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I. Prefatory Notes

1. Histograms. For two months of a remarkable Montreal winter the following temperatures were
recorded.

January

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 −1 0 1 1 1 0 −1 −1 −1 1 −1 1 −1 1 0

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
−1 −1 0 0 0 1 0 0 1 −1 1 1 0 0 −1

February

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−1 0 1 1 −1 0 0 −1 0 −1 1 −1 0 −1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29
1 0 1 1 0 −1 −1 1 −1 1 0 1 −1 0

It is probably hard to see the pattern in this, so we abstract to a histogram.
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That is, over the 60 days, the temperature −1o Celcius was noted 20 times, the temperature 0o

Celcius was noted 20 times, and so was the temperature 1o Celcius.

A histogram records a set of values and the number of times that each of the values occurs.

All abstractions throw away irrelevant data and considerations and so lose information through
a process of judgement as to what is pertinent. Histograms throw away so much data that I am
tempted to be redundant and call them “lossy abstractions”.

We revealed a pattern in the data by taking the histogram but we thereby ditched all the sequence
information as irrelevant. Other abstractions might be made, retaining the sequencing, but much
can be done with histograms alone and our purpose in Book 9c is to see how far we can get.

Note that we would have made the same histogram if the data had been “ordered” with the first
20 days at −1oC, the next 20 at 0oC and the last 20 days at 1oC. It doesn’t matter.

But what do we mean by “order”? Here is the shuffling trick. A card player shows you a perfectly
sorted deck of cards—ace, 2, 3, .. king of hearts, then ace, 2, 3, .. king of spades, then diamonds in
order then finally clubs. Hey shuffles the deck thoroughly, and then, saying “watch this”, appears
to shuffle it once more. When hey hands you the final deck in triumph, you expect to find it
miraculously back in sorted order. But it is not. It appears just as random as it was after the
thorough shuffle. The cardplayer’s point is this: it is almost impossible for anyone to duplicate
what hey did and produce a deck in the exact same order as hey just produced.

A similar story concerns a golfer who has just driven the ball off the 4th tee onto a tuft of grass 7/8
of the way to the 4th hole. The probability that the ball landed on that particular tuft of grass is
minutely small, so small that it is almost impossible for another golfer to land another ball on the
exact same tuft of grass.

The point of these two stories is that what is meant by “order” must be decided in advance. Maybe
it is alphabetical order or a strict ascending sequence of temperatures or putting the ball into the
4th hole instead of on some tuft of grass which we did not notice until after the ball had landed. If
an objective is not set, what happens happens. Nature does not know from alphabetical order.

A suggestive characterization of order is the more ordered a system was the easier it is later to tell
if it has been messed up. Disturbing a rack of six billiard balls in a triangle, by hitting it with the
cue ball, is much more conspicuous than subsequent disturbances by the cue ball.

2. Histogram arithmetic. Histograms can also be represented as numbers only.

occurrences 20 20 20
value −1oC 0oC 1oC

This is a data aggregate which might remind us of matrices. As with matrices, we can do arithmetic
on histograms.

For instance, if we had two histograms, we could add them.

Let’s change examples and suppose that Joe and Sue are doing business with the same three other
people. The histogram for Joe

# people 1 1 1 total 3
owes Joe −1$ 0$ 1$

means that one person owes Joe −1$ (i.e., Joe owes the dollar), one person owes Joe 1$, and Joe
and the third person are all settled up (0$ entry).

In this example, the abstraction that got rid of the sequencing in the winter temperature example
becomes the abstraction that we do not name the people Joe and Sue are dealing with or care
which person owes what.

The histogram for Sue
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# people 1 1 1 total 3
owes Sue −1$ 0$ 1$

has the corresponding meaning.

As with the temperature example, we have not recorded, and don’t know, who these people are,
except that they are the same three in both cases: we don’t know which one owes or is owed how
much in each case. The same person could owe both Joe and Sue, or could owe Joe but be owed
by Sue or vice versa, and so on for all possible combinations.

What are the combinations?

Sue −1$ 0$ 1$
Joe
−1$ −2$ −1$ 0$ owed

0$ −1$ 0$ 1$ to Joe
1$ 0$ 1$ 2$ or Sue

How many ways could we arrange people’s debts and credits, given that we do not know how these
are actually distributed?

Clearly there is only one way one person could owe 2$: hey must owe both Joe and Sue. There is
only one 2$ entry in the table. Similarly there is only one −2$ entry, and there is only one way a
person can be owed 2$.

But a person can owe 1$ in two ways, either to Joe or to Sue. Similarly a person can be owed 1$
in two ways.

Finally, a person can be free of both debt and credit (in total) in three ways: by owing and being
owed nothing to and by either Sue or Joe; by owing Sue and being owed by Joe; or by owing Joe
and being owed by Sue.

We can summarize all this in a new histogram.

# ways 1 2 3 2 1 total 9
owes Joe or Sue −2$ −1$ 0$ 1$ 2$

This is the sum of the Joe and Sue histograms because the values (lower row) are the sums of the
values of the two input histograms.

If Jan were also to join Sue and Joe as an entrepreneur involving the same three (other) people
and with histogram

# people 1 1 1 total 3
owes Jan −1$ 0$ 1$

then the sum of all three would come from

1 2 3 2 1
Joe or Sue −2$ −1$ 0$ 1$ 2$

Jan
1 −1$ −3$ −2$ −1$ 0$ 1$
1 0$ −2$ −1$ 0$ 1$ 2$
1 1$ −1$ 0$ 1$ 2$ 3$

with the same meaning.

This time, I’ve written the # ways/# people rows in addition to the value rows, because they must
be used in finding the new histogram.

For instance, since there are 2 ways Sue or Joe can be owed 1$, the number of ways Sue, Joe or
Jan can be owed 2$ is

3



a) Jan is owed 1$ (1 way) and Sue or Joe are owed 1$ (2 ways)—2 ways together; or
b) Jan is owed 0$ (1 way) and Sue or Joe are owed 2$ (1 way)—1 way together.

This is a total of 3 ways. Doing this for each possible debt/credit we get the histogram summing
Joe, Sue and Jan.

# ways 1 3 6 7 6 3 1 total 27
owes Joe, Sue, Jan −3$ −2$ −1$ 0$ 1$ 2$ 3$

Do you see how this histogram can quickly be built up from the table combining Jan with Joe-and-
Sue?

