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I. Prefatory Notes

1. The Excursion Golden ratio in Week ii gives the relationship

φ2 − φ − 1 = 0

for φ, the “golden ratio”. It also suggests that

φ =
1 +

√
5

2

satisfies this relationship.

How would we discover such a value for φ? Is there any other value which would also satisfy the
relationship?

Let’s suppose we have no idea about what sort of number φ is. In fact let’s rename φ to x, which
traditionally stands for the unknown. We’ll suppose that all we know is

x2 − x − 1 = 0

and we’d like to “solve” this for x.

2. It would be nice if we could draw a picture of the relationship. The way we can do that is to
see how

x2 − x − 1

changes as x changes. From this we might get an idea of what value of x makes it zero,

It’s handy to give a simple name to something we are trying to explore, so we’ll use y.

y = x2 − x − 1

This suggests a game: if I tell you what x is, you can in turn tell me what y must be.

∗Copyleft c©T. H. Merrett, 2013, 2015, 2018, 2019. Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation in a prominent place. Copyright for
components of this work owned by others than T. H. Merrett must be honoured. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or
fee. Request permission to republish from: T. H. Merrett, School of Computer Science, McGill University, fax 514
398 3883.

1



me you
x y
0 −1
1 −1

−1 1
2 1

−2 5
3 5
: :

These are just some sample values. I could make life harder for you by saying x = 3/2, and you’d
have to calculate y = (3/2)2 − 3/2 − 1 = 9/4 − 3/2 − 1 = −1/4. And so on: there is no limit to
what values I could choose for x.

So you should soon start looking for patterns to make your life easier and also, maybe, to check for
mistakes in your calculations. (You can see some patterns already, which we’ll come back to.)

3. Cartesian Plane. We mentioned drawing a picture, and that it would be a powerful way to see
patterns.

So let’s draw two lines: a horizontal one for x and a vertical one for y. Since x and y can be all
sorts of different numbers, we’ll also measure off distances along these lines corresponding to some
of the possible numbers. The me-you, x-y table in the previous Note shows x ranging from −2 to 3
(not in order, but we’ll put them in order now), so let’s make ticks from −3 to 3 on the horizontal
line. Similarly, we’ll tick off the vertical line from −1 to 5.

1

x

y

5

1

2

3

4

1 2 3123

This is called the Cartesian plane, named after Réné Descartes, who first thought of this way of
picturing relationships. Note that x is positive to the right and negative to the left. And y is
positive going up and negative going down. The point where the two lines meet is called the origin
and corresponds to x = 0 and y = 0.

Note something tricky. The relationship x = 0, without saying anything about y, is true everywhere
on the y-line. (The vertical line: we’ll call it the “y-axis” from now on.)

Similarly, the relationship y = 0, saying nothing about x, is the x-axis: the horizontal line labelled
x.

It is tricky to remember that x = 0 means y-axis and y = 0 means x-axis, but it makes sense.

If we get the hang of that, we can also say that x = 1 is the whole vertical line (not shown but you
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can imagine it) crossing the x-axis at x = 1.

And y = 1 is the invisible horizontal line crossing the y-axis at y = 1.

And so on, for any value of x or y.

How do we use the Cartesian plane to draw a picture of

x2 − x − 1?

Well, the me-you, x-y table of Note 2 shows pairs of values: x and y. The Cartesian plane shows
that x-values are horizontal distances and y-values are vertical distances.

So here’s what we do with, say, x = 1 y = −1: go from the origin rightwards to x = 1 on the
x-axis; then go downwards on the invisible x = 1 (vertical) line until you reach the invisible y = −1
(horizontal) line. Mark a point there.

1
(  = 1,   =   1)x y
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��
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��
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Now do the same for all the other values of x shown and the corresponding values of y you’ve
calculated.

1��������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

x

y

5

1

2

3

4

1 2 3123
��
��
��
��

3



OK, that’s the six pairs of numbers in the table. What about all the other possible pairs, such as
x = 2/3, y = −1/4?

We could spend forever calculating all these because the possible values of x go on forever—without
even going outside the range −2 to 3: x = 1/16, x = 17/16, x = 97/128, ...

So we’ll see if we can just draw all these extra pairs. They will make an infinite number of dots so
we’ll just draw them all as one line.

We must be careful, though. We can’t just connect the dots we’ve got with straight lines. To get
all the in-between values more or less right we’ll have to draw a careful curved line.
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Let’s see if we got x = 3/2, y = −1/4 right. It’s the red dot. Pretty good. A straight line there
would have put the point too high: at x = 3/2, y = 0 to be exact.

4. Symmetry. One useful clue about this particular curve is that it is symmetrical. We saw that
already in the table in Note 2: x = 0 and x = 1 give the same value for y; so do x = −1 and x = 2;
and so on.

This curve is symmetrical about a particular (invisible) vertical line. That is, it is symmetrical
about a particular x-value. You should be able to see that that value is x = 1/2: halfway between
x = 0 and x = 1, also halfway between x = −1 and x = 2, or between x = −2 and x = 3.

This is going to be helpful for us. We will come back to look at this symmetry in another way.

5. Functions. This relationship between x and y is called a function. It goes one way, like the
game: from the x I give you, you calculate the y. Not the other way around.

We can write the relationship in a way which emphasizes the directional nature of this calculation:

y(x) = x2 − x − 1

It says that y depends on x, not the other way around.

We can also label curves with this notation.
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y(x) = x   x  1
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You see that we cannot play the game the other way around. Even using the table of Note 2, if I
told you y = 1 you would have to give me two values for x, x = −1 and x = 2, not a unique one.
And of course without the table, but with only y = x2 − x − 1 we are really stuck for now.

But the problem of going backwards is what we’re going to have to deal with if we want to find the
value of x at which y(x) = 0, i.e., x2 − x − 1 = 0.

This labelled curve is what we can call a function—a “function of x” to be more explicit.

What we’ve drawn is not the only function of x. Here’s another one, based on the triangular
numbers of Week i Note 1

y(x) =
x(x + 1)

2
=

1

2
x2 +

1

2
x

2 1
2
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y(x) =   x +   x

You should make the table for the points I’ve shown. You can also check that at x = −1/2, y =
−1/8, so the curve really does go a little below the x-axis as shown.

