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I. Prefatory Notes

1. Histograms.

2. Histogram arithmetic.

3. Distributions and densities.

4. Aggregates: the moments of distributions.

5. Quantum distributions: the density matrix.

6. The normal distribution.

7. Expectation, surprise and ignorance.

8. Does ignorance ever decrease?

9. Inside knowledge: the clients of Joe and Sue revisited.

10. Correlation and co-ignorance.

11. Conditional distributions and ignorance.

12. A gas simulation 1: the collisions

13. A gas simulation 2: statistics

14. The Boltzmann and Maxwell distributions.

15. Fluctuations, variations and samples.

16. Entropy.

17. Temperature.

18. Pressure.

19. State function for monatomic gases.

20. Thermostatic equations of state.

21. More on multivariate slopes.

22. Work and heat.

23. Correlation.

24. Collision theory.

25. Mobility, diffusivity and Brownian motion.

26. Three potentials and dissipation.

27. Active transport and biochemistry.

28. Combined transport.

29. Phase transitions. Solids, liquds and gases are phases of the substance in question, say H2O:
ice, water, steam. A change of phase does not change the molecule, but dramatically changes the
collectivity of molecules.

Explanations at the microscopic level are difficult and the mathematics may require long, if interest-
ing, indirect approaches. So I will be direct and use computer simulations based on the microscopic
configurations.

I don’t even have a definition of “phase transition” to start with, but hope the discussion of this
Part will reveal the essentials. For this purpose, I’ll start and end quite far afield from melting,
boiling, etc.

In fact, apart from one scarely microscopic treatment of the liquid and gaseous phases in Note 32,

2



I won’t mention any of the four transitions in the title. They seem to be too difficult. At least I
do not understand them and the sources I have do not seem to either.

The present Part is the most speculative I’ve allowed myself to get in all of these Excursions in
Computing Science. The results are at best qualitatively correct and may not even be that. Work
remains to bring them to quantitative comparison with observation and experiment. So you should
take the entire Part as a sketch, hopefully intuitively helpful but in possible need of complete
replacement.

I have decided to include it because phase transitions are important, and not only for condensed
matter physics. The pedagogical beauty is that there is a lot of room for you to improve it.

30. Phase transitions in random graphs. Imagine scattering a number of buttons on your table,
then tying two of them together with a thread, then another two with another thread and so on.
How many threads will it take before you can lift all the buttons from the table by picking up only
one?

Here are eight buttons and the first six threads.
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A button already tied to (an)other button(s) is just as eligible to be tied to a new thread as a
completely free button. Indeed, once a number of threads have been tied, the chance of tying a
new thread to an already-attached button soon becomes greater than the chance of threading an
isolated button.

Moreover, some cluster of threaded buttons will soon outgrow all other clusters, and the dominant
cluster will become overwhelmingly likely to receive new links, especially from the other clusters,
which will be absorbed by it.

The absorption of all buttons into this dominant cluster will be our phase transition in this quite
non-physical example. We will explore its dependence on the probability of forming links (i.e.,
tying threads) in the first place.

In a MATLAB program we can represent the threads as an n-by-2 matrix, e.g.,
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2 8
4 6
1 7
5 7
4 5
3 5
1 5
2 4

and so on for as many threads as we’ve chosen to tie in. Each row stands for a thread and the
order of the rows gives the sequence of tying the threads.

As we tie each thread we must keep a record of the connected buttons. We’ll represent each
connected set of buttons as a triple structure: the buttons themselves, the connecting threads in a
list as above, and the connecting threads as a symmetric square matrix for future reference. (I’ll
call the buttons “nodes” and the threads “edges” from now on, in keeping with the terminology
for graphs.)

Thus, after making the 2–8 connection we have
nodeSet

2
8

edgeSet
2 8

edgeMatrix
0 1
1 0

We’ll put up with the redundancy of edgeSet.

Going on to make the 4–6 connection gives us two connected components, so two such structures.
nodeSet

2
8

edgeSet
2 8

edgeMatrix
0 1
1 0

4
6

4 6
0 1
1 0

And after adding edge 1–7 we have three.

When we add the fourth edge, 5–7, one of the connected components gets bigger.
nodeSet

2
8

edgeSet
2 8

edgeMatrix
0 1
1 0

4
6

4 6
0 1
1 0

1
5
7

1 7
5 7

0 0 1
0 0 1
1 1 0

Note that the nodeSet is sorted and that the edgeMatrix is implicitly labelled with the sorted
nodes.

1   0   0   1
5   0   0   1
7   1   1   0

    1   5   7

The fifth edge merges two of the connected components.
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nodeSet
2
8

edgeSet
2 8

edgeMatrix
0 1
1 0

1
4
5
6
7

4 6
1 7
5 7
4 5

0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 0 0
1 0 1 0 0

The eighth edge, in this example, finally brings all nodes into a single connected component.
nodeSet

1
2
3
4
5
6
7
8

edgeSet
2 8
4 6
1 7
5 7
4 5
3 5
1 5
2 4

edgeMatrix
0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 1 1 0 0
1 0 1 1 0 0 1 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0

(Note that edgeSet happens to hold the edges in order of appearance: in general the order of
appearance may not be completely captured in edgeSet.)

If we were to carry on, the last possible edge would be number 28 = 8!2 and, apart from the 28
edges in edgeSet, we would have

nodeSet
1
2
3
4
5
6
7
8

edgeMatrix
0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0

The MATLAB function to do each of these steps could be
connCompCell = addEdge2connComp(edge,connCompCell)

Here, connCompCell is a MATLAB cell array, n-by-3, with each of the n entries containing the
three numerical arrays representing nodeSet, edgeSet and edgeMatrix. Initially connCompCell
would be empty, and addEdge2connComp() would give it a single row for the single connected
component. (The remaining, isolated, buttons at this stage are not represented at all, even though
they are each technically a “connected component”.)

After adding a certain number of edges (8 in the example), connCompCell would once again have
a single row because there would again be only one connected component: all the buttons.

The reason we’re storing the matrix version of the edges, edgeMatrix, is that we’d like to have
a single number to track the increasing connectivity. That number will be the average distance
between buttons, for all pairs of buttons: two buttons directly connected by a thread are distance
1 apart; two buttons connected by threads to a single intermediate button, but not directly to each
other, are distance 2 apart; and so on, counting links in the shortest paths between the two buttons
in each pair.

Isolated buttons do not enter the distance calculation. Thus, after the very first edge is added, the
average distance will be 1. After all 28 edges (in this example) are added, the average distance will
again be 1. In between, the distance can be quite long: for n buttons the longest distance could be
n − 1 if the buttons happen to get connected in a single chain, and so the average distance in the
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chain would be (n − 1)/2.

The function addEdge2connComp() must itself have several subfunctions a) to add a whole new
entry of two nodes and one edge as a connected component, b) to extend an entry by adding one
node and one edge, c) to insert one new edge only into a connected component, and d) to add a
new edge which combines two existing connected compponents. Lookup routines and a function to
append a node and then sort the resulting nodeSet, as well as to build edgeMatrix are needed.

The edgeMatrix can be used to find the pairwise distances via its powers.

For example the matrix
0 1
1 0

immediately gives the distance between the only two nodes as 1: just read the triangle above the
diagonal.

For the matrix

length 2

1

5
7

1

5
7

1   0   0   1
5   0   0   1
7   1   1   0

    1   5   7
length 1

we must find its square





0 0 1
0 0 1
1 1 0









0 0 1
0 0 1
1 1 0



 =





1 1 0
1 1 0
0 0 2





which says that paths of length 2 are as shown: one from 1 to 1, one from 5 to 5, one each from 1 to
5 and 5 to 1, and two from 7 to 7. The original matrix together with the square gives the distances:
any nonzero entry in the original matrix indicates a distance of 1 between those two nodes; any
nonzero entry in the square indicates a distance of 2 between the two nodes. The resulting distance
matrix is

2 2 1
2 2 1
1 1 2

Another matrix

0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 0 0
1 0 1 0 0

must be taken to the fourth power, and yields the distance matrix

2 3 2 4 1
3 2 1 1 2
2 1 2 2 1
4 1 2 2 3
1 2 1 3 2
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The MATLAB function to combine a distance matrix, A, already found, with the d th power, B, of
the original edgeMatrix could be

AB = distStep(A,B,d)
which creates the next-step distance matrix, AB, by choosing the entry from A, unless it is zero, in
which case choosing d if the entry from B is nonzero, otherwise 0.

