations

~S = (Sx, Sy, Sz) with Sj =
1

2
h̄σj

using the Pauli matrices

σx =

(

1
1

)

σy =

(−i
i

)

σz =

(

1
−1

)

Note that the σj are reflections, but the σj/2 are, as we saw in Note 21, the generators for rotations.

So we’d like to be able to express quantum gates in terms of the half-Pauli matrices. The generator
of a rotation through an angle φ is

e−1φσ/2

and the physics is that a pulse of angular frequency ω and duration τ (and so a phase change
φ = ωτ) requires energy

ωS = ω
σ

2
h̄

So we will need to express the gates in terms of these pulses.

As long as σ2 = I, which is true for the Pauli matrices, any

e−iασ = I cosα− iσ sinα

and this is an important relation we can exploit.

The not gate is easy, since

not =

(

1
1

)

We’ll try

e−iπSx/h̄ = e−i(π/2)σx

= I cos−π
2

+ iσx sin−π
2

= −iσx
= −i

(

1
1

)

30

Apart from the phase factor −i = e−iπ/2, this is the not gate. An overall phase factor does not
matter in quantum physics, so the 180-degree rotation (in e−iπ···) flips the qubit (not), and π = ωτ ,
given the frequency ω, tells us how long, τ , the pulse should be to flip it.

The Hadamard gate requires pulses in the other directions.

e−iπSz/h̄e−i(π/2)Sy/h̄ = e−i(π/2)σze−i(π/4)σy

= (I cos
π

2
− iσz sin

π

2
)(I cos

π

4
− iσy sin

π

4
)

= −iσz
1√
2
(I − iσy)

= i

(−1
1

)

1√
2

(

1 1
−1 1

)

= −i 1√
2

(

1 1
1 −1

)

which is the Hadamard gate, also with an overall phase of −i = e−iπ/2.

By the way, the physical setup may support Sx and Sy but not Sz. We can get around this:

e−iφSz/h̄ = e−i(π/2)Sx/h̄e−iφSy/h̄ei(π/2)Sx/h̄

I cos
φ

2
+ iσz sin

φ

2
=

1√
2

(

e−iφ/2

eiφ/2

)

=
1√
2

(

1 −i
−i 1

)(

c −s
s c

)

1√
2

(

1 i
i 1

)

= (I cos
π

4
− iσx sin

π

4
)(I cos

φ

2
− iσy sin

φ

2
)(I cos

π

4
+ iσx sin

π

4
)

And you can also show
e−iφSz/h̄ = e−i(π/2)Sy/h̄e−iφSz/h̄ei(π/2)Sy/h̄

Going to two qubit gates such as cnot involves tensor products.

Here is the March 2000 proposal by Debbie Leung, Isaac Chuang, Fumiko Yamaguchi and Yoshihisa
Yamamoto. (We can relax and use ⊗ instead of ←−× until matrices are involved.)

(e−i(π/2)Sy h̄ ei(π/2)Sxh̄ ei(π/2)Sy h̄)⊗ (e−i(π/2)Sxh̄ ei(π/2)Sy h̄)× (e−iπ(Sz⊗Sz)h̄2

)× (I ⊗ e−i(π/2)Sy h̄)

=
1√
27

((I − iσy)(I + iσx)(I + iσy))⊗ ((I − iσx)(I + iσy))× (I − iσz ⊗ σz)× (I ⊗ (I − iσy))

=
1√
27

(

1 −1
1 1

)(

1 i
i 1

)(

1 1
−1 1

)

←−×
(

1 −i
−i 1

)(

1 1
−1 1

)

×

1− i
1 + i

1 + i
1− i

(

I←−×
(

1 −1
1 1

))

=
1√
23

1 + i
1− i

1 + i
1 + i

1 + i 1− i
−(1− i) 1 + i

1 + i 1− i
−(1 + i) 1− i

1− i
1 + i

1 + i
1− i

1 −1
1 1

1 −1
1 1

31

=
1√
2

1− i
1− i

1− i
1− i

=
1− i√

2
cnot

Note the overall phase factor of e−iπ/4.

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. Show that xor is commutative. Show by induction on the number of bits that xor applied
repeatedly just tells if the number of T bits is odd. Hence show that xor is associative.