We’ll add a fourth entrepreneur, Pat, in two different ways. The second way is important because
it shows that we multiply the # ways entries.

a)

1 3 6 7 6 3 1
Joe, Sue, Jan −3$ −2$ −1$ 0$ 1$ 2$ 3$

Pat
1 −1$ −4$ −3$ −2$ −1$ 0$ 1$ 2$
1 0$ −3$ −2$ −1$ 0$ 1$ 2$ 3$
1 1$ −2$ −1$ 0$ 1$ 2$ 3$ 4$

giving (check it out!) for a total of 81

# ways 1 4 10 16 19 16 10 4 1
owes Joe, Sue, Jan, Pat −4$ −3$ −2$ −1$ 0$ 1$ 2$ 3$ 4$

b)

1 2 3 2 1
Joe or Sue −2$ −1$ 0$ 1$ 2$
Jan or Pat
1 −2$ −4$ −3$ −2$ −1$ 0$
2 −1$ −3$ −2$ −1$ 0$ 1$
3 0$ −2$ −1$ 0$ 1$ 2$
2 1$ −1$ 0$ 1$ 2$ 3$
1 2$ 0$ 1$ 2$ 3$ 4$ 1   1   2   3   2   1

*   1   2   3   2   1
1   1   2   3   2   1
2   2   4   6   4   2
3   3   6   9   6   3
2   2   4   6   4   2

giving exactly the same histogram (check it out!). Note that we multiply the # ways entries.

So we know how to add histograms. What happens when we subtract histograms is surprising.
Let’s subtract the Jan histogram from the Joe, Sue histogram.

1 2 3 2 1
Joe or Sue −2$ −1$ 0$ 1$ 2$

Jan
1 −1$ −1$ 0$ 1$ 2$ 3$
1 0$ −2$ −1$ 0$ 1$ 2$
1 1$ −3$ −2$ −1$ 0$ 1$

1   1   2   3   2   1

*   1   2   3   2   1
1   1   2   3   2   1
1   1   2   3   2   1

and the differences histogram is

# ways 1 3 6 7 6 3 1 total 27
owes Joe+Sue−Jan −3$ −2$ −1$ 0$ 1$ 2$ 3$

The meaning of “owes Joe+Sue−Jan” is not clear, so we must consider this example formally rather
than try to interpret it.

Stretching meaning even further, we can find product histograms.
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1 1 1
Sue −1$ 0$ 1$

Joe
1 −1$ 1$ 0$ −1$
1 0$ 0$ 0$ 0$
1 1$ −1$ 0$ 1$

# ways 2 5 2 total 9
“owes Joe×Sue” −1$ 0$ 1$

Quotient histograms, quite apart from what they may mean, often cannot be calculated. Input
histograms with values −1, 1 give an example which will work.

Here is the “maximum” histogram, giving the occurrences of the maximum amount owed Joe or
Sue.

1 1 1
Sue −1$ 0$ 1$

Joe
1 −1$ −1$ 0$ 1$
1 0$ 0$ 0$ 1$
1 1$ 1$ 1$ 1$

# ways 1 3 5 total 9
“owes Joe max Sue” −1$ 0$ 1$

3. Distributions and densities. A distribution is a histogram normalized so that the sum of its #
ways is 1.

Returning to the temperature example

occurrences 20 20 20
value −1oC 0oC 1oC

the corresponding distribution is

frequencies 1/3 1/3 1/3
value −1oC 0oC 1oC

The reason for normalizing is that it saves some arithmetical hassle. For example, for that same
Montreal 60-day winter, someone with a more accurate thermometer might have recorded

occurrences 12 12 12 12 12
value −1oC −0.5oC 0oC 0.5oC 1oC

i.e.,

frequencies 1/5 1/5 1/5 1/5 1/5
value −1oC −0.5oC 0oC 0.5oC 1oC

And someone really fussy might have found the 60 days divided as follows

occurrences 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
value −1 −.86 −.71 −.57 −.43 −.29 −.14 0 .14 .29 .43 .57 .71 .86 1
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which gives a frequency of 1/15 at each value of the temperature.

Now we see that all these readings are saying that the temperature was uniformly distributed be-
tween −1oC and 1oC during those 60 days. Since there are an integer number of measurements, 60,
the temperature resolution must be some divisor of 60 to show the uniformity. But this restriction
is arbitrary and has nothing to do with the uniformity of the distribution.

For instance, someone with a thermometer which can resolve only 9 different temperatures in this
range cannot get the same number of occurrences for each temperature value from the 60 readings.
Hey could get, instead, say

occurrences 7 7 6 7 7 6 7 7 6
value −1 −.75 −.5 −.25 0 .25 .5 .75 1

These might indeed be the readings, but if that observer wished to describe the distribution as
uniform, it is much easier to say that each of the 9 measurements had a frequency of 1/9.

So histograms are frequently normalized into distributions.

A further trick to make calculating easier, even though it departs still more from the measuremnts
actually made, is to use continuous math,

The uniform distribution becomes a uniform density

1/2

1 C 0 C 1 C
o o o

1

whose area over the range is kept = 1.

The only tricky aspect is converting from the sum of the discrete distribution to the area of the
continuous density. Two examples show how to do this.

Converting from three measurements to continuous density

1/3

1 C
o

0 C
o

1 C
o

0 C
o

1 C
o

1 C
o

1

1/2

2/3 2/3 2/3

1

2/3

the discrete sum is 1/3 + 1/3 + 1/3 = 1.

The area is 1/2×2/3+1/2×2/3+1/2×2/3 = 1, where 2/3 is the width of each of the three equal
divisions of the range from −1 to 1 of the values. We can call this breadth ∆v and here ∆v = 2/3.
So the area is h∆v + h∆v + h∆v where the height h = 1/2.

Converting from five measurements to continuous density
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o
0 C

o
1 C

o
1 C

o
1 C

o
1 C

o

11

2/5 2/5 2/5

1/5

2/5

3/5

4/5

2/5

1/2

0 C

2/5

the discrete sum is 1/5 + 1/5 + 1/5 + 1/5 + 1/5 = 1.

The area is 1/2 × 2/5 + 1/2 × 2/5 + 1/2 × 2/5 + 1/2 × 2/5 + 1/2 × 2/5 = 1 where ∆v = 2/5 this
time.