(It could be confusing to call both of these functions y(x), and other names are often invented, such
as f(x) and g(x). But we’ll be considering only one function at a time, so we’ll stick with y(x).)
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6. Zeros of a function. Now let’s go backwards. Instead of finding y given x, let’s try to find (an)
x given y. In particular, suppose we are given y = 0.

Solving
y(x) = 0

is called “finding the zeros of the function”. (The other way around, going forwards to find y(0) is
too easy to rate a special name.)

For the second function in Note 5, y(x) = x(x + 1)/2, this is easy. We can see that x = 0 gives
y = 0 and so does x = −1. This is also on the drawing.

The zeros of the original function, y(x) = x2 − x − 1, are not so obvious, although at least the
drawing tells us that they are somewhere between x = −1 and x = 0, and between x = 1 and
x = 2, where we see the curve crossing the x-axis.

Maybe we can use the symmetry of the curve to help.

7. Symmetry, again. Both functions above are symmetrical. The first is clearly symmetrical
about x = 1/2 and the second is symmetrical about x = −1/2.

Let’s look at a third function, this one symmetrical about x = 0.
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y(x) = x   4
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This one clearly has zeros at x = ±2. The exact value of x is not the point. The point is that the
two zeros are symmetrical about the line of symmetry, and when that line is x = 0, the function
has only x2 and constant terms in it: no x term.

When we note, for this function
x2 − 4 = 0,

it follows immediately that
x = ±2
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because 2 is the square root of 4, and there are always two square roots: (+2)2 = 4 = (−2)2.

So this encourages us to think that if we can make x = 0 the line of symmetry of any of our
functions, say the original one, then finding the zeros will be easy.

Of course, we cannot, because the line of symmetry of x2 −x− 1 is x = 1/2. But we can change x.

How about x′ = x− 1/2? Then the line x = 1/2 is also the line x′ = 0 and the line of symmetry is
x′ = 0.

So, if we convert x2 − x − 1 into a function of x′, will it leave us with an x′2 term and a constant
term but no x′ term? If so, we will get x′ as a simple pair of ± square roots.

Let’s see. We need to turn x′ = x − 1/2 around

x = x′ + 1/2

Then

x2 − x − 1 = (x′ +
1

2
)2 − (x′ +

1

2
) − 1

= (x′2 + x′ +
1

4
) − (x′ +

1

2
) − 1

= x′2 − 5

4

Bingo! No x′ term. So

x′2 − 5

4
= 0

means

x′ =
±
√

5

2

and then

x = x′ +
1

2

=
1

2
±

√
5

2

=
1 ±

√
5

2

This is two solutions. One of them is the (1+
√

5)/2 that the Excursion inWeek ii called the Golden
Ratio, φ.

The other one is a second solution we didn’t know about before: (1 −
√

5)/2. if you put these two

into a calculator, you’ll find that (1 −
√

5)/2 indeed lies between −1 and 0, while (1 +
√

5)/2 lies
between 1 and 2, as the curve for y(x) = x2 − x − 1 told us..

So symmetry helps us a lot in finding the zeros of this kind of function.

8. Slopes. At last we come to the topic for this Week. What if we have a function whose symmetry
is not obvious?

y(x) =
5x2 − x − 2

2
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y(x) = 
2
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How do we find the line of symmetry?

We use the fact that the curve is horizontal at the line of symmetry: it has to be, or it wouldn’t be
symmetrical.

A horizontal line has slope 0. What is “slope”?

Slope is defined as
rise

run

Let’s start with straight lines.

y(x) = 2x
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This is also a function, and you can make a table for it to show that y(x) = 2x means y = −2 when
x = −1, y = 0 when x = 0, y = 2 when x = 1, and so on.

Its slope is 2 because every time x increases by 1, y increases by 2. Here’s the calculation.

if xq = 2 then yq = 4
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if xp = 1 then yp = 2

xq − xp = 1 yq − yp = 2

rise

run
=

yq − yp

xq − xp
=

4

2
= 2

p
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What happens if xq = 3, xp = 1? If xq = 1, xp = −1? If xq = −1, xp = −2?

You should always find the slope is 2 for y(x) = 2x.

We write this
slope(2x) = 2

What about straight lines with other slopes? Here is a table, each line of which requires a calculation
of (yq − yp)/(xq − xp) having chosen some particular xp and xq.

y(x) slope(y)
2x 2
3x 3
0x 0
−1x -1

2x + 1 2
2x − 1 2
3x + 1 3

1 0
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x

y

5

1

2

3

4

1 2 3123
1

2

3

4

2x + 1

2x

1

For example, y(x) = 3x: say xq = 1, xp = 0. Then yq = 3, yp = 0 and

slope(3x) =
yq − yp

xq − xp

=
3

1
= 3
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Note that parallel lines have the same slope.

Note that horizontal lines have slope 0. This makes sense: they go neither up nor down.

Note that lines going downwards have negative slope.

These are all quite intuitive: positive slope goes up; negative slope goes down; zero slope is flat.

Note that it makes no difference to the slope if you add or subtract a constant to or from the
function.

Let’s show that slope(ax + b) = a no matter what numbers a and b are.

We won’t use particular numbers for xp and xq but instead use

yq = axq + b

yp = axp + b

So

slope(ax + b) =
yq − yp

xq − xp

=
(axq + b) − (axp + b)

xq − xp

=
a(xq − xp) + b − b

xq − xp

= a

9. Slopes of curves. To find the line of symmetry of our U-shaped function we must go beyond
straight lines to curves. The slope of a curve is not the same for every x but itself depends on x.

So the slope of a (curvy) function is itself a function.

Let’s try to go directly from drawing y(x) = (5x2 − x − 2)/2 to drawing its slope. We’ll mark the
(still unknown) line of symmetry as xsymm.

2

symm

��

��

��

��

��

x

y

2

4

6

8

1 2 3123
2

10

y(x) = 
2

5x   x   2

x

x slope5x2−x−2
2

= xsymm 0
> xsymm +
≫ xsymm ++
< xsymm −
≪ xsymm −−

You see we can’t use exact numbers in this sketch. But we can say some things qualitatively:

• at the line of symmetry, x = xsymm, the slope is 0

• at x > xsymm the slope is positive and increasing as x increases

• at x < xsymm the slope is negative and decreasing as x decreases.