2. Show that H ⊗H applied to cnot (see Note 38) is

1
4

1 1
1 1

1 −1
1 −1

1 1
1 −1

1 1
1 −1

1
1

1
1

1 1
1 −1

1 1
1 −1

1 1
1 1

1 −1
1 −1

=

1
1

1
1

3. How does the discussion in Note 38 of the numbers of entangled versus pure states change
when we consider that the parameters (α, β, · · · a, b, · · ·) are complex numbers?

4. a) Show that the entangled Bell states (see Note 38)

B0 =
1√
2
(| 00 > + | 11 >)

B1 =
1√
2
(| 00 > − | 11 >)

B2 =
1√
2
(| 01 > + | 10 >)

B3 =
1√
2
(| 01 > − | 10 >)

form an orthogonal basis for the 4-dimensional 2-qubit space. Hint: represent each state as a
tensor product of vectors,
b) Show that the Hadamard transformation, acting on each of the two qubits, has the effect

H ⊗H : B0 → B0

B1 ↔ B2

B3 → −B3

c) What operations disentangle the Bell states?

5. Check that
L | + >= (v+ | + >< + | +v− | − >< − |) | + >= v+ | + >

32

and
L | − >= (v+ | + >< + | +v− | − >< − |) | − >= v− | − >

using only the rules for bras and kets given in Note 38, without expanding into matrices and
vectors.

6. Note 38 presents quantum gates for not and and. From these we should be able to generate
an or gate. The three, and. or and not, might help in designing at least classical boolean
circuits from quantum gates.
In analogy with the and gate the or gate should output (x+ y)⊕ z as well as the two inputs,
in order to be reversible.
Hint. Show that (x⊕ y)′ = x′ ⊕ y = x⊕ y′.
(I leave as an exercise the augmentation of this to a what-or-gate.)

7. Implement swap gate. Show that the swap gate can be implemented by three controlled-
not gates.

d

x

y

e

f
=

x

y f

ea c

b

x y a b c d e f
0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 0
1 0 1 1 0 1 0 1
1 1 1 0 1 0 1 1

In matrix terms

1
1

1
1

00
01
10
11

=

1
1

1
1

1
1

1
1

1
1

1
1

00
01
10
11

=

1
1

1
1

1
1

1
1

00
01
11
10

=

1
1

1
1

00
10
11
01

=

00
10
01
11

8. To reverse N = 2n bits (so N is a power of 2) show that divide-and-conquer does not change
the number of swap gates. The idea would be to reverse two sets of N/2 bits then swap the
results.

33

qubit 3

qubit 0

qubit 1

qubit 2

The induction step requires showing that

2
(n/2− 1)n/2

2
+
n

2

n

2
=

(n− 1)n

2

9. Check the N = 8 Fourier transform of Note 41 using the transformation matrix in Note 39.

10. Representing functions. a) Strictly speaking we should make the function representation
in Note 41 reversible. That way we can apply the same transformation later to disentangle
it. For a single value of f() this would be given by the gate

Uf :| x, y >→| x, y ⊕ f(x) >

But in the discussion of Note 41 we can take y = 0 and the xor 0⊕ f(x) = f(x)
b) The representation of all values of x combined can be found by repeating the Hadamard
transformation (Notes 38 and 40) for every bit. The result is called the Walsh, or Walsh-
Hadamard, transformation

W | 00 > = H ⊗H | 00 >
=

1√
2
(| 0 > + | 1 >)

1√
2
(| 0 > + | 1 >)

=
1

2
(| 00 > + | 01 > + | 10 > + | 11 >)

for 2 qubits, and in general for n qubits

W | 0 >=
1√
N

N−1
∑

x=0

| x >

where we’ve slipped into multibit |> symbols.
c) We can apply Uf to this (note y = 0)

Uf
1√
N

∑

| x >| 0 >=
1√
N

∑

| x >| f(x) >

11. Look up the BQP class of “computational complexity”. Simplistically, computational com-
plexity distinguishes between algorithms which run in polynomial time (class P) from those
that run in exponential time. Algorithms in class NP appear to need exponential time to
run but, once the answer is found, it can be checked in polynomial time.
Multiplication of an m-bit by an n-bit number is polynomial, needing O(mn) basic opera-
tions. So factoring an integer, which is exponential in time, falls into NP because it can be
checked by multiplication.
If we allow probabilistic algorithms, such as the period-finding algorithm of Note 41, some
intermediate complexity classes appear, including BPP (bounded error probabilistic polyno-
mial) and BQP (bounded error quantum polynomial).
Here is a quick overview, showing class inclusions, with one example algorithm for each class.