Densities and continuous math are not particularly helpful for uniform distributions, which we have
been considering in this Note. But a nonuniform distribution is sometimes more easily described
as a continuous density, d(v), whose area is approximated better and better as the sum

1
∑

vi=−1

∆v

is refined by taking ever smaller ∆v and ever more frequent vi. (The step size is ∆v: I haven’t
shown all the details in the way I’ve written the sum.)

We will sometimes not use the word “density” but let “distribution” stand for both the discrete
and the continuous versions, when no confusion is likely to arise.

4. Aggregates: the moments of distributions. A whole distribution is a complicated thing to
remember or to work with (unless it has a simple representation as a mathematical expression, such
as the density d(v) = 1/2 for a uniform distribution on −1 to 1).

We can extract some especially significant aggregate values from a distribution, such as the average
value, giving its centre, or the variance in its values, giving its spread, etc.

In fact, we can extract any number of aggregates we wish, giving us an alternative representation
of the distribution, just as the Fourier transform in Week 9 gave us an alternative representation
of a function f(x).

These aggregates are based on the moments of the distribution. The first few should give the idea.

The 0th moment is just the sum. For a distribution, this is always 1, by definition, and that’s an
important justification for normalizing the histogram. For a density, the 0th moment is the area,
which is also 1 by definition.

moment histogram distribution density
0

∑

hi
∑

di = 1 area d(v) = 1

The 1st moment is the average (or mean) and is defined

moment histogram distribution density

1
∑

vihi
∑

hi

∑

vidi
∑

di
=
∑

vidi
area vd(v)
area d(v) = area vd(v)

Let’s calculate it for two uniform distributions.
a) The first moment is zero for any distribution symmetric about the origin. Obviously the origin
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is thus the average.
20 20 20
−1 0 1

1/3 1/3 1/3
−1 0 1

d(v) = 1/2

∑

vihi
∑

hi
=

−1 × 20 + 0 × 20 + 1 × 20

20 + 20 + 20
= 0

∑

vidi = −1 × 1

3
+ 0 × 1

3
+ 1 × 1

3
= 0

area vd(v) |1−1= antislope
v

2
|1−1=

v2

4
|1−1= 0

b) For the uniform distribution from 1 to 3 the average is 2 in all versions.
20 20 20
1 2 3

1/3 1/3 1/3
1 2 3

d(v) = 1/2

∑

vihi
∑

hi
=

1 × 20 + 2 × 20 + 3 × 20

20 + 20 + 20
= 2

∑

vidi = 1 × 1

3
+ 2 × 1

3
+ 3 × 1

3
= 2

area vd(v) |31= antislope
v

2
|31=

v2

4
|31= 2

Note that we have used the Fundamental Theorem of Calculus (Excursion “Calculus” of Week 12)
to transfer from the area under a curve to the antislope of the curve evaluated at the endpoints.
We will be using quite a lot of calculus in discussing densities, so a review of that Excursion is
suggested.

The 2nd moment is the obvious next step.

moment histogram distribution density

2
∑

v2

i
hi

∑

hi

∑

v2
i di area v2d(v)

We calculate it for the same two uniform distributions.
a) Symmetric

20 20 20
−1 0 1

1/3 1/3 1/3
−1 0 1

d(v) = 1/2

∑

v2
i hi

∑

hi
=

1 × 20 + 0 × 20 + 1 × 20

20 + 20 + 20
=

2

3

∑

v2
i di = 1 × 1

3
+ 0 × 1

3
+ 1 × 1

3
=

2

3

area v2d(v) |1−1= antislope
v2

2
|1−1=

v3

6
|1−1=

1

3

b) Unsymmetric

20 20 20
1 2 3

1/3 1/3 1/3
1 2 3

d(v) = 1/2

∑

v2
i hi

∑

hi
=

1 × 20 + 4 × 20 + 9 × 20

20 + 20 + 20
=

14

3

∑

v2
i di = 1 × 1

3
+ 4 × 1

3
+ 9 × 1

3
=

14

3

area v2d(v) |31= antislope
v2

2
|31=

v3

6
|31=

13

3
The discrepancies arise in the continuous calculation because the discrete sum is only approximated
by the area under v2d(v), and vice versa. If we were to take 5 values between −1 and 1 in the sum
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in (a), we get 1/2. Nine values gives 5/12, getting closer to 1/3. And so on.

The second moment gives the variance only when the mean is zero, as in (a). In general the variance
is

µ2 =
∑

(vi − µ)2di =
∑

v2
i di −

∑

2µvidi +
∑

µ2di

=
∑

v2
i di − µ2

where µ is the mean (1st moment).

So for (b) the variances are 14/3 − 4 = 2/3 and 13/3 − 4 = 1/3 as for (a).

The standard deviation is the square root of the variance, and we shall see its significance when
we discuss the normal distribution. The standard deviation is usually called σ, so the variance is
σ2 = µ2.

The 3rd moment gives the skewness of the distribution.

moment histogram distribution density

3
∑

v3

i
hi

∑

hi

∑

v3
i di area v3d(v)

a) Symmetric

20 20 20
−1 0 1

1/3 1/3 1/3
−1 0 1

d(v) = 1/2

∑

v3
i hi

∑

hi
=

−1 × 20 + 0 × 20 + 1 × 20

20 + 20 + 20
= 0

∑

v3
i di = −1 × 1

3
+ 0 × 1

3
+ 1 × 1

3
= 0

area v3d(v) |1−1= antislope
v3

2
|1−1=

v4

8
|1−1= 0

b) Unsymmetric

20 20 20
1 2 3

1/3 1/3 1/3
1 2 3

d(v) = 1/2

∑

v3
i hi

∑

hi
=

1 × 20 + 8 × 20 + 27 × 20

20 + 20 + 20
= 12

∑

v3
i di = 1 × 1

3
+ 8 × 1

3
+ 27 × 1

3
= 12

area v3d(v) |31= antislope
v3

2
|31=

v4

8
|31= 10

We see that third moments are zero for symmetric distributions. We recall the first moment was
zero for these also. In fact all odd moments of these distributions will be zero.

Once again, if the mean, µ, is not zero, the result of interest is the moment about the mean.

µ3 =
∑

(vi − µ)3di =
∑

v3
i di − 3µ

∑

v2
i di + 3µ2

∑

vidi − µ3
∑

di

=
∑

v3
i di − 3µ(σ2 + µ2) + 3µ3 − µ3

=
∑

v3
i di − 3µσ2 − µ3

and similarly for the density.