10



We might guess from this that the slope is a straight line. To show that it is we need some numbers.

x y = 5x2−x−2
2

diff y − y diff diff
4 37
3 20 17
2 8 12 5
1 1 7 5
0 −1 2 5
−1 2 −3 5
−2 10 −8 5
−3 23 −13 5
−4 41 −18 5

4

��

��

��

��

��

��

��

x
1 2 3123

15

20

10

15

20

y

10

5

5

��

The third column subtracts adjacent values of y to get the rise at each value of x. The run is always
1 because I chose the x values to differ by 1. So plotting diff against x gives us the slope. As a
function of x this slope is indeed a straight line.

Can we figure out what the equation of this line is? Call it

Ax + B

and note that when x = 0 Ax + B = 2 so B = 2. (We’re going to find a small mistake here, but
let’s not worry about it yet.)

To find A, we remember that A is the slope of Ax + B. So if we calculate, say

17 − 12

3 − 2
= 5

we see that the slope of this slope at x = 2 is 5. But it’s a straight line, so its slope everywhere =
5. So A = 5.

slope
5x2 − x − 2

2
= 5x + 2 [not quite right]

Check it

x 5x + 2
3 17
2 12
1 7
0 2
−1 −3
−2 −8

The “diff diff” column in the above table is interesting: the numbers are all the same and they are
the slope of the slope.

That’s for y(x) = (5x2 − x − 2)/5. We have other curves.

11



y(x) slope(y)
x2 − x − 1 2x − 1

1
2
x2 − 1

2
x x − 1

2

x2 − 4 2x

Instead of working each one out, let’s do it for any “coefficients” a, b, c:

slope(ax2 + bx + c) =?

Here I’m going to tell you something without proving it. (It can be proved directly from the
definition, slope = rise/run.) Here it is:

slope(ax2 + bx + c) = a × slope(x2) + b × slope(x) + c × slope(1)

= a × slope(x2) + b

So we need only focus on slope(x2).

slope(x2) =
x2

q − x2
p

xq − xp

=
(xq + xp)(xq − xp)

xq − xp

= xq + xp

What does this mean? We’re going to have to do something we didn’t think of yet—and incidentally
find the mistake we made by saying above that B = 2.

When we got 17 for the slope of (5x2 − x − 2)/2 at x = 3 we were a little sloppy: 17 is the slope
but we are not sure if we should say at x = 3 or at x = 4 or somewhere in between.

Let’s try halfway between: suppose that at x = 31
2

the slope of (5x2 − x − 2)/2 is 17. We’ll keep
the A = 5 but change B.

17 = Ax + B = 5 × 3
1

2
+ B = 17

1

2
+ B

so B = −1
2
.

10. Centering. This correction agrees with the rule I just gave you

slope(
5

2
x2 − 1

2
x − 1) =

5

2
slope(x2) − 1

2

and if we stick with A = 5 we see that

slope(x2) = 2x

But we got
slope(x2) = xq + xp

just now, from the definition.

To reconcile these, we’ll have to improve the definition of slope.

Here is the problem. For a curve, the slope depends exactly on x, not approximately. We see that
if we shifted x from 3 to 31

2
we changed the slope of (5x2 − x − 2)/2.

So what we must do is note that xp and xq are on opposite sides of and equidistant from their
average value. This average value we’ll call x, the location of the slope we’re looking for.

So
xp + xq = 2x

12



And
slope(x2) = 2x

Hence our table of slopes

y(x) slope(y)
5
2
x2 − 1

2
x − 1 5x − 1

2

x2 − x − 1 2x − 1

1
2
x2 − 1

2
x x − 1

2

x2 − 4 2x

ax2 + bx + c 2ax + b

11. Limits. If we look at powers of x, we can begin to see a pattern in their slopes.

n x slope(xn)
0 1 0
1 x 1
2 x2 2x
3 x3 3x2

4 x4 4x3

: : :
n xn nxn−1

We’ve already shown n = 0, 1 and 2. For n = 3 we can go back to drawings for a qualitative
glimpse.

x x3 x3 − x
3 27 24
2 8 6
1 1 0
0 0 0
−1 −1 0
−2 −8 −6
−3 −27 −24

20

����

��

��

��

��

y(x) = x    x3

x

y

2

10

20

112 33

10

��

I’ve drawn y(x) = x3 − x because it gives a better picture than Y (x) = x3. If you calculate it for
a few more numbers, especially x = −1/2 and x = 1/2, you’ll see that it does indeed cross y = 0
(the x-axis) at the three points shown.

On this drawing, where is the slope = 0? You should find two places, between x = −1 and x = 0,
and between x = 0 and x = 1. We won’t say x = −1/2 and x = 1/2 because that’s not right.

13



Instead we will call them xmax and xmin—not because they are where y(x) is the highest or lowest
but because they do give a local maximum and a local minimum for y(x).

Here’s the qualitative table

x slope(x3 − x)
x ≪ xmax ++
x < xmax +
x = xmax 0

xmax < x < xmin −
x = xmin 0
x > xmin +
x ≫ xmin ++

This could be one of our U-shaped curves. Let’s use the definition—back to just x3.

slope
x=

xq+xp

2

(x3) =
x3

q − x3
p

xq − xp

= x2
q + xqxp + x2

p

Hint: (xq − xp)(x
2
q + xqxp + x2

p) = x3
q − x3

p using the symbol multiplication table

x x2
q xqxp x2

p

xq x3
q x2

qxp xqx
2
p

−xp −x2
qxp −xqx

2
p −x3

p

But this time, just looking at the average does not work: we cannot simplify x2
q + xqxp + x2

p down
to just x using x = (xq + xp)/2.

So we must improve the definition once again. (This improvement can replace the previous im-
provement of simply taking the average of xq and xp.)

We’ll now take the definition in the limit as xq and xp both approach x.

slopex(y(x)) = lim
xq→x,xp→x

y(xq) − y(xp)

xq − xp

We can see that this is tricky: the denominator approaches zero when both xq and xp approach
the common value x.

Fortunately so far the denominator has cancelled out.

slopex(x
3) = lim

xq→x,xp→x
(x2

q + xqxp + x2
p) = 3x2

(And also
slopex(x2) = lim

xq→x,xp→x
(xq + xp) = 2x.)

(Once we have xq and xp approaching the same thing, we will get the same result if we just, say,
let xq approach xp: lopsided but it won’t matter.