It would be invoked in a loop, after initializing
graphd = edgeMatrix
allDist = edgeMatrix
d = 1

as follows
while < condition >

d = d + 1
graphd = graphd × edgeMatrix
allDist = distStep(allDist,graphd,d)

end

To specify the < condition > for the while loop, and to turn the allDist matrix into the average
distance between all pairs of nodes, we need

[totDist,count] = triSumCount(allDist)
which a) sums and b) counts all nonzero entries above the diagonal of allDist. Then the average
distance can be found from totDist/count and the while < condition > is

while count < n × (n − 1)/2
where edgeMatrix, graphd and allDist are all n-by-n matrices. This condition requires that a
nonzero distance has been found between every pair of nodes.

These functions can be combined into a parent function
[allDist,totDist,count] = connectMatrix(edgeMatrix)

For the example we’ve been following, these average distances are, step by step,

After edge Average distance
2 8 1 = 1/1
4 6 1 = 2/2
1 7 1 = 3/3
5 7 1.2 = (1+1+4)/(1+1+3)
4 5 1.9 = (1+20)/(1+10)
3 5 2 = (1+31)/(1+15)
1 5 1.75 = (1+27)/(1+15)
2 4 2.2 = 62/28

: :
<28th edge> 1 = 28/28

The peak of this average distance is what we must explore next. First, we must generate a set of
edges, such as those in our example, randomly, given a probability. For instance, the eight edges of
the example represent a probability 8/28 of selecting some edge from the 8!2 = 28 possible edges
connecting 8 nodes. If we had listed only seven edges, their probability would have been 7/28 =
1/4, given the same eight nodes.

The function
edges = edgesWithProb(n,p)

can do this, where n is the number of nodes (buttons) in the configuration and p is the probability
of choosing from the n!2 possible edges. So edgesWithProb(8,0.25) might have generated the
first seven edges of our example.

Next, for each probability in some range, say (0:10)/10, we must generate, say, 1000 sets of edges
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and from these find the average average-distances and their standard deviation.

I wrote a function
[avgDists,stdDists] = erdosRenyiProbLoop4()

which repeatedly invokes
[avgDists] = erdosRenyiProbDist(n,p)

over n nodes for a range of probabilities, iterating the calculations in a complicated way for each
probability, p. The output, avgDists, from the inner function is the average distance in the graph
resulting after a set of edges has been generated corresponding to the probability p. The output
of the same name, avgDists, from the outer function is a set of averages of the inner avgDists,
averaged over a given number of iterations for each probability in a range specified in the outer
function. The corresponding standard deviations are stdDists.

The input parameters of the outer function reflect a complicated dance I did to speed up execution
(since I did not fuss much about running speeds of all the internals discussed above): execution
takes a long time when many edges are generated at high probabilities, so I spaced the probabilities
logarithmically (to base 4), and also reduced the numbers of iterations for the higher probabilities.

The parameters, which I omitted above, must specify n the number of nodes, the number of
unequally spaced probabilities, and the number of iterations over each probability.

A run with 1024 nodes over 49 different probabilities took several days.
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The blue plot is the average of average distances for these 49 probabilities. The yellow plots are
these averages plus and minus one standard deviation. We can see the distance limits of 1 at both
low and high probabilities and a clear spike at a critical probability.

I’ve marked the theoretical critical probability, 1/(n − 1), with a red asterisk, and I’ve plotted in
red a “critical function” which I now describe. First though, note that the fit is not as bad as
first appears. a) The section of the blue curve directly above the red asterisk leading up to the
spike (and the corresponding sections of the yellow curves) is an artefact of the plot and could be
blanked out: as it is the spike is misleadingly shown as the highest point on the blue curve, but
calculations for probabilities closer to the critical probability would give higher peaks closer to it.
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b) The height of the red curve is arbitrary and could be adjusted for a better fit.

The red curve is plotted by
aCriticalFunction(gamma1,gamma2,n)

and essentially shows
(pc − p)−γ1 p < pc

(p − pc)
−γ2 p > pc

(The critical probability pc = 1/(n − 1) and for n = 1024, I used gamma1 = 0.24 = gamma2.)

“Critical exponents” such as γ1 and γ2 figure importantly in some phase transitions, so the red
additions to the plot are an introduction to this idea.

31. Point-to-point resistance in a network. We move to a more physical example by replacing
arbitrary graphs by crystal lattices and by measuring point-to-point resistances instead of point-
to-point distances. This discussion is based on the Excursion Kirchoff lattices of Part III.

Here we will construct partial lattices, i.e., lattices with some links missing, and we will find re-
sistances between not just two specified endpoints but between all pairs of possible endpoints.
Averages over all such point-to-point resistances will be our statistical quantity.

As an example, let’s build up the following resistance network, edge by edge, with the edges in the
order 1 to 6 as shown.

1

1
324

5

6

0 1 2
0

The coordinates of each node are two numbers in this 2-dimensional lattice. The edges (resistors,
all of the same resistance), in order of insertion, are thus

edges
1 0 2 0
1 0 1 1
2 0 2 1
0 0 0 1
0 0 1 0
1 1 2 0

We can suppose that these edges were generated from the full set of seven edges for crystal2(2,1,4)
(see Excursion Kirchoff lattice) using

edges = edgesWithProb(p,crystal2(2,1,4))
and probability p = 6/7.

This gives an example of the partial lattice mentioned in the first paragraph: edge 1011 is missing
from the full lattice.

As in the previous Note, we’ll build up the network one edge at a time and maintain connected
components in a cell array connCompCell, initially empty, using

connCompCell = addEdge2connComp(edge,connCompCell)

(Notice that I’m re-using some of the function names from the previous Note for corresponding
operations on this resistance network: the MATLAB functions with these same names are not the
same. Ditto for the name connCompCell.)

Here is what happens on the first iteration
connCompCell = cell(0,3)
connCompCell = addEdge2connComp(edges(1,:),connCompCell)
connCompCell{:}
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nodeSet edgeSet resistMatrix
1 0 1 0 2 0 0 1
2 0 0 0

Here, nodeSet and edgeSet play the same roles as their namesakes in Note 30, but each is doubled
because of the 2-dimensional coordinates.

On the other hand, resistMatrix, while describing connectivity, also gives the node-to-node re-
sistance. In this case there is one resistor of value 1 (as in Excursion Kirchoff lattice we suppose
every edge to be a resistor of value 1) between node 1 0 and node 2 0.

The second iteration
connCompCell = addEdge2connComp(edges(2,:),connCompCell)
connCompCell{:}

adds edge 1 0 1 1 to this

nodeSet edgeSet resistMatrix
2 0 1 0 2 0 0 1 2
1 0 1 0 1 1 0 0 1
1 1 0 0 0

and you can confirm that the resistance from 1 0 to 2 0 is 1, as is the resistance from 1 0 to 1 1,
but the two-edge resistance from 2 0 to 1 1 is 2, as the matrix shows.

We see that the nodeSet may be rearranged, that it doesn’t matter in which direction we take the
resistance, and that the order of the resistMatrix rows and columns is determined by the order
of nodes in nodeSet.