For case (b) these are all 0, as for case (a).

The coefficient of skewness is µ3/σ
3.

The 4th moment tells us how peaked or flat the distribution is around its centre.
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moment histogram distribution density

4
∑

v4

i
hi

∑

hi

∑

v4
i di area v4d(v)

a) Symmetric

20 20 20
−1 0 1

1/3 1/3 1/3
−1 0 1

d(v) = 1/2

∑

v4
i hi

∑

hi
=

1 × 20 + 0 × 20 + 1 × 20

20 + 20 + 20
=

2

3

∑

v4
i di = 1 × 1

3
+ 0 × 1

3
+ 1 × 1

3
=

2

3

area v4d(v) |1−1= antislope
v4

2
|1−1=

v5

10
|1−1=

1

5

b) Unsymmetric

20 20 20
1 2 3

1/3 1/3 1/3
1 2 3

d(v) = 1/2

∑

v4
i hi

∑

hi
=

1 × 20 + 4 × 20 + 9 × 20

20 + 20 + 20
=

98

3
= 32.6

∑

v4
i di = 1× 1

3
+ 4× 1

3
+ 9× 1

3
=

98

3
= 32.6

area v4d(v) |31= antislope
v4

2
|31=

v5

10
|31=

242

10
= 24.2

µ4 =
∑

(vi − µ)4di =
∑

v4
i di − 4µ

∑

v3
i di + 6µ2

∑

v2
i di − 4µ3

∑

vidi + µ4
∑

di

=
∑

v4
i di − 4µ(µ3 + 3µσ2 + µ3) + 6µ2(σ2 + µ2) − 4µ4 + µ4

=
∑

v4
i di − 4µ(µ3 − 6µ2σ2 − µ4)

and we see that it is much easier to subtract the mean before taking the power and doing the sum.

The kurtosis (or coefficient of excess) is µ4/σ
4 − 3, which if negative indicates that the distribution

is more peaked at the centre than normal (“normal” is precisely defined in the Note after next),
and if positive indicates that the distribution is flatter than normal.

For the discrete uniform distributions above, the kurtosis is −3/2 (peaked) while for the uniform
density above it is 2 (flat). Once again increasing the number of discrete steps will bring the kurtosis
closer to that for the density.

Although the individual meanings of higher moments than µ0, .., µ4 become obscure, we can go
on. For theoretical reasons we must go on, because it takes all the moments fully to determine
the distribution (in many cases: it is not always possible to find the distribution even given all the
moments).

Finding all these moments requires a bit of calculus which is worth reviewing for future reference.
Here it is for a uniform distribution from a to b.

area vkd(v) |ba= area
vk

b − a

∣

∣

∣

b
a = antislope

vk

b − a

∣

∣

∣

b
a =

vk+1

k(b − a)

∣

∣

∣

b
a

For a symmetrical distribution (of mean µ = 0), a = −b and we can immediately see that µ2k−1 = 0
for all odd subscripts 2k − 1:

µ2k−1 =
v(2k−1)+1

2kb

∣

∣

∣

b
−b =

b2k

2kb
− (−b)2k

2kb
= 0
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Since we cannot find an infinity of moments, µk = area(v − µ)kd(v) one at a time, we need a
shortcut.

The set 1, v, v2, v3, .. reminds us of the infinite series we saw in Note 7 of Week ii.

So our shortcut consists of finding a moment generating function which is some infinite sum of
1, v, v2, v3, ..

The handiest such sum is

ev = 1 + v +
v2

2!
+

v3

3!
+ ..

because
slopeve

v = ev = antislopeve
v

so we can do the calculus easily.

Well, what we actually do is replace each of 1, v, v2, v3, .. by etv in the area/antislope calculation.
Let’s see what comes out for the uniform density d(v) = 1/2 on −1 to 1.

antislopeve
tvd(v) |1−1 = antislopev

etv

2

∣

∣

∣

∣

∣

1

−1

=
etv

2t

∣

∣

∣

∣

∣

1

−1

=
et − e−t

2t

=
1

2t
(1 + t +

t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+ .. − (1 − t +

t2

2!
− t3

3!
+

t4

4!
− t5

5!
+ ..))

=
1

2t
(2t + 2

t3

3!
+ 2

t5

5!
+ ..)

= 1 + 0t +
1

3

t2

2!
+ 0

t3

3!
+

1

5

t4

4!
+ ..

= µ0 + µ1t + µ2
t2

2!
+ µ3

t3

3!
+ µ4

t4

4!
+ ..

This gives all the moments by just reading off the coefficients of tk

k! :

µ0 = 1

µ1 = 0 = µ3 = µ2k−1

µ2 =
1

3

µ3 =
1

5
:

µ2k =
1

2k + 1

(Remember that the continuous math is only an approximation to the actual discrete distributions—
but an approximation which gets better and better as the discrete distributions get more and more
densely populated.)

5. Quantum distributions: the density matrix. 1 An interesting way to write a distribution is

1This Note may be skipped without breaking continuity.
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in terms of a set of orthonormal vectors. Thus, the three-element distribution of Note 3 becomes
a three-dimensional space.

If we take the usual basis vectors we can add them to the distribution.

values −1 0 1
frequencies 1/3 1/3 1/3

basis
vectors





0
0
1









0
1
0









1
0
0





Let’s consider the matrix built up of weighted outer products (Week 2 Note 5).

ρ =
1

3





0
0
1



 (0 0 1) +
1

3





0
1
0



 (0 1 0) +
1

3





1
0
0



 (1 0 0)

=
1

3





1
1

1





This is called the density matrix. (To be self-consistent I should call it the distribution matrix, but
I’ll be conventional this time.)

Note that its trace (Book 8c Note 8 (Part I)) is 1:

Tr
1

3





1
1

1



 = 1

Before investigating the significance of this. let’s do it again with different basis vectors.

ρ′ =
1

3

1√
6





1
1

−2





1√
6
(1 1 − 2) +

1

3

1√
2





1
−1

0





1√
2
(1 − 1 0) +

1

3

1√
3





1
1
1





1√
3
(1 1 1)

=
1

18





6
6

6





It’s the same, so of course the trace is the same.

The trace will always be 1 but the matrix itself usually depends on how it was built. Let’s try
different weights, 1/4, 1/2, 1/4.