We can write this directly in terms of x if we say

xp = x

xq = x + ∆x

14



where ∆x is a small increase in x which we’ll take to the limit ∆x → 0

slope(y(x)) = lim
∆x→0

y(x + ∆x) − y(x)

x + ∆x − x

This is the standard definition of the slope.)

12. Back to the zeros of 5
2
x

2 − 1
2
x− 2. For cubic curves (involving up to x3) and higher we must

worry about limits. (Limits work also just as well for powers 0, 1 and 2.) For the quadratic curve
(involving up to x2), averages will do.

Anyhow, we know

slopex(
5

2
x2 − 1

2
x − 1) = 5x − 1

2

So we can find out where it is zero.

5x − 1

2
= 0

x =
1

10

This is the line of symmetry of 5
2
x2 − 1

2
x − 1.

So we can find its zeros by shifting x to x′ = x − 1
10

and later shifting back again.

0 =
5

2
x2 − 1

2
x − 1

=
5

2
(x′ +

1

10
)2 − 1

2
(x′ +

1

10
) − 1

=
5

2
(x′2 +

1

5
x′ +

1

100
) − 1

2
(x′ +

1

10
) − 1

=
5

2
x′2 +

1

40
− 1

20
− 1

=
5

2
(x′2 − 2

5
(1 +

1

40
))

x′2 =
2

5
(
40 + 1

40
)

x′ = ±
√

2

5

41

40

So

x = x′ +
1

10

=
1

10
±
√

2

5

41

40

You can check with a calculator what these two numbers are and how they fit the plot back in
Notes 8 and 9.

We’ve found the zeros of two of our U-shaped quadratic curves, here and in Note 7. Let’s do it
once more for any coefficients a, b and c.

1) 0 = slopex(ax2 + bx + c) = 2ax + b
gives

x = − b

2a

15



as the line of symmetry.
2) So shifting x to x′ = x + b

2a

0 = ax2 + bx + c

= a(x′ − b

2a
)2 + b(x′ − b

2a
) + c

= a(x′2 − b

a
x′ − b2

4a2
) + b(x′ − b

2a
) + c

= a(x′2 +
b2

4a2
− b2

2a2
+

c

a
)

= a(x′2 − (
b2

4a2
− 4ac

4a2
))

So

x′ = ±
√

b2 − 4ac

4a2

=
±
√

b2 − 4ac

2a

3) Shift back again

x = x′ − b

2a

=
−b ±

√
b2 − 4ac

2a

This is the quadratic formula which will find the zeros of any quadratic ax2 + bx + c. You’ll use
this a lot in high school, but they never will have told you why it works.

13. Square roots. Another thing you will probably not learn in school is how to find a square
root. Even if you only ever do it with a calculator, you might wonder how the calculator does it.
We need slopes for this, too.

Let’s find one we know already, just so we can see that the method works:
√

4.

We can make use of what we’ve just learned by asking: is there a function whose zeros give
x = ±

√
4? Yes:

y(x) = x2 − 4

Now we’re pretending that we don’t know that
√

4 = 2, but we have a picture of this function
(Note 7) and we can take a guess.

Let’s try x = 3. We’ll call it x1. And we’ll call x0 the zero we’re looking for, x2
0 = 4.

16
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3

4

y(x) = x   4
y

3

1

x

(  )y

x =1

x1

Since we know y(x) = x2 − 4, we also know its slope.

slopexy = 2x

So we know two more things about x1 (the first was its value, e.g., 3),

• y(x1) = x2
1 − 4

• slopex=x1
y = 2x1

The slope of y at x1 is also the slope (everywhere) of the straight line that is tangent to y(x) at
x = x1. That is, the tangent touches y(x) at x = x1 (“tangere” is Latin for “to touch”) but does
not cross it: both lines are pointing in exactly the same direction at x = x1.

So we draw that tangent, and call x = x2 where it crosses the x-axis (red dashed line).

Clearly x2 is nearer to x0 than x1 was: it is an improved guess. Can we find x2 from the three
things we know about x1?

From the definition of slope, at x = x1 the slope of y(x) = x2 − 4 is

slopex=x1
y(x) =

y1 − y2

x1 − x2

≈ y1

x1 − x2

because y2 is pretty close to 0, and would be exactly zero if the x2 guess happened to be right. So
the ≈ is an optimistic (hopeful) approximation.

Assuming this approximation, we can do some rearranging. We’ll call slopexy = y′(x) to make
things shorter.

y′(x) =
y(x1)

x1 − x2

x1 − x2 =
y(x1)

y′(x)

x2 = x1 −
y(x1)

y′(x)

= x1 −
x2

1 − 4

2x1

17



There we go: if we know x1 we can calculate x2. For example, x1 is our guess of 3:

x2 = 3 − 9 − 4

2 × 3
= 3 − 5

6
= 2

1

6
= 2.16

This is not exactly
√

4 but it is closer than 3 was.

So we do it all over again, stepping from x2 to an even better guess x3:

x3 = x2 −
x2

2 − 4

2x2

=
13

6
−

169
36

− 144
36

13
3

=
169 × 6

36 × 13
− 25

36

3

13

=
939

36 × 13
= 2.0064

This is a lot closer.

We could actually write a little calculator program to do the arithmetic for us. Suppose we’ve been
given a value for X; let’s use Y , and Z for y′.

Y = X2 − 4

Z = 2 × X

X = X − Y/Z

This changes X to the next approximation. We can even take an important step and replace 4 by
A as the number we want to find the square root of.

PROGRAM:NEWT
X∧2− A → Y
2*X → Z
X − Y/Z → X

If we initialize by storing 4 in A
4 → A

and our guess, 3, in X
3 → X

and run
Prgm:NEWT

we get

2.166666667
2.006410256
2.00001024
2

So it takes the calculator only four tries before it cannot distinguish the approximation from the
exact answer

√
4 = 2. That’s to ten significant figures. (Actually, if the calculator had infinite

precision, it would never get to exactly 2, but, as engineers know, it would soon get close enough.

14. Self-slope. So slopes are useful. They are also fun. Let’s ask about the function that is its
own slope.

This question does not give you very much to go on, so I’ll give us a start: suppose y(0) = 1.

So when x = 0, y = 1. What is slope(y)? Why, the same: 1. We draw a little line of slope 1
crossing the y-axis (x = 0) at y = 1.