A third iteration
connCompCell = addEdge2connComp(edges(3,:),connCompCell)
connCompCell{:}

grows the connected component by one more node and edge

nodeSet edgeSet resistMatrix
1 1 1 0 2 0 0 1 2 3
1 0 1 0 1 1 0 0 1 2
2 0 2 0 2 1 0 0 0 1
2 1 0 0 0 0

but the fourth iteration
connCompCell = addEdge2connComp(edges(4,:),connCompCell)
connCompCell{:}

starts a second connected component

nodeSet edgeSet resistMatrix
1 1 1 0 2 0 0 1 2 3
1 0 1 0 1 1 0 0 1 2
2 0 2 0 2 1 0 0 0 1
2 1 0 0 0 0

0 0 0 0 0 1 0 1
0 1 0 0

The fifth iteration merges the two connected components
connCompCell = addEdge2connComp(edges(5,:),connCompCell)
connCompCell{:}
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nodeSet edgeSet resistMatrix
0 1 0 0 0 1 0 1 2 3 3 4
0 0 0 0 1 0 0 0 1 2 2 3
1 0 1 0 2 0 0 0 0 1 1 2
1 1 1 0 1 1 0 0 0 0 2 3
2 0 2 0 2 1 0 0 0 0 0 1
2 1 0 0 0 0 0 0

Finally, the sixth iteration closes a cycle
connCompCell = addEdge2connComp(edges(6,:),connCompCell)
connCompCell{}

nodeSet edgeSet resistMatrix
0 0 0 0 0 1 0 1 1 7/4 7/4 2
0 1 0 0 1 0 0 0 2 11/4 11/4 3
1 1 1 0 2 0 0 0 0 3/4 3/4 1
2 0 1 0 1 1 0 0 0 0 1 3/4
1 1 2 0 2 1 0 0 0 0 0 3/4
2 1 1 1 2 1 0 0 0 0 0 0

From this sequence of adding edges one at a time you can see that resistMatrix might be calcu-
lated afresh each step using buildSolveKirchoff() from Excursion Kirchoff lattice. The structure,
and indeed the code, of addEdge2connComp() is almost identical to its namesake in Note 30, dele-
gating tasks respectively to

addEntry()
extendEntry()
insertEdge()
mergeEntries()

(each of which does quite different things from its namesake in Note 30. Of these, only insertEdge()
actually uses buildSolveKirchoff(). Functions extendEntry() and mergeEntries() can actu-
ally recombine existing resistance matrices, and addEntry() just produces the starting matrix

(

1 0
0 0

)

.)

Now we can build the resistance matrix between all pairs of nodes in a partial-lattice subset of a
full 2-D lattice, with the edges selected randomly according to a given probability. The average
resistance over all pairs can be found from this.

The next step is to choose a set of different probabilities and to repeat the above procedure enough
times for each probability to get a meaningful average of averages and the corresponding standard
deviations. My code had problems with the higher probabilities, but here is a result for a range of
ten probabilities each repeated 1000 times on a 4-by-3 lattice of squares.
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I ran it four times to cover the range. We see a peak in average resistance at a critical probability,
and behaviour to either side which could be consistent with critical exponents as in Note 30.

32. Van der Waals. If you squeeze a gas enough, its molecules compress until it is indistinguishable
from a liquid. In this Note we look at a classical adjustment to the Ideal Gas Law which limits the
compressibility and allows molecules to attract each other. This is not a microscopic model and so
this Note is not a probabilistic simulation, unlike the other Notes in this Part.

The Ideal Gas Law
PV = NkBT

can be written for specific volume v = V/N

Pv = kBT

The van der Waals adjustment is 1) to limit the smallest volume possible for the whole gas to
V0 = Nb (i.e., b is the smallest volume per molecule) and 2) to reduce the pressure by an attractive
force a/v2 (which is inversely proportional to the specific volume squared because the closer the
molecules are squeezed together the stronger their mutual attraction can be, and, the attraction
being between pairs of molecules, there is one volume factor for each molecule).

The van der Waals gas law is thus

(P − a

v2
)(v − b) = kBT

This involves two parameters, but fortunately the equation can be rearranged into a dimensionless
form. Here is what the isotherms (constant-temperature lines) look like.
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We see that below a certain temperature the isotherms do a dip while above it they do not.
This is called the critical temperature. The critical isotherm (the P -v line at this temperature)
contains a critical point which is characterized by slopevP = 0 on the line at this point and also by
slopevslopevP = 0 because it is a “point of inflection” of the curve (see Excursion point of inflection
for this Part).

The critical point fixes each of temperature, T = Tc, volume, v = vc, and pressure, P = Pc. Setting
to zero the slopes at T = Tc, slopevP and slope2

vP = slopevslopevP , gives

vc = 3b

kBTc =
8

27

a

b

Pc =
a

27b2

(and also the dimensionless ratio
kBTc

Pcvc
=

8

3

as opposed to 1 for an Ideal Gas).

This calculation allows us to convert the van der Waals equation into dimensionless units, T/TC , v/vc

and P/Pc, and these are what I plotted above:

P =
8T

3v − 1
− 3

v2

with the critical point (T, v, P ) = (1, 1, 1).

There is a problem with these van der Waals curves. Below the critical temperature, volume
is not a function of pressure: there are places on each subcritical isotherm where two different
volumes are shown for one pressure. This is a region of phase transition, and the isotherms must
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be corrected so that pressure is constant. For example, water boils at constant temperature and
pressure (T = 100oC at sea-level pressure of 1 atmosphere).

The change to the van der Waals’ isotherms to make them realistic is called the Maxwell construc-
tion. It consists of replacing the S-shaped part of each isotherm by a constant-P (horizontal) line
between the two volumes v1 and v2 which give rise to the same pressure.

To choose those two volumes, Maxwell specified that the overall energy should not be changed by
his construction. That is, the area, Pv (which is energy), between the S-curve and the horizontal
line should total zero: the positive S-curve-to-Maxwell area at lower volumes should equal the
negative S-curve-to-Maxwell area at higher volumes.

So we have two expressions whose zeros we must find with respect to two variables v1 and v2:

antislopevP from v1 to v2

P (v2) − P (v1)

The Excursion Newton’s method 2 of Part I tells us how to solve these once we’ve worked out the
antislope.
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Here is the result. The van der Waals’ isotherms are shown as blue lines. The Maxwell construction
for each is shown as a red horizontal line. Look at the lowest blue and lowest red lines as an example:
you should see that the blue-below-red area on the left equals the red-below-blue area on the right,
so the energies represented by the two curves are the same.

Here are the same data shown as a 3-D PVT surface.
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The phase transition region has been outlined in red.

The way to interpret this region is as a mixture of two phases, liquid and gas, all at the same pressure
for any given temperature: at lower volumes the mixture is mostly liquid; at higher volumes it is
mostly gas.

At still lower volumes, below the transition region, the pressure shoots up immensely as the volume
decreases (or, it takes immense squeeze to reduce the volume a little): the compressibility is small,
that of a liquid. At volumes above the transition region, pressure does not vary much: the gas is
very compressible.

The critical point is the top of the red loop marking the transition region. Pressure is fairly high
here and the substance has been squeezed to close to its minimum volume: the distinction between
gas and liquid is lost at and above the critical temperature.

We can study the compressibility along the isotherms (isothermal compressibility) near the critical
point. The compressibility varies inversely as the slopevP because the steeper the slope the harder
it is to squeeze the substance. It also varies inversely as the volume because compressibility should
be per unit volume or else it becomes arbitrarily big with arbitrarily large volumes.

κ =
slopeP v

v
=

1

v slopevP

Thus the smaller the slope the higher the compressibility, and at the critical point where slopevP = 0
it is infinite. As we move away from the critical temperature, staying on the red boundary of the
transition region—on either the low-volume or high-volume sides—the slope gets steeper and the
compressibility smaller.
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We can see that this plot behaves near the critical temperature something like the critical exponent
of Note 30.

33. Sublimation. The closest I can come to a microscopic simulation of an ordinary phase
transition is that from a crystal lattice to a gas: the direct solid-to-gas transition as shown by dry
ice or by snow on a sunny spring day.

The critical probability in this simulation will also be a critical temperature, from the relationship

pc =
1

Z
e−∆E/(kBTc)

with Z the partition function and ∆E the microscopic energy at which the phase transition takes
place.

The original solid takes the form of a two-dimensional lattice with square symmetry and cyclic
boundary conditions. This is represented as an array of 0s and 1s, with 1 meaning a molecule is
present at the site and a 0 meaning the molecule has left the site and become a molecule in the
gas. The gas is not represented because it is assumed to be elsewhere.

Thus a 3-by-3 crystal would appear as
1 1 1
1 1 1
1 1 1

We will need to count the number of nearest neighbours for each site because we are going to
assume a molecule is held in place by the combined restraint of its nearest neighbours, each acting
on it with a potential energy ǫ. Non-nearest neighbours are supposed too far away to have any
influence.

The numbers of n.n. (nearest-neighbours) for the above lattice are

4 4 4
4 4 4
4 4 4

We can see why the centre site has 4 n.n—the sites to its left, right, up and down are all occupied.
The cyclic boundary conditions also make this true of every other site. For example, site (1,1) has
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n.n. at sites (1,2), (2,1), (1,3) and (3,1). Or, for an n-by-n crystal, these neighbours will be at sites
(1,2), (2,1), (1,n) and (n,1).