ρ =
1

4





0
0
1



 (0 0 1) +
1

2





0
1
0



 (0 1 0) +
1

4





1
0
0



 (1 0 0)

=
1

4





1
2

1





ρ′ =
1

4

1√
6





1
1

−2





1√
6
(1 1 − 2) +

1

2

1√
2





1
−1

0





1√
2
(1 − 1 0) +

1

4

1√
3





1
1
1





1√
3
(1 1 1)

=
1

24





9 −3
−3 9

6
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Are these traces the same?

Instead of keeping the weights separate, let’s integrate them into the basis vectors. Because each
basis vector appears twice in forming the density matrix, we must use the square root of the weights.

values −1 0 1
weighted
basis
vectors

1√
3





0
0
1





1√
3





0
1
0





1√
3





1
0
0





ρ =
1√
3





0
0
1





1√
3
(0 0 1) +

1√




0
1
0





1√
3
(0 1 0) +

1√
3





1
0
0





1√
3
(1 0 0)

=
1

3





1
1

1





or

values −1 0 1
weighted
basis
vectors

1√
2





1
1

−2





1√
4





1
−1

0





1√
2





1
0
0





ρ′ =
1√
2

1√
6





1
1

−2





1√
2

1√
6
(0 0 1) +

1√
4

1√
6





0
1
0





1√
2

1√
6
(1 − 1 0) +

1√
2

1√
6





1
1
1





1√
2

1√
6
(1 1 1)

=
1

24





9 −3
−3 9

6





We can speed this up (for the first example).

Suppose the weights are generally p2, q2 and r2. (I’ve used squares for a reason which will become
clear next.)

values −1 0 1
frequencies p2 q2 r2

ρ =





p
q
r



 (p q r) =





p2 pq pr
pq q2 qr
pr qr r2





Trρ = p2 + q2 + r2 = 1

This is suggestive: p, q and r are amplitudes and their squares are probabilities in quantum mechan-
ics. The amplitudes may even be 2-numbers, e.g., p = 1/

√
2, q = 0, r = i/

√
2.

ρ =
1√
2





1
0
i





1√
2
(1 0 − i) =

1

2





1 0 −i
0 0 0
i 0 1





Trρ = 1
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Since quantum mechanical operators are matrices, formulating a distribution as a matrix is useful.
Let’s find the expected value of an operator such as the z-rotation operator from Week 6 Note 9.





eiβ

1
e−iβ





For state (p∗, q∗, r∗) (the 2-number example above shows that we must use conjugates (Week 4
Excursion “conjugates”) for the horizontal vector) the expected value of this operator is

(p∗ q∗ r∗)





eiβ

1
e−iβ









p
q
r



 = p2eiβ + q2 + r2e−iβ

But this is the same as the trace of





p
q
r



 (p∗ q∗ r∗)





eiβ

1
e−iβ



 =





p2 pq∗ pr∗

p∗q q2 qr∗

p∗r q∗rq r2









eiβ

1
e−iβ





=





p2eiβ pq∗ pr∗e−iβ

p∗qeiβ q2 qr∗e−iβ

p∗reiβ q∗rq r2e−iβ





So the density matrix, ρ, for any distribution, helps us find the average of matrix A, < A >=
TrρA. In particular, for quantum mechanics, the distribution comes from the vector of amplitudes,
observable quantities come from matrix operations, and it is appropriate to speak of “the expected
value”.

What does the matrix “operator” look like for an ordinary distribution? Let’s find the average
value for

values −1 0 1
frequencies 1/3 1/3 1/3

average value = TrρA

= Tr
1√
3





1
1
1





1√
3
(1 1 1)A

= Tr
1

3





1 1 1
1 1 1
1 1 1









−1
0

1





= Tr
1

3





−1 0 1
−1 0 1
−1 0 1





= 0

The matrix A is zero everywhere but the diagonal, which contains the values to be averaged.

6. The normal distribution.2 The MATLAB program developed in Excursion “histogArith” for
Note 2 enables us to see the result of repeatedly adding the uniform histogram

2This Note is lengthy and covers some calculus which is important for Normal distributions as well as more
generally. You can skim the calculus on first reading.
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What is the eventual shape of the histogram?

We can find the moment generating function of the sum of densities if we know the moment
generating functions of the input densities. This will determine the resulting density, although
going backwards from moment generating function to density is not always easy.

First, for two densities with moment generating functions
ev1t ev2t

the moment generating function for v1 + v2 will be

e(v1+v2)t = (ev1t)(ev2t)

In general, adding values of histograms results in multiplying moment generating functions.

Moreover, the mean of the sum is the sum of the means and the variance of the sum is the sum of
the variances. Here is the product of moment generating functions up to t2.

(1 + µ1t + (σ2
1 + µ2

1)
t2

2! + ..)(1 + µ2t + (σ2
2 + µ2

2)
t2

2! + ..)

= 1 + (µ1 + µ2)t + (σ2
1 + σ2

2 + (µ1 + µ2)
2) t2

2! + ..

= 1 + µ12t + (σ2
12 + µ2

12)
t2

2! + ..

where µ1 and µ2 are the two means for densities 1 and 2 (not the first and second moments this
time) and σ2

1 and σ2
2 are the respective two variances. The resulting density has mean µ12 = µ1+µ2

and variance σ2
12 = σ2

1 + σ2
2.

This last tells us that if we add m copies of a central density (µ1 = 0) the resulting variance,
σ2 = mσ2

1.

We can see this expansion of the variance in the MATLAB plot above. (Because the histograms
plotted are central, the means remain 0.)

Second, focusing on central densities (µ = 0), let’s sum m of them all the same with variance σ2
1 .

The moment generating function of the result is

(1 + σ2
1

t2

2!
)m = (1 +

σ2

m

t2

2!
)m

−→
m → ∞ eσ2t2/2
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where the last limit is the definition of Euler’s number, e. (There is a serious omission in this
argument: see Excursions.)

Thus eσ2t2/2 is the moment generating function for the limit of the repeated sum of any central
density. The density of the uniform histograms plotted by MATLAB is a special case.

But what density has the moment generating function eσ2t2/2?

This, as I say, is tricky. It might be more straightforward to pull the answer out of a hat and
then show that it is the answer. I think I can be less arbitrary—but I can’t avoid arbitrariness
altogether.

Let’s start with a bit of subtle but useful calculus. This is motivated by the eσ2t2/2 we’ve just
found. But it is still a little arbitrary. Hang on for the ride!