18



x

y

When x is just a little bigger than 0, y will be on this line and so just a little bigger than 1. So will
slope(y) here be a little bigger than 1. We draw another line, sloping up a little more, just above
x = 0, y = 1.

Similarly, just below x = 0, y and its slope are just a little smaller than 1, se we draw a slightly
less steep line.

x

y

If we keep doing this, moving x alternately more positive and more negative, we’ll get a curve.
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y

x

This can never have slope 0 or else it will itself be 0: it can neither cross nor touch the x-axis. It
can never have slope ∞ either, for similar reasons: it never results in a vertical line.

15. Infinite series. Can we do this mathematically? In Note 11 we have a table of slopes of powers
of x. These slopes are themselves almost powers of x. There may be a clue in the way that slopes
of powers are themselves powers—lower powers—albeit multiplied by a constant.

Let’s try
y(x) = 1 + x + x2 + x3 + ...

(I won’t stop: you’ll see why.) Then

y′(x) = 0 + 1 + 2x + 3x3 + ...

(Remember that slopes are transparent to addition.)

Dropping the 0, we can match up each term in the slope to the previous term in y. It only goes
wrong when we get to the x terms: the slope term is twice too big.

Well, we can fix that: slope is transparent to multiplication by a constant, so let’s just divide x2

by 2.

Now we are OK up to the x2 terms. We’ll have to divide x3 by 3 to get x2. But we’ve now changed
x2 to x2/2, so we must divide x3 by 3 × 2.

y(x) = 1 + x +
x2

2
+

x3

3 × 2
+ ..

y′(x) = 0 + 1 + x +
x2

2
+ ..
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Pretty good. But we’re always missing the last term in y. So this series has to go on forever.

Let’s find the general term before dealing with the mind-boggling possibilities of an infinite series.

The last denominator was 3 × 2, which is actually 3 × 2 × 1. The second-last denominator is thus
2 × 1. Pattern? Factorial: n! = n(n − 1)(n − 2)...3 × 2 × 1.

If we use our slope rules for powers (first table in Note 11)

slope

(

xn

n!

)

= n
xn−1

n!
=

xn−1

(n − 1)!

and that’s the previous term. Just what we need.

So what about this sum which goes on forever? How can it help but be infinite?

This question would have troubled the ancient Greek thinkers: Zeno’s “paradox” goes:
I want to get to the window.
But first I must get halfway there.
Then I must get halfway of the remaining half.
Then I must get halfway along that last quarter.
:

This goes on forever, too, but I do know that I can get to the window just by walking over. So this
infinite sum must converge.

1

2
+

1

4
+

1

8
+ ... +

1

2n
+ .. = 1

Similarly our series for the self-slope function converges. Indeed it converges for any value of x: even
though it has arbitrarily large powers, xn, for n arbitrarily large, these numerators are essentially
wiped out by the factorial denominators:

n! ≫ xn

for any n bigger than some threshold value, no matter what x is.

Not all infinite sums converge:

1 +
1

2
+

1

3
+

1

4
+ .. +

1

n
+ ..

does not. Nor do all infinite series in powers of x converge for all values of x:

x − x2

2
+

x3

3
− x5

5
+ ...

even though the sign alternates, does not converge if | x |≥ 1 (i.e., −x ≤ −1 or x ≥ 1). But we
won’t get into these subtleties here. Our self-slope series does converge everywhere.

16. Programming the infinite series. Even if we accept that the series will converge, there’s still
a lot of calculation to do. So let’s see if we can get a machine to do it,

Before choosing a machine, we must think out what we’ll tell it to do.

The series is a sum of terms depending on n. The sum is what it was before, plus the term:
sum = sum + term S+T→ S

For each subsequent term we must increment n by 1:
n = n + 1 N+1→ N

The next term is the previous term times x divided by n:
term = term×x/n T*X/N→T
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If that’s our program, we must start it off:
sum = 0 0→S
n = 0 0→N

term = 1 1→T
And, always before committing a program into a machine, we had better do a hand check. Let’s
suppose x = 1 for this check.

sum n term

0 0 1
1 1 1
2 2 1/2

5/2 3 1/6
8/3 4 1/24

65/24 5 1/120

Let’s check this against the series for x = 1

1 + 1 +
1

2
+

1

3 × 2
+

1

4 × 3 × 2
+

1

5 × 4 × 3 × 2
+ ..

it seems to be good. This is good because getting the order of the program right can be tricky, as
is getting the right initialization for the program.

From what we’ve seen above, the machine can be a programmable calculator. In fact I’ve given
TI81 code on the right of each step. Here’s our program for the TI81.

Prgm EXP
S+T→S
N+1→N

T*X/N→T
Disp S

And we might as well put the initialization into a single package, too, and call it a program, so
that we can restart the whole calculation easily.

Prgm RESTART
0→S
0→N
1→T

Prompt X

To run this, we restart then run EXP repeatedly until the answers stop changing.

Prgm RESTART
X=?1
Prgm EXP 1
<ENTER> 2
<ENTER> 2.5
<ENTER> 2.666666667
<ENTER> 2.708333333
<ENTER> 2.716666667
<ENTER> 2.718055556

:
13th time 2.718281828

Compare this with
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e∧(1) 2.718281828

Try again with x=2: after 17 iterations I got 7.38905099, which is exactly what the calculator also
gives for e∧(2).

What we seem to have is a way of calculating the exponential function, exp(x), or

ex = 1 + x +
x2

2!
+

x3

3!
+ ..

where Euler’s number (L. Euler, pronounced “Oiler”) e = 2.718281828...

Looking back at the self-slope curve we plotted in Note 14 we see that it could indeed be an
exponential. Especially, e0 = 1, where we started. You can also use the TI81 calculator (or a
successor) to plot ex to see the resemblance.

17. Slope equations. What we’ve been discussing is the simplest of the interesting slope equations:
the self-slope curve satsifies

slopexy = y

and we’ve solved this equation:
y(x) = ex

Actually, we could add a constant to x (or multiply ex by a different but related constant) and still
have a solution.

y(x) = ex+c = ecex = aex

taking advantage of the transparency of slope to multiplying by a constant (Note 9)

slopexy = slopex(aex) = a × slopexex = aex = y

But what happens if we multiply x by a constant?

slopexecx =?

We’ll have to go back to the series

y(x) = 1 + cx +
(cx)2

2!
+

(cx)3

3!
+

(cx)4

4!
+ ..