Now suppose the centre molecule sublimes, i.e., leaves the crystal to join the vapour. We have

sqlatt numNN
1 1 1 4 3 4
1 0 1 3 3
1 1 1 4 3 4

(where we could have put a 4 in the centre position of numNN because that site has 4 occupied n.n.
sites, but I left the entry blank because that molecule has gone and thereby left the calculations).

The binding energy at eacn site is
∆E = numNN× ǫ

so that a site with 4n.n. has ∆E = 4ǫ and so on. A site with 0 n.n.s has ∆E = 0 and so the
molecule is free to leave the lattice (probability of leaving = 1) and we suppose it has done so.

Thus we’ll need to calculate the probability that each molecule leaves the crystal (sublimes). For
the second example above the probabilities are

p ∝ exp



−




4 3 4
3 0 3
4 3 4





ǫ

kBT





which depends on the temperature. To get a semirealistic idea of temperatures which may be
involved, we’ll take ǫ to be 10.4 meV, an energy which could be of the right magnitude for Argon.

The “proportional to”, ∝, in the above equation becomes = when we divide by the partition
function, which also depends on the number of nearest neighbours. If we take the numerator of the
probability to be, say,

numerator = exp(− 3ǫ
kBT )

for the case that a molecule with 3n.n. has acquired sufficient energy (3ǫ) to escape, then the other
case is that it remains at the bottom of the potential well (energy 0), which is exp(0) = 1; so the
denominator

denominator = 1 + numerator

and the probability of escape is

p =
exp− 3ǫ

kBT

exp 0 + exp− 3ǫ
kBT

At a given temperature, starting with a solid crystal, we calculate the probabilities of escape
from each site and iterate the process of simulating escapes and rebuilding the lattice without the
sublimed molecules until we reach equilibrium.

We do this sufficiently often at each of a range of temperatures that reliable averages and standard
deviations of the proportion of occupied sites can be built up and plotted.

Here are those combined plots for “argon” (ǫ = 10.4 meV) at temperatures from 50 to 300oK with
100 iterations at each temperature for a) 3-by-3, b) 11-by-11 and c) 21-by-21 lattices:

prpsLeft = sublimLoops(3,3,10.42,[50:10:300],100)
prpsLeft = sublimLoops(11,11,10.42,[50:10:300],100)
prpsLeft = sublimLoops(21,21,10.42,[50:10:300],100)
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The sloppy average (red curve) and the largest spread of standard deviation (green curves) are
the 3-by-3 lattice. The averages for the 11-by-11 and the 21-by-21 are indistinguishable, but the
standard deviations are tighter in the latter case.

In this kind of phase transition, from 100 % to 0 % solid, nothing obviously goes “to infinity”
the way the critical exponents showed in previous Notes. What actually does go “to infinity” in
this transition is the inverse of the rate of increase of internal energy (and hence temperature) of
the solid as heat is poured in: the model should include various intermediate levels of microscopic
energy for each molecule below the actual point of sublimation. We would then expect a region of
zero change in these energy levels at the highest excited state of the solid: the sublimation step no
longer contributes energy to the solid. I do not understand this well enough to write the programs.

34. Ferromagnets. Two bar magnets placed side by side will line up “north” to “south”. This
is their configuration of least energy: you must force them into any other configuration, You’ll do
the most work trying to align them “north” to “north” (equivalently “south” to “south”). The
preferred alignment is shown on the left (and labelled “paramagnet”).
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b) Ferromagneta) Paramagnet

S N

N S

Atoms often behave as quantum bar magnets, owing to the spins of their electrons (and indeed of
the protons in their nucleii): classical electromagnetism shows that a circulating charge will have a
magnetic effect, and a “spinning” electron or proton does too—opposite in sign for the two types
of particle because of their opposite charges.

A paramagnet consists of atoms aligned the way the bar magnets are in the figure. For reasons of
the configuration of the electrons around the atoms of some elements, notably iron, ferromagnets
prefer the “north” to “north” alignment of neighbouring atoms, as shown on the right of the figure:
here the “north”–“south” bar magnet is symbolized as an arrow pointing “north”. These arrows
can also represent the spin of the atom, with the caveat that if the atomic magnet results from a
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negative charge then the spin is in the opposite direction from the “south”-to-“north” arrow.

Electron- and proton-spin being a quantum effect, these arrows have only two relative alignments,
supporting or opposing. This is unlike the infinity of directions we can point a bar magnet in
relative to another bar magnet.

Consequently, it is easy to write down the energy of interaction of two spins σ1 and σ2

−Jσ1σ2

where σ1 = 1 for spin “up” and −1 for spin “down” and where J is the energy of interaction, positive
for a ferromagnet and negative for a paramagnet. These signs will favour opposing alignment for
paramagnets and supporting alignments for ferromagnets.

A paramagnet does not become magnetized except under the influence of an external magnet which
overcomes the tendency to opposing alignment: if the some of the spins that point down, say, are
coerced to point up, then the body will be magnetized in its own right. This disappears on removing
the external influence.

Under an external magnetic “field”, H, each spin σ has an additional energy

µHσ

aligning it with the field, where µ is a parameter analogous to J . In the simulation I take µH to
be a single parameter.

A ferromagnet, on the other hand, magnetizes spontaneously, without external influence. But if the
temperature is increased, thermal agitation will overcome this by averaging out the spin directions.
So we can expect a temperature-dependent phase transition from ferromagnet to paramagnet.

An external magnetic field will modify this behaviour but only slightly unless the field is enormous.

We can simulate all this in a two-dimensional lattice of square symmetry with the simplifying sup-
position that only nearest-neighbour spins interact via the −J term—just as we did for sublimation
in the previous Note. The four nearest-neighbours of any site in the lattice combine in five possible
ways to give the interaction energy.

nn configuration energy −Jσnn

4 spins up −4J
3 −2J
2 −0J
1 2J
0 4J

shown assuming the spin at the site itself is up (change the signs if it is down). I’ll take J = 3×11.9
meV in an attempt to make the 2-D simulation reproduce the 1043oK transition temperature for
the 3-D “body-centred-cubic” lattice of iron.

As in the sublimation simulation of the previous Note, I used periodic boundary conditions, so
every site is effectively in the interior of the lattice and there are no surface effects. (Besides, it’s
easier to code.)

The probability of a site flipping its spin to up is given by the interaction energy and is proportional
to

numerator = exp((Jσnn − µH)σ/(kBT ))

Since the only alternative, flipping to spin down, is the inverse of this, the partition function is

denominator = numerator + 1/numerator
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and we have probability

p = numerator/denominator

As in the sublimation simulation we loop over a range of temperatures, iterating each temperature
enough to gather averages and standard deviations. Before we take data at any temperature we
must find the equilibrium for that temperature, which costs additional iterations in the innermost
loop of the simulation.

The resulting magnetization is the number of spins up less the number of spins down.
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The solid lines in this figure show magnetization vs. temperature with no external field. The
sublimation starts with either all spins up or all spins down, hence the two branches. These branches
are quite abruptly pulled down/up to zero magnetization at the transition (Curie) temperature:
we can almost feel in these curves the “entropic force” countering the spontaneous magnetization.

(Results from the 21-by-21 lattice are shown. A 41-by-41 lattice has indistinguishable average
results—the red curves—but the standard deviations have about half the spread—the green curves.)

The dashed lines show what happens when an external magnetic field is applied: red (average
magnetization) and green (± 1 standard deviation) if the field is “up”; magenta (average) and
yellow (± 1 standard deviation) if the field is “down”.

The usual situation is given by an applied µH of 0.01meV: the magnetization starts, at 0oK, at
saturation in whichever direction was specified by the initial conditions, then drops/rises to a curve
which appears to depend on the temperature inversely as ±(T − Tc) with the ± depending on the
direction of the applied field.

Applied fields ten and a hundred times larger than this are clearly slower to respond to increasing
temperature.

35. Particle individuality and Bose-Einstein condensation. Quantum particles have no indi-
viduality (to answer the final question of Excursion Spin 3/2 in Week 6). This is why a linear
combination of two or more particles is just as good as any of the particles by itself.

This is significant for multiple particles occupying a given set of particle states. For example, two
individual particles, each allowed four states, could jointly have any one of the following sixteen
states.
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state for
particle 1

0 1 2 3
0 0 1 2 3

state for 1 4 5 6 7
particle 2 2 8 9 10 11

3 12 13 14 15

But this distinguishes between, say, state 6 (in which particle 1 is in state 2 and particle 2 is in
state 1) and state 9 (in which particle 1 is in state 1 and particle 2 is in state 2).