What is
I = antislope e−x2/a |∞−∞?

It is the area under e−x2/a for all values of x. Let’s let MATLAB (or a graphics calculator) show

us what e−x2

looks like.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Now a trick. We take two of these

I2 = (antislope e−x2/a |∞x=−∞)(antislope e−y2/a |∞y=−∞)

≈ (
∞
∑

x=−∞
e−x2/a∆x)(

∞
∑

y=−∞
e−y2/a∆y)

=
∞
∑

x=−∞

∞
∑

y=−∞
e−x2/a∆xe−y2/a∆y

=
∞
∑

x=−∞

∞
∑

y=−∞
e(x2+y2)/a∆x∆y

=
∞
∑

r=0

e−r2/a2πr∆r

= πa
∞
∑

s=0

e−s∆s

≈ πa antislope e−s |∞s=0

= −πae−s |∞0
= πa

1
2

3

4

5
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So I =
√

πa.

I should explain the steps in this chain of reasoning. First, in (1) we use the Fundamental Theorem of
Calculus to convert the antislope |∞−∞ into an area, and in (5) we go back from area to antislope |∞−∞.
The sums giving the areas have step sizes ∆x,∆y and ∆s, respectively, and the equalities are
approximate but are better the smaller the step sizes.

Second, in (2) we can swap the order of sums and products. You can see this in the example

∑

j

aj

∑

k

bk = (a1 + a2)(b1 + b2) = a1b1 + a1b2

+ a2b1 + a2b2 =
∑

j

∑

k

ajbk

The heart of the argument is in the change of variables in (3). Drawings will help. First, e−(x2+y2)

is a 3D figure of revolution.

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

So we can write r2 = x2 + y2. Second, ∆x∆y is a small increment of area ∆A. We could write this
as r∆r∆θ in polar coordinates, but nothing in the area of the line above (3) depends on θ, so we
took ∆A to be a thin ring of radius r: ∆A = 2πr∆r

r

r

∆

17



Note that r need only range from 0 to ∞ to cover the same total area.

Finally (4) does a formal change of variables s = r2/a.
So ∆s = ∆r slopers = ∆r2r/a.
So 2r∆r = a∆s

and e−r2/a2r∆r = e−sa∆s

The limits from 0 to ∞ do not change: s = 0 when r = 0 and s = ∞ when r = ∞.

Now we know that
antislopexe−x2/a |∞−∞=

√
πa

we can consider

1 =
1√

2πσ2
antislopeye

−y2/(2σ2)
∣

∣

∞
−∞

=
1√

2πσ2
antislopexe−(x−σ2t)2/(2σ2)

∣

∣

∞
−∞

=
1√

2πσ2
antislopexe−(x2−2σ2tx+σ4t2)/(2σ2)

∣

∣

∞
−∞

=
1√

2πσ2
antislopexe−x2/(2σ2)etxe−σ2t2)/2

∣

∣

∞
−∞

So

eσ2t2/2 = antislopexetx e−x2/(2σ2)

√
2πσ2

∣

∣

∣

∣

∣

∞

−∞

and we’ve just found that

e−x2/(2σ2)

√
2πσ2

is the distribution whose moment generating function is eσ2t2/2.

That is why, in the first line above, we set a = 2σ2 and why, in the next line, we replaced y by
x − σ2t.

This new density,

e−x2/(2σ2)

√
2πσ2

is called the normal density or normal distribution.

This distribution is the famous “bell curve” that is central to all discussions of measurement errors,
experimental design and statistics in general. We should explore it a little.

First, we have shown that the sum of enough identical central densities gives a central normal
distribution. This is the gist of the “central limit theorem”. (But look up a proper statement of
the central limit theorem, e.g., [MGB74, p.234], before supposing you now really know what it is.)
It is plausible that any randomness which is sufficiently complicated will be normally distributed.

We can now confirm by direct calculation that the mean (first moment) µ = 0 and that the
variance (second moment in this central case) is indeed σ2. This gives us two more important
calculus exercises as well as useful results.

The first moment (times
√

2πσ2) is

√
2πσ2 antislopevd(v) |∞−∞ = antislopev ve−v2/(2σ2) |∞−∞

= antislopey e−y/σ2 |∞−∞
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= −σ2e−y/σ2 |∞−∞
= 0

using the same technique of changing variables for v to y = v2/2 because

∆y ≈ slopev y∆v = slopev
v2

2
∆v = v∆v

and noting that slope(y − σ2e−y/σ2

) = e−y/σ2

.

To find the second moment we “integrate by parts” using

slopev ve−v2/(2σ2) = (slopevv)e−v2/(2σ2) + v slopeve
−v2/(2σ2)

= e−v2/(2σ2) − v2

σ2
e−v2/(2σ2)

So, apply antislope to both sides of the first line above:

ve−v2/(2σ2) = antislopev(e
−v2/(2σ2)) − antislopev

v2

σ2
e−v2/(2σ2)

hence

antislopev v2e−v2/(2σ2) |∞−∞ = σ2antislopev(e
−v2/(2σ2)) |∞−∞ − σ2ve−v2/(2σ2) |∞−∞

= σ2
√

2πσ2 − 0

so the second moment (variance)

antislopev v2 e−v2/(2σ2)

√
2πσ2

|∞−∞= σ2

as we wanted to show.

From these two results, we have confirmed that, like the uniform distribution, the normal distribu-
tion is fully described by µ and σ2—assuming we know it is normal. Of course, the other moments
must also work out right.

This integration by parts gives us all the other moments. By the same reasoning

slopev vke−v2/(2σ2) = kvk−1e−v2/(2σ2) − vk+1

σ2
e−v2/(2σ2)

so

antislopev vk+1e−v2/(2σ2) |∞−∞ = σ2k antislopev vk−1e−v2/(2σ2) |∞−∞ −σ2vke−v2/(2σ2) |∞−∞

= σ2k antislopev vk−1e−v2/(2σ2) |∞−∞ −0

since e−v2/(2σ2) gets small much faster than vk gets big for any k as v gets arbitrarily large.

So the k + 1st moment is σ2k times the k− 1st moment, skipping the kth. If k is even (k + 1, k − 1
odd) this can be taken all the way back to the 1st moment which we just showed is 0. So all odd
moments are 0, as they were for the 0-centred uniform density.