The slope of this, using the table of slopes in Note 11 and the transparency rules of Note 9, is

slopexecx = 0 + c + c2x + c3 x2

2!
+ c4 x3

3!
+ ..

= c(1 + cx +
(cx)2

2!
+

(cx)3

3!
+ ..)

= cecx

So we have a second slope equation
slopexy = cy

which has the solution
y(x) = ecx

And, more generally,
y(x) = aecx

Let’s go on to second order slope equations. These involve double slopes

slope2
xy = slopexslopexy = y
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for instance. This one is easy: y(x) = aex solves slopexy = y and, for this y

slopexslopexy = slopexy = y

and we’re done.

What about
slope2

xy = qy?

We’ll do what everybody must do when confronted by a new slope equation: guess and try. Let’s
try y(x) = aecx.

slopexslopexy = slopexacecx = ac2ecx = c2y

So this works if c = ±√
q.

But what if q is negative? Or, let’s say q is positive but now we want to solve

slope2
xy = −qy

We need to return to rotation matrices (Week iv Note 8) for advanced treatment.

18. Ninety-degree rotations. We saw a few rotation matrices in Week iv and its Excursions. They
all followed the pattern

R =

(

c −s
s c

)

with the special restriction c2 + s2 = 1 to make them pure rotations and so not change the sizes of
the rotated objects.

For example, in Note 8 of Week iv

c = 4/5

s = 3/5

and you can check both the pattern and the restriction.

The values of c and s are determined by the angle of the rotation. What are c and s for a 90-degree
rotation?

We’ll use an important fact about the two special vectors

(

1
0

)

and
(

0
1

)

:

they pick out, respectively, the first column and the second column of any matrix which multiplies
them.

(

a d
b c

)(

1
0

)

=

(

a
b

) (

a d
b c

)(

0
1

)

=

(

c
d

)

With a 90-degree rotation we know what is supposed to happen to these two vectors:

(

1
0

)

→
(

0
1

) (

0
1

)

→
( −1

0

)

so the rotation matrix must be

R90 =

(

0 −1
1 0

)
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Check that this obeys the pattern and restriction for rotation matrices.

Now let’s consider a general rotation again, and the two special matrices, the identity matrix, I,
which changes nothing (0-degree rotation: see the Excursions), and this 90-degree rotation.

R =

(

c −s
s c

)

I =

(

1 0
0 1

) (

0 −1
1 0

)

We need a less clunky name than R90 for the last: we’ll call it i—because, if you like, we already
have I, but mainly because that is what mathematicians conventionally call it.

Notice what follows from this:
R = cI + si

where R, I, i are matrices (R is the rotation matrix at the start of this Note) and c, s are just
numbers. But each of R, I and i could also be thought of as numbers. They obey all of the familiar
rules of numbers, such as commutativity

m + n = n + m m × n = n × m

associativity

k + (m + n) = (k + m) + n k × (m × n) = (k × m) × n

having an identity element (I plays the role of 1)

m × 1 = m = 1 × m

and having an inverse (a rotation can always be reversed)

m × m−1 = 1 = m−1 × m

So, treating the identity matrix as 1, I can rewrite the above as

R = c + is

What is i2? Back to matrices

i × i =

(

0 −1
1 0

)(

0 −1
1 0

)

=

( −1 0
0 −1

)

= −I = −1

Well: it is the square root of −1! (Another reason for the name i is that it could stand for “imagine
that!”) But is is unproductive to think of i as

√
−1. Much better to think of it as it is: a 90-degree

rotation.

What does this do to the usual number line?

e7
3

0 1 2 31 2 1
2 2

π

Regular numbers are one-dimensional. Including i makes them two-dimensional: it rotates this line
90 degrees about 0.
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19. Two-dimensional numbers. We thus have

i
7
3

2 2

2

2

2

2
i

2
i

2i 2i

��

��

��

1 2 31 1

πe

0

3

i

i

i

i

i

1+

3+

2+

The complete set of numbers is 2-dimensional. We’ll call them 2-dimensional numbers, or 2-numbers
for short. (If we need to, we could refer to 1-numbers for what we used to think of as just numbers.)

In these 2-numbers, what does
c + is

mean? Remember, c2 + s2 = 1. Some examples are

c s

1 0

1√
2

1√
2

0 1

− 1√
2

1√
2

−1 0

Let’s draw these as 2-numbers.

+2 2 22

���� ����

����

���� ����

11

i
i1 i+1
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It seems we’re going in circles. In fact,
c + is

describes the “unit circle”—the circle of radius 1 centred at 0—if we take all possible c and all
possible s subject to c2 + s2 = 1.

20. Slope of c and s. If we think about it, we see that c and s each depend on only one thing: the
angle to the point labelled c + is. We can use the traditional Greek letter θ (theta) as the angle.

c+is

θ
c

s

Since c and s each depend on θ, they are functions of θ, c(θ) and s(θ).

So we can ask about their slopes with respect to θ.

Here’s what happens when we make a small change, ∆θ, in θ.

s

θ
c

s

∆θ∆

∆c

Note the two similar triangles:

∆c ∝ −s
∆c

∆θ
≈ −s

slopeθc = −s

∆s ∝ c
∆s

∆θ
≈ c

slopeθs = c

We want to know how c and s each change as θ changes to θ + ∆θ. The following is an intuitive
argument, glazing over some important steps.

First look at the little triangle with sides labelled ∆s and ∆c. It is similar to the big triangle, given
by angle θ, with sides c and s. So
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∆c ∝ −s ∆s ∝ c
where ∝ means“proportional to” and the negative sign for ∆c captures the fact that c is getting
smaller as θ gets bigger: c + ∆c < c.

Second, we can say that the arc of the unit circle cut out by angle ∆θ is itself ∆θ. This depends
on how we measure angles: for this, not in degrees but in “radians”. Let’s just take it as given.

Third, the arc is just the hypotenuse of the small triangle, if ∆θ is a small angle. So we can improve
our “proportional to”, above, to close to exact equality.

∆c
∆θ

≈ −s ∆s
∆θ

≈ c

Finally, that is just the slope (if ∆θ is small enough)

slopeθc = −s slopeθs = c

Now what about c + is?
slopeθ(c + is) = −s + ic

This may or may not be interesting. But if we do it again it is very interesting.

slope2
θ(c + is) = −c − is = −(c + is)

So slope2(c + is) is the negative of c + is. Let’s use a single letter for c + is and show explicitly
that it is a function of θ.