For nonindividual particles, these two situations are not different. So such particles, which include
all sufficiently small physical objects, can really jointly have only the following ten states.

state for
particle 1

0 1 2 3
0 0 1 3 6

state for 1 2 4 7
particle 2 2 5 8

3 9

where we’ve arbitrarily used the upper triangle of the matrix.

Note that the joint states are enumerated as nested triangles. Addressing for these elements of the
matrix (i.e., the mappings from the states j = 0, .., 3 for particle 1 and k = 0, .., 3 for particle 2 to
the joint state a = 0, .., 9) is the topic of Excursion Simplex arrays of Week iv: a = k + ∆j where
∆j is the jth triangular number (∆0 = 0).

For p particles this construct becomes p-dimensional, e.g., p = 3 and, again, s = 4 states
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states for
particle 3

0

state for
particle 1

0 1 2 3
0 0 1 4 10

state for 1 2 5 11
particle 2 2 7 13

3 16

1

state for
particle 1

0 1 2 3
0

state for 1 3 6 12
particle 2 2 8 14

3 17

2

state for
particle 1

0 1 2 3
0

state for 1
particle 2 2 9 15

3 18

3

state for
particle 1

0 1 2 3
0

state for 1
particle 2 2

3 19

in which a = ℓ + ∆k + +3j for the indices (j, k, ℓ) for the states of particles (1,2,3).
In the general case of p particles and s states, we will need the reverse calculation: given a find
j, k, ℓ, .... The recursive function

indices = simploc2indx(p,Sp,a,indices)
will do this, adding one index per invocation: indices is initially an empty vector, a is the
input address as above, p is the number of dimensions (particles) and Sp is enough p-dimensional
simplex numbers to reach the address a (i.e., triangular numbers for p = 2, tetrahedral numbers
for p = 3, etc.; e.g., if s = 4, S1 = 1, 2, 3; S2 = 1, 3, 6;S3 = 1, 4, 10; etc.) After s invocations of
simploc2indx() (s− 1 of these recursive) indices will have s state numbers identifying uniquely
the location addressed by a. For example

simploc2indx(3,[1,4,10,20,35,56],43,zeros(1,0))
gives

5 3 2

as the indices for address 43.

The states represented above either as single indices, say 14, or as a set of indices, say (equivalently)
(3,2,1) for three particles, would be quantum states. For example, in one physical dimension, the
(3,2,1) could represent the combination of a particle with wavenumber 4, a particle with wavenum-
ber 3 and a third particle with wavenumber 2. (I’ve added a 1 to each index in (3,2,1) because the
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smallest wavenumber must be 1 not 0 so the state 0 with 3-particle triple (0,0,0) must represent
the three wavenumbers (1,1,1).)

The energy of this state 14, or 3-particle indices (3,2,1), or 3-particle wavenumber (4,3,2), would
be ǫ0(4

2 + 32 + 22) where we square the wavenumbers and multiply by some constant ǫ0 to get the
energy of each particle in state 14.

Because systems of one physical dimension do not (usually) allow phase transitions (see the Ex-
cursions), we must be prepared to go to higher physical dimensions. Let’s take the 2-particle state
8, or 2-particle indices (3,2), and think about two physical dimensions. Each of these indices now
labels a particle in a 2-dimensional box and so having two wavenumbers, νx and νy.

In Week iii the Excursion Z-order tells us an easy way of representing two numbers by one: interleave
the bits. Or, to go from one number to two, do this backwards. Here’s how we turn 3 into two
wavenumbers.

3  =  0  0  1  1
x−dimension    0  1  =  1
y−dimension    0  1  =  1

And 2.

2  =  0  0  1  0
x−dimension    0  1  =  1
y−dimension    0  0  =  0

So 3 is the 2-dimensional state with wave numbers (2,2) (remember: (1,1) plus 1) and 2 is the
2-dimensional state with wave numbers (2,1). The energy of state 8, or 2-particle indices (3,2), or
2-D 2-particle wavenumbers (2,2,2,1) is ǫ0(2

2 + 22 + 22 + 12).

This can be extended to any number of physical dimensions, although we’ll stop at 2. Thus we
can model any number of different states, s, for each of p particles moving in d dimensions, using
d-dimensional Z-order to unpack each of p indices which can be found from an overall single state
index using up to s and p p-dimensional simplex numbers Sp

s .

(One caveat on Z-order: it will be best if s is a power of 2 or else the Peano curve—see Excursion
Z-order of Week iii—will fall partly outside the region of allowed states and some of the Z-order
results will have to be filtered out as irrelevant.)

Although we are focussing on bosons in this Note, we can easily include fermions in the picture. The
difference between the two was stated in Week 5, Notes 8 and 9, in terms of whether the amplitudes
must be added or subtracted, before squaring the results to get probabilities, on collision of two
particles.

The consequence of this is that two fermions cannot occupy the same state while two bosons can.

It is easy to use simplex arrays to generate wavenumbers for fermions. For the example of three
particles, just add (3,2,1) to the generated 3-particle indices. For instance, indices (0,0,0), which
in one physical dimension give wavenumbers (1,1,1) for bosons, will give wavenumbers (3,2,1) for
fermions. All three fermions will be in different states. And similarly for any other of the generated
3-particle indices.

Energies are calculated as we did for bosons, and Z-order is applied in the same way if the particle
moves in two or more physical dimensions.

One more thing about energy: in addition to the energies calculated above we subtract a term
µp where p is the number of particles (usually called N in the literature) and µ is the chemical
potential for those particles (not to be confused with the magnetic µ of the previous Note). For
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fermions, µ is also called the Fermi energy and ǫ0 may be bigger or smaller than µ. For bosons, µ
must be smaller, often much smaller, than ǫ0.

The probability of being in a combined state, say 3-particle wavenumbers (3,2,1) for particles
moving in one dimension, thus has numerator

exp
3µ − ǫ0(3

2 + 22 + 12)

kBT

and denominator Z = the sum of these numerators over all possible combined states. This could
be calculated by a MATLAB function

indxprbs = probsFBpartDims(fb,dimens,numParts,T,mu,e0)
as in the example

indxprbs = probsFBpartDims(’boson’,3,3,100,100,300)
Here is the resulting indxprbs, giving the probabilities for each triple (numParts = 3 particles) of
wavenumbers:

state state state prob
1 1 1 0.2662
2 1 1 0.1880
2 2 1 0.1327
2 2 2 0.0937
3 1 1 0.1052
3 2 1 0.0743
3 2 2 0.0525
3 3 1 0.0416
3 3 2 0.0294
3 3 3 0.0164

Here the inputs are largely self-evident: the values for µ and ǫ0 (100 and 300, respectively) are in
meV and the actual numbers are less important than the ratio; and the dimens parameter, 3, says
there are three one-dimensional states. (By contrast, 3 × 3 two-dimensional states, say, would be
indicated by the vector [3,3].)

The output is the set of all 3-particle wavenumbers, each together with its calculated probability.
So 3-wavenumbers (1,1,1) have probability 0.2662 in this calculation and so on. I’ve labelled the
columns “state” three times—for particle 1, particle 2 and particle 3—and “prob”.

Our task now is to move from combined states of all particles to single states for any one particle
and to calculate the expected occupancy for each state, i.e., how many particles are occupying that
state. This number should be 1 or less for fermions but is not constrained for bosons.

To find the expected occupancies for each state we must rearrange and aggregate the indxprbs
calculated above.

Here is the process in three steps, illustrated for the three 3-state particle data above. First, we
expand each row into a row for each different state in that row and record the multiplicity of that
state, i.e., the number of times it appears in the row. We focus for clarity in the following on state
1 of any of the above particles, but must of course extend the thinking to all particles for the full
calculations.
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state state state prob state mult prob
1 1 1 0.2662 → 1 3 0.2662
2 1 1 0.1880 → 1 2 0.1880

2 1 0.1880
2 2 1 0.1327 → 1 1 0.1327

2 2 0.1327
:
3 1 1 0.1052 → 1 2 0.1052

3 1 0.1052
3 2 1 0.0743 → 1 1 0.0743

2 1 0.0743
3 1 0.0743

3 3 1 0.0416 → 1 1 0.0416
3 2 0.0416

The second step is to aggregate: grouping by state and multiplicity, sum the probabilities.

state mult prob
1 3 0.2662
1 2 0.2932 = 0.1880 + 0.1052
1 1 0.2486 = 0.1327 + 0.0743 + 0.0416

And the third step is to multiply mult×prob and sum to get the expected occupancy for each state.

state ex.occ.
1 1.6336

Similarly from the data in indxprbs above we get the expected occupancy for states 2 and 3 so
the final result is

state ex.occ.
1 1.6336
2 0.9433
3 0.4232

Note that these expected occupancies sum to 3, the total number of particles, as they should.