If k is odd, the k + 1st moment can be taken all the way back to the 2nd (or even 0th) moment.
for example

µ4 = 3σ2µ2 = 3σ4

µ6 = 5σ2µ4 = 15σ6

and so on.
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⋆ ⋆ ⋆

How much of the normal distribution lies within a given range, −x to x, of the mean? This is a
situation where calculus fails us and we must resort to calculation.

This quantity is important, however, and warrants a special name, the error function.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

erf(x) =
1√

2πσ2
antislopeve

−v2/(2σ2) |x0

=
1√

2πσ2
antislopev(1 − v2

2σ2
+ (

v2

2σ2
)2

1

2!
− (

v2

2σ2
)3

1

3!
+ ..) |x0

=
1√

2πσ2
(x − x3

3 × 2σ2
+

x5

5 × 2!(2σ2)2
− x7

7 × 3!(2σ2)3
+ ..)

=
1√
2π

(y − y3

3 × 2
+

y5

5 × 2!22
− y7

7 × 3!23
+ ..)

where we have expanded e−v2/(2σ2) into the series, integrated the series term by term taking the
upper limit (since the lower limit is 0), and finally changing variables y = x/σ in order to use the
standard deviation σ as the unit.

Here is the MATLAB program to find 2×erf(σy) to decpl decimal places. (I have left in the
scaffolding: even in this little program I made some silly mistakes. It’s not the mistakes that
matter but the ability to recover from them. But if one makes too many mistakes one might not
keep up with the world leaders.)

% function erf = erfNormal(y,decpl) THM 090907
% in file erfNormal.m
% calculate Gaussian error function for y standard deviations to decpl dec place
% erf = 2 intgrl_0^x exp(-v^2/2sigma^2) dv NB double to get both sides
function erf = erfNormal(y,decpl)
tol = 10^-(decpl+1) % display this
k = 0;
term = y*sqrt(2/pi); % NB 2/sqrt(2pi)
%step = y % test only
erf = term
while abs(term) > tol
k = k + 1;
term = -term*(2*k-1)*y^2/(2*k+1)/(2*k);
%step = step*(2*k-1)*y^2/(2*k+1)/(2*k) % test only
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erf = erf + term % display this
end

erfNormal(1,2) gives 0.6827 after 6 steps
erfNormal(2,2) gives 0.9546 after 10 steps
erfNormal(3,2) gives 0.9972 after 16 steps

I doubled erf() in order to find the area from −x to x. The results mean that 68% of the possibilities
fall within ±1 standard deviations of the mean and 95% fall within ±2 standard deviations.

The 2- and 3-standard deviation results are what lead statisticians to talk about “95% confidence”,
“99% confidence” and so on.

7. Expectation, surprise and ignorance. “Expectation” is a technical term meaning “average”.
There are subtle differences: it is unusual to think of the “average value” of one thing. What is
the average position of a single molecule in a box? We must reinterpret this question in terms of
a time average. More generally, we can take an “ensemble” average. An ensemble is an imagined
set of data covering all possible positions, in this case, of the molecule, or, since there are too
many possible positions, of a reasonable sample of them. Imagine, say, 1000 virtual molecules,
each representing a different position of our one molecule. This ensemble of positions is now many
positions and we can speak unconfusingly of their average.

“Expectation” is often used in this situation so we do not need mentally to convert one into many.
But the calculation process is still the same, via an ensemble.

“Expectation” can be a more general term than “average”: the average is the expectation of the
quantity itself. But the variance is the expectation of the square of the quantity. It can be confusing
to use “average” for both mean and variance, and long-winded to spell each out.

“Expectation” meaning average is not really intuitive. In a uniform distribution there is no partic-
ular value that we “expect” to find. In a non-uniform distribution, the value we “expect” to find
would be the mode, the most frequent value (see the excursion “Mean, median, mode”).

The upshot is that I will try not to use “expectation” or “expected value”. I will use “average”
for the general sense so that, say, variance is the average of the squares, and “mean” for particular
sense, namely the average of the values themselves.

But “expectation” is a common term, and the point of the above discussion is to explain how it
is used. The idea of an ensemble is the more important idea to take away. I also do not want
“expectation” confused with “surprise”.

“Surprise” is an important aspect of knowing only the distribution (histogram), having thrown
away the particular values (if they were ever known) giving rise to it.

If dj for a certain value j is very small then we are very surprised when j happens. If dj is large
then we are not (or are less) surprised.

To quantify surprise into a number we’ll call surprisal we work with normalized histograms, i.e.,
what we’ve called distributions. If dj is 0 our surprise should be infinite. If dj is 1 our surprise
should be 0.

A function on dj which produces such values is the logarithm—actually the negative of the logarithm
since log dj ≤ 0 because dj ≤ 1.

We can take the logarithm to any base and it will have these needed properties at 0 and at 1. So it
is a convention to use base 2. (We will later find the math is easier if we use base e, the “natural”
or “Naperian” logarithms.)

Thus surprisal
sj = −lg dj = lg(1/dj)
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where lg ≡ log2 the logarithm to base 2.

For a uniform distribution, we are equally surprised by any result

value −1oC 0oC 1oC
frequencies 1/3 1/3 1/3
surprisal lg 3 lg 3 lg 3

where lg 3 = 1.58..

For a non-uniform distribution, surprisal varies

value −3oC −2oC −1oC 0oC 1oC 2oC 3oC
frequencies 1/27 3/27 6/27 7/27 6/27 3/27 1/27
surprisal 3 lg 3 2 lg 3 2 lg 3 −1 3 lg 3 − lg 7 2 lg 3 −1 2 lg 3 3 lg 3

4.75 3.42 2.42 1.94 2.42 3.42 4.75

Here we can see that the extremes have a surprisal of about 5 while the mode is closer to 2.

More useful than the surprisal of each value in a distribution is the average surprisal, which we will
call our ignorance of the distribution.

ignorance =
∑

djsj = −
∑

dj lg dj

Thus, for the uniform distribution on three items

ignorance = lg 3 = 1.58

For the nonuniform distribution on seven values, above

ignorance = (63 lg 3 − 12 − 7 lg 7)/27 = 2.53

This should be compared with the corresponding ignorance of the uniform distribution on 7 elements

ignorance = lg 7 = 2.81

Ignorance is greatest for the uniform distribution over a given number of values. Let’s check this
for the special case of distributions over two values. We’ll say x = d1 and y = d2. Then we want
to maximize −x lg x − y lg y subject to x + y = 1.