Y (θ) = c + is

What we’ve just found is
slope2

θY = −Y

21. Connecting with slope equations. Looking back at the second-order slope equation

slope2
xy = −qy

in Note 17, we see that 2-numbers are necessary.

Since the solution to
slope2

xy = qy

is
y = ae

√
qx

now we see that
y = aei

√
qx

solves
slope2

xy = −qy

Let’s set a = 1 and q = 1, so y = eix:
slope2

xy = −y

Change the y to Y and the x to θ and we have

slope2
θY = −Y

and we’ve just found Y = c + is.

Here’s the connection
eiθ = c + is
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A special case: what happens if θ is half a turn (that is, 180 degrees in our old way of measuring
angles)? Then c = −1 and s = 0 from our table of examples in Note 19.

We could say θ is 180 degrees, but we said in Note 20 that we can’t measure angles in degrees and
get the arc to equal ∆θ. We must measure in the length of the arc. For a half turn, this is half of
the 2π circumference of a circle whose radius r = 1.

So, at half a turn
θ = π c = −1 s = 0

and we have
eiπ = −1

or, to bring in all five of the most important numbers in math

eiπ + 1 = 0

22. Summary

(These notes show the trees. Try to see the forest!)

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. Show that (1 −
√

5)/2 = 1 − φ as calculated in Note 7. Hence confirm that φ2 − φ − 1 = 0.

2. Show that slope(f(x) + g(x)) = slope(f(x)) + slope(g(x)) directly from the definition, slope
= rise/run. Hint:

slope(f(x)) =
f(xq) − f(xp)

xq − xp

3. Show that slope(a× f(x)) = a×slope(f(x)) for any “constant” a. (A constant in this context
is something which does not depend on x, e.g., a number.)

4. Enter and run the “Newton’s method” calculator program of Note 13. What does it give you
for

√
2 (try starting guess 1)? Square this answer.

5. Write a Newton”s method program which finds cube roots. Write one which finds Nth roots.

6. Mensuration a) The area of a circle of radius r is πr2. What is the slope of this? What is
the length of its circumference? Why are these equal? (Hint. If the circle were to grow by a
small amount ∆r its additional area would be ∆r× its circumference.
b) The volume of a sphere of radius r is (4/3)πr3. What is the slope of this? What is the
area of its surface?
c) The volume of a cube of “radius” a is (2a)3 = 8a3. What is the slope of this? What is the
area of all its faces?
d) Repeat this for a cube of side a: why must we take the slope with respect to a/2 and how
do we do this?
e) Excursion Hyperspheres in Book 9c Part I shows that the “volume” of a 4-dimensional
sphere of radius r is π2R4/2. What is its “surface area”?

7. In Note 18, c and s are both functions of the angle of rotation, c(θ) and s(θ). We saw there
that c(90) = 0 and s(90) = 1.

a) For 0 degrees show that c(0) = 1 and s(0) = 0. Hint. For 0 degrees

(

c −s
s c

)

must be

the matrtix that does nothing, the identity matrix

(

1 0
0 1

)

. Or use the reasoning of Note

18.
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b) What about 180 degrees and 270 degrees? Hint: these just change the signs of 0 degrees
and 90 degrees, respectively. Or, a 180-degree rotation is two 90-degree rotations and 270 is
three.
c) For 45 degrees, solve

(

c −s
s c

)(

c −s
s c

)

=

(

0 −1
1 0

)

because two 45-degree rotations makes a 90-degree rotation. (There are more than one
solution: stick to both c and s being positive.) Or use the reasoning of Note 18.
d) What about 135, 225 and 315 degrees?
e) Draw a plot of c(θ) for θ = 0, 45, 90, 135, 180, 225, 270, 315 and 360 degrees,and the same
for s(θ).

8. Inverses. a) The inverse of an ordinary number is its reciprocal: the inverse of 2 is 1/2; the
inverse of 2/3 is 3/2. What is the connection between turning a fraction upside-down and
dividing it into 1?
The common property of both concepts is that either, when multiplied by the original number,
gives 1. This is the definition of “inverse”, which is a more general concept than “reciprocal”.
(See Excursion Modular arithmetic in Week ii for inverses that are not reciprocals.) The
inverse can be thought of as combining with the number to produce the number that “does
nothing”, since 1 multiplied by any further number has no effect on it.
The inverse of a function is another function which, when applied to it, gives the function
that“does nothing”, i.e., the identity function id(x) = x. So, for example, the inverse of

squaring is the square root:
√

x2 = x. Note that it works in reverse, too:
√

x
2

= x.
Similarly the inverse of the exponential is the natural logarithm (see Note 5 of Week ii):
ln ex = x and eln x = x.
b) What is a function which is its own inverse? Is there more than one such function?
A hint for this last question comes from picturing inverse functions. Here are the exponential
and logarithmic functions, ex and lnx, as well as the quadratic and square root functions, x2

and
√

x.

0 5 10 15 20

0

5

10

15

20

x

f(
x)

exponential

−2 0 2 4 6 8

−2

0

2

4

6

8

x

f(
x)

quadratic

As well as the x and y axes, I’ve shown the line y = x which acts as a mirror.
You should note that the curve I’ve shown for

√
x is not a function: it has two values for

any positive value for x. But functions are supposed to be uniquely determined by their
argument. I had to draw it by plotting both sqrt(x) and −sqrt(x). (The fact that

√
x has

no values for some x, namely negative x, is not an issue: ln x also has no values for negative
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x, but that does not stop it from being a function.)
c) Why does a function become its inverse on exchanging x ↔ y? Why does this exchange
act like a mirror along the line y = x?
d) Use this visualization to show that the slope of the inverse of a function is the reciprocal
of the slope of the function.

9. Radians. There are various ways of measuring angles. Commonly we use degrees, with
360 degrees being a full turn. (This number is a legacy from the Babylonians and has the
advantage that it is an integer which has many factors—2, 3, 5 and their multiples: 360 =
23325—so that it is easy to get integer measures for many important fractions of a turn.)
We could alternately use a much more natural measure, namely fractions of a turn, so that a
right angle is a quarter-turn, and so on.
Because of the need in Note 20, where we are measuring triangles, to express an angle as a
length, we must learn a third way of measuring angles. A radian is the angle subtended by
an arc of the unit circle which has length 1.
How many radians in a full turn (360 degrees)? In a half turn (180 degrees)? In a quarter
turn (a right angle, 90 degrees)?