34

n

NP−C

NP

BQP

BPP

P

travelling salesman

graph isomorphsm

factoring

−digit prime

multiplication

“NP − C” stands for NP-complete. You can look it up.

12. Here is a binary search on the telephone book of Note 44. Mersenne files (of sizes 2n−1 entries)
make the neatest illustration of binary search, so (shades of “2001: A Space Odessey”) we
get rid of Hal for this example.

Ann Bob Cat Don Eve Flo Gio

The graph is the “search tree” for all possible searches of this file. The heavy line shows the
search for Cat: Don, in the middle, is too high alphabetically, so we branch left; Bob, in the
middle of the left half, is too low, so we branch right; Cat, in the middle of the right half of
that half, matches, so we stop successfully.
If there were 2n − 1 entries in the file, how many of them must we check in a binary search:
in the worst case? on the average?
If you have an insulated wire with an electrical break somewhere inside it, and the only way
you could test for electrical breaks is by attaching probes to the two ends of the wire, then,
instead of throwing the whole wire out, you might cut it in various places to produce new
ends to probe. How would you find the break after making the fewest cuts?

13. It is possible to structure a database so that classical techniques can operate in
√
N time

although that is not guaranteed as an upper bound.
Here is the telephone book of Note 44 stored as a multidimensional paging structure (Ekow
Otoo, 1984). Note that it is simultaneously sorted on both fields.

Ann Bob Cat Don Eve Flo Gio Hal
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

8888

7777

6666

5555

4444

3333

2222

1111

�
�
�
�

35

The four pages shown are the retrieval units, as would be especially suited to secondary storage
such as magnetic disc or flash memory. The data are distributed such that two entries are
stored on each page. In the search for phone number 1111 only two pages need be retrieved
(2 =

√
4). Of course, that is also true of the search for, say, Don: the data are structured

symmetrically. They are still structured, and so as to permit retrieval on either field. This
does not trump Grover’s ability to search an unanticipated field for which no structure has
been prepared in advance.

14. Show that the continuous phase rotation error of Note 45 is a special case of the superposition
of bitflip errors.

15. Show that

α | 000 > +β | 111 > =
1√
23

((α + β)(| + + + > + | +−− > + | −+− > + | − −+ >)

+
1√
23

((α − β)(| + +− > + | +−+ > + | −+ + > + | − − − >)

(See the discussion of phaseflip errors inNote 45.)

16. Show how to extend the Hamming code of Note 45 so that four parity bits check eleven data
bits; five and twenty-six; · · ·

17. Show that the Hamming code with two parity bits is just the triple redundancy discussed in
Note 45.

18. To make an experiment for entangled state (| 01 > + | 10 >)/
√

2 comparable to that for

(| 00 > + | 11 >)/
√

2 in Note 46 we must check for measurements which produce opposites,
not matches. What direction angles should we compare at both positions?

19. What does the nonlocality of the EPR effect (Note 46) say about the arguments leading to
faze (or gauge) theory (e.g., Note 16 of Part III), and about quantum fields in general?

20. Different books on quantum computing have different strengths. Here are four, in order of
publication date within each topic.

Note topic citation
38 entanglement [RP11, p.77]

cautions [RP11, p.80]
density matrix [NO08, p.39], [RP11, p.267]

41 period-finding [NO08, p.113]
42 BB84 key distr. [NO08, p.62]
43 no cloning [SS04, p.56], [NO08, p.75]
44 database srch. [SS04, p.122]
45 error correct. [NO08, p.196], [RP11, p.250]
46 EPR [RP11, p.62]
47 NMR, ion gates [SS04, p.158], [Meg08, p.361]

21. Any part of the Prefatory Notes that needs working through.

References

[Meg08] Zdzislaw Meglicki. Quantum Computing without Magic: Devices. The MIT Press, Cam-
bridge MA, 2008.

36

[NO08] Mikio Nakahara and Tetsuo Ohmi. Quantum Computing: From Linear Algebra to Physical
Realizations. CRC Press (Taylor & Francis), Boca Raton, 2008.

[RP11] Eleanor Rieffel and Wolfgang Polak. Quantum Computing: A Gentle Introduction. The
M.I.T. Press, Cambridge MA, 2011.

[SS04] Joachim Stolze and Dieter Suter. Quantum Computing: A Short Course from Theory to
Experiment. Wiley-VCH GmbH & Co. KGaA, Weinheim, 2004.

37