The MATLAB functions for these three steps could be
1) statesMult = findMultiplicDims(statesRel,numStates,numDims)
(taking the above example to numDims, which, if more than one dimension, requires each state to
be a vector of that many dimensions). This could use a subroutine which expands each row of
indxprbs before taking the union of all into the final result.
2) occ = equivPlus(statesMult,numDims+1)
which groups the rows of statesMult by equal values of the first numDims+1 columns—do this by
sorting—and sums the numbers in the numDims + 2nd column within each of these groups. (This
is a special case of “equivalence reduction” operation on relations, hence its name.)
3) equivOcc = equivHorzWeight(occ,numDims,numDims+1,numDims+2)
which multiplies the numDims + 1st and numDims + 2nd columns of occ then sums the results
within groupings which have all the same value of the first numDims columns. (This is also derived
from more general relational operations.)

Putting all this together, here is a plot for 3 bosons in a 2-dimensional box of 8 × 8 states, with
µ = 100meV and ǫ0 = 300meV as before, over a range of temperatures from 1oK to 100oK paying
close attention to the lower part of the range. It was produced by the invocation

occupancies = occsFBpartDims(’boson’,[8,8],3,[1:9,10:10:100],100,300)
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Since this code is also capable of finding fermion occupancies, here are 5 fermions in a 1-dimensional
arrangement of 10 states with µ = 10meV and ǫ) = 30meV (it’s the ratio that counts) for a tem-
perature range from 10 to 1000oK, again focussing on the lower part of the range.

occupancies = occsFBpartDims(’fermion’,10,5,[10:10:1000,200:100:1000],10,30)
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In the fermion run, we can see the saturation of the lower-energy states at low temperature, with
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each state having an occupancy of 1 and no particle left over for higher energies.

In the boson run, we can see all the particles condensing into the lowest-energy state(s). There
appears to be a definite phase transition. This is not seen in the 1-dimensional case, which just
gives a spike at low T and low E.

36. Summary

(These notes show the trees. Try to see the forest!)

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. Write the MATLAB functions leading up to the sequences of average distances in Note 30
and confirm the numbers there.

2. In Note 30 why do the nodes get closer together as we add more edges?

3. The random graphs of Note 30 were explored mathematically by Paul Erdös and Alfréd Rényi
in 1960 [ER60]. They discuss five different phases in random graphs of n nodes and N(n)
edges (N is a function of n). Their results are hard to describe in imprecise language, and are
derived in terms of probabilities approaching 1 as n approaches infinity (“almost surely”).
One observation is that if N is about n/2 a “giant” component appears with all other com-
ponents relatively small, which “melt” (larger ones first) into the giant.
Another is that if N is about (1/2)nlog n we almost surely get a connected graph. Look up
their paper and use it to improve the simulations of Note 30.

4. Critical exponents, first mentioned in Note 30, crop up explicitly in the next two Notes and
implicitly in the subsequent Notes in this Part. They are extensively discussed by Robert-
son [Rob93] (§6.4, defined p.288) and by Schwable [Sch06] (pp.336 and 259 give tables of
possibilities).

5. Build addEdge2connComp() for resistance networks (Note 31) and use it to build
resistancesProbDist() and then resistancesProbLoop() to simulate partial networks
with various probabilities of forming edges.

6. Percolation. Reverting to resistances between two given points in a network, use code from
the previous Excursion to simulate percolation of an electric current through a partial lattice
from, say, a point on top to a point on the bottom of the network: as edges are added (or
as the probability of an edge being present increases) a situation is reached in which the two
points become connected and the current is no longer zero. See [Sch06, §7.5]

7. Point of inflection. The figure shows two cubic curves (in black). The

−2 −1 0 1 2
−15

−10

−5

0

5

10

15
(x−1)x(x+1) and slopes

x

y

 

 

−2 −1 0 1 2
−15

−10

−5

0

5

10

15
x3 and slopes

x

y

 

 
(x−1)x(x+1)
slope

slope2

x3

slope

slope2

27



second has a “point of inflection” where both slopexy and slopexslopexy equal zero. The
first does not, because the two slopes equal zero at different values of x. Calculate the slope
and slope2 for (x − 1)x(x + 1) and for x3 and show that the second has, but the first has
not, a point of inflection by this definition. Examine the black curves to see what a point of
inflection looks like. What is the significance of slope2 = 0?

8. For T = Tc find the slopes slopevP and slope2
vP where

P =
kbT

3v − 1
− 3

v2

(Note 32) and show that the critical point (Tc, vc, Pc) is

vc = 3b

kBTc =
8

27

a

b

Pc =
a

27b2
,

that the dimensionless ratio is 8/3 as given in Note 32, and that the dimensionless equation
is that given in Note 32. (Or see [Sch06, p.246]).

9. Why would the Gibbs free energy (Note 20, Part II) be the most useful thermodynamic
function to describe phase transitions?

10. Look up Johannes Diderik van der Waals (1837–1923) and James Clerk Maxwell’s (1831–1879)
fix of the van der Waals isotherms (Note 32).

11. Write the programs in Note 32 a) to plot the dimensionless van der Waals’ isotherms,
b) to calculate and plot the Maxwell construction, and c) to calculate and plot the isothermal
compression near the critical point.

12. Zemansky [Zem57, pp.204–5] shows three-phase PVT diagrams which extend the theory of
Note 32, as well as experimental PVT diagrams for water and for helium. How can the
additional aspects be explained?

13. Write the program sublimLoops() to calculate the sublimation curves of Note 33. It could
be based on the function

[numLeft,sqlatt0] = sublimEquilib(sqlatt,eps,T)
for the square-symmetric lattice sqlatt (which becomes sqlatt0) at temperature T with the
single n.n. energy threshold eps. (numLeft is the number of crystal lattice sites still occupied
at equilibrium.)

14. In Note 34 the table of interaction energies vs. nearest-neighbour configurations shows the
energy increasing by 2J for each additional neighbour whose spin turns down. Why 2?

15. The numbers I’ve used in Notes 33 and 34 are from [Kit66]: p.81 for ǫ = 10.4 meV for argon
(converted from ergs), and pp. 458, 461 for J = 11.9 meV and Tc = 1043oK (the “Curie
temperature” for iron), respectively. Check this against other sources.

16. Write the program to simulate the ferromagnetic phase transition in 2-D. Mine was
[avgMag,stdMag,fail] = ferroMbyNequilVsTH(Tmprturs,muH,m,n,tol,ud)

which gives averages and standard deviations of magnetization versus the set of temperatures
in Tmprturs, for an m by n lattice initially magnetized ud = 1 (up) or 0 (down) with ap-
plied field muH. The parameter tol is a tolerance specifying equilibrium, which the program
sometimes fails to reach, so fail reports the circumstances—in this case the attempt to find

28



equilibrium is pushed to 1000 times and the final result accepted anyway. Other parameters,
such as J , are hard-wired into the code.
The program invokes

[mag,noEquil] = ferroMbyNequilAtTH(T,muH,m,n,maxRepeats,tol,ud)
which finds equilibrium at a given temperature T, trying to achieve equilibrium in maxRepeats
= 10 attempts and otherwise reporting through noEquil, which becomes aggregated into fail
in the upper program. It also invokes functions to calculate probabilities for that temperature
and field strength, and to find the configuration of spins across the lattice.
Note that failure to reach equilibrium happens increasingly as temperatures rise through
1000oK and almost always above that, but does not seem to spoil the results.
Compare the curves to experimental results.
Rewrite the simulation for a body-centred cubic (b.c.c.) lattice in three dimensions.