10. Rotation generators. In Note 18 we decomposed
(

c −s
s c

)

into
R = cI + si

by introducing the 90-degree rotation

i =

( −1
1

)

In Note 21 we wrote the rotation as 2-numbers in the form

eiθ = c + is

In Note 16 we equated

ex = 1 + x +
x2

2!
+

x3

3!
+ ..

so that ex is a function which is its own slope.
Here we combine matrices and 2-numbers to explore

eiθ = I + iθ +
(iθ)2

2!
+

(iθ)3

3!
+ ..

=

(

1
1

)

+

( −1
1

)

θ +
1

2!

( −1
1

)2

θ2 +
1

3!

( −1
1

)3

θ3 + ..

where i goes back to being a matrix, and the meaning of eiθ is given by the infinite series.
Since we found i2 = −I (as matrices: Note 18)

eiθ = I + iθ − θ2

2!
I − θ3

3!
i + ..

= I

(

1 − θ2

2!
+ ..

)

+ i

(

θ − θ3

3!
+ ..

)

= I cos θ + i sin θ

=

(

c −s
s c

)
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So eiθ, with i considered as a matrix, is just the rotation matrix.
The matrix i is thus the generator of 2D rotations.
Complete the above argument by showing that the series expansions for cos() and sin() are

cos θ = 1 − θ2

2!
+

θ4

4!
− θ6

6!
..

sin θ = θ − θ3

3!
+

θ5

5!
− θ7

7!
..

11. 3D rotation generators. In Excursion Three-dimensional rotations of Week iv we wrote
three matrices for 3D rotations. They can also be expressed with generators, J ′

z, J
′
y, J

′
x,

following the previous Excursion. (I’ve used primes because we are going to modify the
definitions at the end of this Excursion.)

Rxy =





cxy −sxy

sxy cxy

1



 = eθxyJ ′

z J ′
z =

( −1
1

)

Rzx =





czx szx

1
−szx czx



 = eθzxJ ′

y J ′
y =





1

−1





Ryz =





1
cyz −syz

syz cyz



 = eθyzJ ′

x J ′
x =



 −1
1





Note that I’ve tweaked the notation to describe, e.g., the angle θxy in the x-y plane as applied

to the generator J ′
z for rotations about the z-axis. NB. cxy

def
= cos θxy, etc.

a) Show that eθxyJ ′

z = Rxy and so on.
b) Since Excursion Three-dimensional rotations (Week iv) showed that 3D rotations do not
commute, we can explore the commutators of these generators

[J ′
x, J ′

y]−
def
= J ′

xJ ′
y − J ′

yJ
′
x

Show that
[J ′

x, J ′
y]− = J ′

z [J ′
z, J

′
x]− = J ′

y [J ′
y, J

′
z]− = J ′

x

c) We could write a combination of rotations

RxyRzx = eθxyJ ′

zeθzxJ ′

y

as
eθxyJ ′

z+θzxJ ′

y

but why should we be careful? Hint: does matrix addition commute?
d) The J ′s are 3-by-3 matrices. Can we find 2-by-2 matrices which also describe 3D rotations?
Let’s look for 2-by-2 generators that satisfy the same commutation properties as in (b) above.
We must use 2D numbers in these matrices: i is a 2D number, not a matrix, in the following.

σ′
z =

i

2

(

1
−1

)

σ′
y =

i

2

( −i
i

)

σ′
x =

i

2

(

1
1

)

Show that
[σ′

x, σ′
y]− = σ′

z [σ′
z, σ

′
x]− = σ′

y [σ′
y, σ

′
z]− = σ′

x
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(These matrices—well, without the i/2 factors—are called Pauli matrices and are very im-
portant in quantum physics: see Week 6 Note 3.)
e) Show that the Pauli matrices also satisfy

[σ′
x, σ′

y]+ = 0 [σ′
z, σ

′
x]+ = 0 [σ′

y, σ
′
z]+ = 0

where the anticommutator is, e.g.,

[σ′
x, σ′

y]+
def
= σ′

xσ′
y + σ′

yσ
′
x

In other words
σ′

xσ′
y = −σ′

yσ
′
x

etc. Compare these to the Clifford algebra (“interval algebra”) of Week 7c Part B.
f) Note that the Js are all antisymmetric matrices, e.g., J ′T

z = −J ′
z where T is the transpose

operator, e.g.,
(

a c
b d

)T
def
=

(

a b
c d

)

The rotation matrices are orthogonal, e.g.,

RxyR
T
xy = I

Show that eA is orthogonal if A is antisymmetric. Hint: show that (eA)T = eAT
so (eA)(eA)T =

eAe−A = e0 = 1 with matrix versions of 0 and 1.
g) The above ideas of antisymmetric and orthogonal go respectively over to antihermitian
and unitary for matrices involving 2-numbers such as the Pauli matrices. The only change is
that the transpose operator goes over to an operator which also changes the sign on every i:
transpose becomes hermitian conjugate, designated †.
Show that iH is antihermitian (iH)† = −iH† if H is hermitian H† = H,
Show that the Pauli matrices are antihermitian.
Show that U = eiH is unitary if H is hermitian (or iH is antihermitian).
h) The significance of orthogonal or unitary matrices is that they preserve distances when
used to transform space, e.g.,

x′2 + y′2 = r2 = x2 + y2

in
(

x′

y′

)

= R

(

x
y

)

for a rotation R—which is an orthogonal matrix.
Show this.
The significance of symmetric or hermitian matrices (or their antis) is that these properties
are very easy to check. Symmetric matrices have 1-number (“real”) eigenvalues and orthog-
onal eigenvectors (see Week iv, Excursions Diagonalizing matrices and following); hermitian
matrices have the same, in 2-number terms.
i) Generators are thus often written as symmetric or hermitian matrices J , and the rotations
(say) generated are, e.g.,

R = eiθJ

Work out symmetric Js and hermitian σs for the 3-by-3 and 2-by-2 cases, respectively, above,
and find their commutation relationships. What are the anticommutators of the σs?

12. Any part of the Preliminary Notes that needs working through.
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