17. The simulation of the previous Excursion can be altered to start with zero magnetization and
show the emergence of spontaneous magnetization at temperatures below the Curie point.
A checkerboard, alternating up- with down-spins, is not the way to start, though: show
that each iteration looking for equilibrium will just alternate the checkerboard—i.e., up sites
become down sites and vice-versa in the next iteration. This will stop the equilibrium-seeking
process artificially. Even with a randomized start, checkerboard regions can evolve, finding
an artifical “equilibrium” prematurely. What can be done?

18. Show that there can be no phase transition in one dimension: think of, say, solidification,
or spontaneous magnetization, as the onset of a long-range ordering or correlation among
the molecules or atoms of the substance, across a body with effectively an infinite number
of molecules of atoms; then think about the requirement to break this correlation in 1-D as
opposed to 2-D or 3-D. [Wan87, p.4] but see [Rob93, p.327].
The energy model for magnetism given in Note 34 was suggested by Wilhelm Lenz (1920) to
his doctoral student Ernst Ising, who solved it exactly in one dimension (1925) and concluded
from its failure to show a phase transition that the interaction term was wrong [Rob93, p.371].
It was subsequently solved exactly in two dimensions with great effort by Lars Onsager (1942):
Wannier [Wan87, ch.16] streamlines this original solution and Robertson [Rob93, §§7.6–8]
gives the modern analysis based on mathematical breakthroughs in combinatorics.

19. Study and compare the mathematical derivations of Bose-Einstein statistics and Fermi-Dirac
statistics, say in [Wan87, §§9.2, 9.4] and [Rob93, §§4.2–5, 4.7]. Note the restrictions on µ
introduced in Note 35.

20. Write the programs outlined in Note 35 to compute the expected occupancies of energy states
for bosons and for fermions in a specified number of dimensions, and experiment with them.

21. Infinities. In the approximate language of slopes, the Ehrenfest classification of phase tran-
sitions calls a transition “nth-order” if at least one of the nth slopes of its energy dependence
on temperature is discontinuous at the transition while all n − 1st and lower slopes are con-
tinuous [Sch06, p.332]. Study Zemansky’s [Zem57, §§15.1, 15.6] discussions of first-order and
second-order transitions and classify the transitions in these Notes accordingly.

22. Gibbs’ paradox. Why must the classical (pre-relativity, pre-quantum) partition function
be divided by p! where p is the number of particles? Willard Gibbs was forced to do this to
get the entropy correct for ideal gases, although without the p! the energy comes out right
and so does the Ideal Gas Law [Rob93, §3.8.2].
a) Suppose there are p = 2 particles, each with s = 3 possible states. Let the energies
associated with the states for the first particle be E1

1 , E1
2 and E1

3 , and those for the second
particle be E2

1 , E2
2 and E2

3 . Show that the combined partition function is

Z12 =
∑

j,k

e−β(E1

j
+E2

k
) = Z1Z2
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where
Z1 =

∑

j

e−βE1

j

and
Z2 =

∑

k

e−βE2

k

are the individual partition functions.
b) Since the above expressions do not depend on there being only 3 states, and since we can
generalize to any number of particles, p, show that the p-particle partition function

Z =
p

∏

k=1

Zk

c) Rewrite this (back to p = 2 particles and s = 3 states) using

aj = e−βE1

j

and
bk = e−βE2

k

as
Z = (a1 + a2 + a3)(b1 + b2 + b3)

d) Now suppose the two particles are identical, aj = bj

Z = (a1 + a2 + a3)
2

But particles have no individuality, as discussed in Note 35, so instead of

Z = a2
1 + a2

2 + a2
3 + 2a1a2 + 2a2a3 + 2a3a1

we must write
Z = a2

1 + a2
2 + a2

3 + a1a2 + a2a3 + a3a1

Generalize again to any number of particles, p, and to a much larger number of states, s—
pre-quantum physics expects an infinite number of possible states, all in a continuum: it
is overwhelmingly likely that all the particles will be in different states, so the combined
partition function is dominated by terms such as

aj1aj2..ajp

These have coefficient p! in the expansion of
∏p

k=1 Zk because there are p! possible permuta-
tions of the same subscripts j1, j2, .., jp. But lack of individuality requires us to suppress the
factor p!, so, neglecting all the other terms in the product, we have essentially

Z =
1

p!

p
∏

k=1

Zk

e) You can link this discussion to Excursion Multinomial coefficients in Week ii, as Robert-
son [Rob93, §3.3] does, but it is overkill.

23. Ovations. Is a standing ovation a phase transition?
a) Let’s represent an auditorium as an array with seats numbered from top to bottom within
rows receding to the right from the stage on the left. Here is a possible configuration in which
50% of the audience has spontaneously stood (1 for standing, 0 for still sitting).
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0   1   1   1   0   1   0   0   0   0
1   0   1   1   1   1   1   1   0   1
0   1   0   0   1   1   0   1   0   1
1   0   0   0   0   1   0   1   0   0
1   1   0   1   0   1   0   0   1   0

s
t
a
g
e

 row    1     2    3    4    5    6     7    8    9   10 

seat

5

1

2

3

The function invocation might be
auditorium = spontaneous(5,10,.5)

b) Let’s suppose, after the spontaneity, that more people will rise if they can’t see the stage
auditorium(j,k) = cantsee(k,j,auditorium,1,1)

for any j, k for which auditorium(j, k) == 0. (The last two parameters do not turn out to
be important: they are the separation, s, between rows and the width, w, of the seats.)
To find out if somebody sitting in seat j of row k cannot see the stage at all, we draw m+2 lines
from the seat location (xℓ, yℓ) = (ks, jw) to the stage at x = 0 and y = 0, w, 2w, .., (m + 1)w,
where m is the number of seats in each row (5 in the above example).

location
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.

.

.

.

stage x = 0

seat
����

Show that to find a and b in the equation y = ax + b for each line we must solve

(

yℓ

jw

)

=

(

xℓ 1
0 1

) (

a
b

)

For each of these lines of sight we work from the row in front of the seat location leftwards
to the stage to see if anybody standing ahead of the location is blocking that line of sight,
rounding off, where the line meets the row, to the nearest seat. If all lines of sight are blocked,
report 1, forcing the person at (xℓ, yℓ) to stand.
c) We can experiment with a second mechanism to get people up or down: peer pressure.
Within a given row of seats we can make someone stand if at least so many of heir neighbours
are standing.

auditorium = neighbours(auditorium,m,ofn)
will do this if m out of n (“m of n”) neighbours are standing.
The core routine within neighbours() is

yn = match(column,loc,m,ofn)
in which column is the column of the auditorium matrix telling who is standing or not in
the row of seats (sorry: column of matrix for row of seats), loc is the location of the seat
concerned in this row, and m and ofn are the above parameters. Let’s see what happens for
1 of 2 neighbours in the column shown.
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For instance at loc = 2: the neighbour below (at 1) is not standing so there is an ×; but
the neighbour above (at 3) is standing, so there is a

√
. Since one of these cases meets the

1 of 2 criterion, the result is yn = 1. Only when we get to loc = 5 are there no neighbours
standing, with result yn= 0.
The extremes, loc = 1 and loc = 8, allow us to check only on one side: loc = 1 has the one
neighbour up so yn = 1 but loc = 8 has the one neighbour down so yn = 0.
Show that the following is right for 2 of 3 neighbours in the same column.
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What I actually did with neighbours() was use it inverted
auditorium = ∼neighbours(∼auditorium,m,ofn)

This forced people to sit down again, after rising spontaneously, if at least 1 of the 2 neighbours
was still sitting: don’t embarrass your spouse!
d) A third mechanism

auditorium = allBehind(auditorium)
applies peer pressure from behind: if an entire row is standing then all rows in front of it
stand too,
e) Packaging all the above into

iterCts = standOvEquilib(m,n,prob)
gives the number of people finally standing in an auditorium of n columns (“rows” of seats)
of m seats each if the probability of initial spontaneous standing is prob. This routine

• finds spontaneous standing (spontaneous())

• uses neighbours(∼,1,2) to prevent people standing by themselves

• iterates the following until equilibrium (numbers of people standing do not change) plus
5 iterations

– uses allBehind() so the back of the auditorium influences the front

– uses cantsee() so the front of the auditorium influences the back

– uses neighbours(∼,1,2) so people do not stand alone.

It outputs the sequence of counts of standing people so that the convergence to equilibrium
can be checked, but only the last of these numbers is needed for the next step.
f) Finally
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[probs,avgProps] = standOvIter(m,n,probs,numIter)
iterates standOvEquilib() numIter times for each of a set of probabilities in probs, convert-
ing the number of standing people into a proportion of the full auditorium, and calculates
averages and standard deviations of these proportions for plotting.
Here is the result of

[probs,avgProps] = standOvIter(15,61,[0,0.1,0.2:0.01:0.5,0.6:0.1:1],100)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Final standing ovations in 15 by 61 auditorium
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There seems to be a phase transition around probability 0.4. How do the shape and size of
the auditorium influence the transition probability? Is the transition first order?

24. Are there phase transitions in human history and pre-history?
Did the Agricultural Revolution happen the first time somebody had the idea of planting out
grain or did this happen many times before population growth forced the abandonment of
the hitherto easier and less artificial methods of hunting and gathering?
Was World War I caused by the assassination in Bosnia of the heir to the Austro-Hungarian
throne or was that just a “crystallizing seed” in a supersaturated situation of ideological and
economic stress? [Som57, Tuc66]
Did Communism fall in 1989–91 because of political protest in Poland or exodus from East
Germany, or did such triggers in these and other East European countries release economic
and ideological pressures amplified by communication technologies? How did China in 1989
differ? [GK91]
Was the surprising onset of suicide bombing in Iraq under Western pressure predictable? [?,
pp.1178,592,865]

25. Power laws. a) Write a MATLAB program which plots x1.1 using loglog(). Why is it a
straight line with slope 1.1, i.e., equal to the exponent?
b) Replot the results in Note 30 for Erdös-Rényi average distances and in Note 32 for van der
Waals compressibilities using loglog(). Do these numbers really follow power laws?

26. Self-Organized Criticality. The power law distibution is discussed by Per Bak [Bak]. It
appears to have a universality comparable to the Gaussian (normal) distribution, and it bears
on phase transitions because it applies in the critical regime. Bak and colleagues have inves-
tigated the power law distribution in the context of phase transitions that do not depend on
some external variable such as temperature or probability but on the internal organizaton of
the collective system. So they refer to “self-organized” criticality as opposed to the criticality
of a thermal phase transition.
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For instance, the number of earthquakes is a power of their magnitude: Bak shows an ex-
ample of this “Gutenberg-Richter” law based on 1974–83 data in the New Madrid zone of
southeastern U.S. (Missouri, Illinois, Kentucky, Arkansas, Tennessee) for which the exponent
appears to be about −0.86: this would correspond to about 2000 quakes, in the ten-year
period, of magnitude 1 on the Richter scale (same C. F. Richter) (which has about the energy
of a passing truck), about 275 quakes of magnitude 2 (which is ten times as energetic), about
38 quakes of magnitude 3 (100 times), 5 of magnitude 4 and so on.
Another, quite unrelated, example of a power law distribution is the number of 4-million-year
periods which lost given percentages of species to extinction over the last 600 million years.
So is the size of cities versus their rank, and the number of occurrences of words in a text
versus word rank.
Bak’s minimal model of such a system is a sandpile, which, as grains of sand are added to it,
builds up until it reaches a critical state in which sand avalanches happen at all scales—and
the number of avalanches of a given size is a power of the size.
Bak’s simulation—the mathematics of even this simple case are as yet largely intractable—
reduces the model to still greater simplicity. He imagines a two-dimensional grid to which
sand grains are added to squares selected at random. If a square has a critical number
of grains, say 4, or more, it topples by distributing its grains to its four nearest-neighbour
squares. These in turn will accumulate until they topple in the same way. Grains toppling
from squares on the edges fall off and are lost.
a) Write the program to simulate this and plot the numbers of the resulting avalanches versus
their sizes using loglog().
Bak [Bak, p.53] gives an example of the breadth-first algorithm he uses which is useful in
designing and testing your code. A grain of sand is added to the middle square of a 5-by-5
grid, making it critical. The nine 4s in the following seven steps are the locations that topple
from one step to the next.

1 2 0 2 3 1 2 0 2 3 1 2 0 2 3 1 2 0 2 3
2 3 2 3 0 2 3 2 3 0 2 3 3 3 0 2 3 3 4 0
1 2 3 3 2 1 2 4 3 2 1 3 0 4 2 1 3 2 0 3
3 1 3 2 1 3 1 3 2 1 3 1 4 2 1 3 2 0 4 1
0 2 2 1 2 0 2 2 1 2 0 2 2 1 2 0 2 3 1 2

1 2 0 3 3 1 2 1 3 3 1 3 1 3 3 1 3 1 3 3
2 3 4 0 1 2 4 0 1 1 3 0 1 1 1 3 1 1 1 1
1 3 2 2 3 1 3 3 2 3 1 4 3 2 3 2 0 4 2 3
3 2 1 0 2 3 2 1 0 2 3 2 1 0 2 3 3 1 0 2
0 2 3 2 2 0 2 3 2 2 0 2 3 2 2 0 2 3 2 2

giving the final configuration

1 3 1 3 3
3 1 2 1 1
2 1 0 3 3
3 3 2 0 2
0 2 3 2 2

The size of this avalanche is 9, the number of topplings. Its duration is 7, the number of steps
taken: Bak says that durations also follow a power law distribution.

Here is the result of 100,000 iterations on a 5-by-5 grid, starting empty, with one grain of
sand falling on a randomly-placed square each iteration.
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The number of sand avalanches is clearly decreasing exponentially with their size until we get
to sizes that the simulation has not generated enough of to give good statistics. The slope
there measures to be about −1.09. Note that the largest avalanche has 35 topplings, more
than the squares in the grid.

Bak describes the numerous experiments that have been done and the simulations written to
explain those experiments on sandpiles, as well as earthquakes and evolutionary “punctuated
equilibrium” with its occasional mass extinctions.

How does this power law distribution relate to the critical exponents of second-order phase
transitions?

b) Add a second plot to your sandpile program to track the total number of grains in the
pile at each iteration. How “efficient” is the sandpile, in the sense of what proportion of its
maximum capacity does it typically reach?
c) Start your program with a completely full sandpile, with 3 grains at each location: 100%
“efficient”. How big is the avalanche on the first addition? What does this tell you about,
say, planned economies or roads used at 100% efficiency?

27. The Ising model (Note 34, and see Ising in a previous Excursion), although it is unsolved in
three dimensions and labourious in two, gives the best entrée to seond-order phase transitions—
those with critical points. The difficulty with an exact numerical calculation—and probably
with the attempt to get mathematical results—is that the fluctuations, which appear once the
temperature is raised from the completely ordered state of 0oK or lowered from the completely
random state of ∞oK, appear increasingly at all possible scales of length as the temperature
approaches critical. That is, there are islets of spin-up (or down) in puddles of spin-down (or
up) in islands of spin-up (or down) in lakes of spin-down (or up), and so on, at all possible
sizes, from single spins to spanning the whole crystal. This is the source of the power law
distributions leading to the critical exponents, and also why the simulations of Note 34 and
of the rest of this Part will never succeed in matching the experimental measurements.
A way to approximate the calculations while still taking into account the full range of scales
at the critical point is by using “renormalization groups”. The approach divides the lattice
into small blocks of spins, for each of which it calculates an average spin. After adjusting the
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coupling factor, this reduces the original lattice to a coarser one of the blocks. This operation
is repeated until all scales are tractably accounted for. Onsager’s 2D solution can be used to
check the results, which are pretty good.
A remarkable hypothesis, “critical-point universality”, arises from this and says that the crit-
ical exponents don’t depend on the structure of the crystal or the microscopic physics at all
but only on the dimension, which governs the results in two guises: the dimension of the space
and the dimension of the values responsible for the interactions. For example, in the 2D Ising
model the space has dimension 2 but the spins have dimension 1 because there is only one
direction they can align in. (These numbers are 3 and 1 for the 3D Ising model.) The same
numbers apply to the density difference between phases of a 2D (or 3D) fluid near the critical
point (Note 32), so the hypothesis says the critical exponents will be the same—and we can
use the Ising model to study it.
Kenneth Geddes Wilson [Wil79] provides a good introduction, from which you can approach
the other references in this Part and attempt your own programs.

28. Any part of the Preliminary Notes that needs working through.

References

[Bak] Per Bak. How Nature Works: The Science of Self-Organized Criticality. Springer-Verlag,
New York.
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