We can use a Lagrangian multiplier almost as we did in Week 8 Note 11 3.

0 =





slopex
slopey

slopeλ



 (−x lg x − y lg y + λ(x + y − 1))

=





λ − lg x − lg e
λ − lg y − lg e

x + y − 1





3Because lg x = lnx/ ln 2 = lg e ln x and slope ln x = 1/x,

slopex(x lg x) = lg x + x slopex(lg x)

= lg x + x slopex(lg e ln x)

= lg x + x lg e/x

= lg x + lg e

(Why might we consider using ln instead of lg to define surprisal?)
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Thus lg x − lg e = λ = lg y − lg e so lg x = lg y so x = y.

This argument extends easily to any number n of distribution entries

0 =









sloped1

:
slopedn

slopeλ









(−
∑

dj lg dj + λ(
∑

dj − 1))

and eventually dj are all equal to each other, i.e., the distribution is uniform.

Thus ignorance never exceeds lg n for n different possible values.

Note that ignorance increases with the number of possibilities (unless the distributions are 0 ev-
erywhere but for one possibility).

This may seem strange, since ignorance is an average and averages don’t depend on the number
of values. That is true for the average of the quantities themselves, but ignorance is not such an
average.

Variance is also an average, but not such an average. It is entirely plausible that variance should
increase with the number of possibilities, since variance measures the spread of the distribution and
a distribution over many values spreads further than one over few values,

Maybe ignorance is also a measure of spread. Let’s compare it with variance for three distributions
of five entries each4.

values −2 −1 0 1 2
freq 1 1/5 1/5 1/5 1/5 1/5
freq 2 1/9 2/9 3/9 2/9 1/9
freq 3 2/9 2/9 1/9 2/9 2/9

mean variance ignorance
freq 1 0 2 lg 5 = 2.32
freq 2 0 4/3 = 1.3 5

3 lg 3 − 4/9 = 2.20
freq 3 0 20/9 = 2.2 2 lg 3 − 8/9 = 2.28

There are important differences. Understandably the variance for the uniform distribution, freq 1,
lies between the variances for the peaked distribution, freq 2, and the “bimodal” distribution, freq
3. This cannot happen for ignorance since uniform ignorance is always the highest. Ignorance is
less if there are any number of peaks, but the fewer the peaks the lower the ignorance.

The most important difference between ignorance and variance, or mean for that matter, is that
ignorance does not depend on the values. It depends only on the distribution.

This is really handy if the values are not numbers. For example, nine apples have the histogram

values green red yellow
# occurrences 2 4 3

What is the mean colour? The variance? The ignorance?

Being an average, ignorance is additive in the right circumstances. If our ignorance about what Joe
is owed is lg 3 in Note 2 and our ignorance about what Sue is owed is also lg 3, then our combined
ignorance is 2 lg 3. This is lg 9 and there are 9 combined possibilities.

We should be careful about this. From Note 2 our ignorance about what is owed to Joe or Sue is
5
3 lg 3− 4

9 (it’s just the ignorance for freq 2, above), which is not the same as (it’s less than) 2 lg 3.
But that distribution concerns the possibilities of some person owing −2$,−1$, 0$, 1$ or 2$. This

4ignorance for freq 2 = lg 9 − 2

9
lg 1 − 4

9
lg 2 − 3

9
lg 3 ; ignorance for freq 3 = lg 9 − 8

9
lg 2 − 1

9
lg 1
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is less than treating the Joe and Sue distributions independently because to get it we have added
the information that it is the same set of people owing Joe and Sue. Information dispels ignorance,
so the result is less ignorance than if we didn’t have the information.

“Ignorance” is my name for this quantity. It has other names. One is obvious (what dispels
ignorance?). One might have been “uncertainty” but that has been taken by the Heisenberg
uncertainty principle of quantum mechanics (see Week 9). The third name for ignorance was used
by Shannon because von Neumann told him that “nobody knows what [it] really is”, but this name
has beem claimed by thermodynamics for a special case of this quantity, so it is controversial and
I will not use it here.5

When we define it with logarithms to base 2, ignorance is measured in units of bits.

8. Does ignorance ever decrease? A student of mine had T-shirt saying “Hell hath no fury like
a Dad whose tools are all messed up”. Let’s call him Stu, for anonymity, and snoop into home
life with Stu and Dad. Every day Dad comes home from work and goes to his workshop W. (On
weekends he goes to the workshop in the afternoon after shopping with Mom or picnicking with
Mom and Stu.) Sometimes the tool he needs is not there but in Stu’s room S. So he goes to find
it and brings it back. Let’s focus on one tool, say the pliers.

Stu has increased Dad’s ignorance of the whereabouts of the tool. If Stu has taken the pliers every
other day, the ignorance is maximized:

I = −1

2
lg(1/2) − 1

2
lg(1/2)

=
1

2
lg(2) − 1

2
lg(1) +

1

2
lg(2) − 1

2
lg(1)

= lg(2)

= 1

If Stu has the tool 5 days out of 6, Dad’s ignorance is less: lg 6 − (5/6)lg 5 = 0.65 bits. This is
because Dad is pretty sure he’ll find the pliers in Stu’s room. (Dad’s ignorance is the same as this
if Stu has the pliers 1/6 of the time: why?)

If Stu has the tool 2 days out of 3, Dad’s ignorance is lg 3 − 2/3 = 0.918 bits.

But Stu’s projects are more ambitious than pliers alone can accomplish. There are a dozen tools
which can go missing from the workshop: pliers, hammer, saw, screwdriver, soldering iron, drill,
chisel, socket wrench, fretsaw, file, shears and pick. Suppose Dad comes home one day and finds
that the pliers, saw, screwdriver, chisel, file and shears had all wound up in Stu’s room that day.
We can represent this situation as SWSSWWSWWSSW. Because each tool has a 50% chance of being
either in W or S. Dad’s ignorance is again 1 bit per tool. (Do the calculation!) That is, 12 bits total
for the 12 tools: without checking, all Dad knows is ???????????? with each ? having a 50-50
chance of being W or S.

The way Dad decreases his ignorance is by tidying up: afterwards, he has WWWWWWWWWWWW and his
ignorance is 0.

But Dad could equally well decrease ignorance by just going to Stu’s room and recording the
SWSSWWSWWSSW. Then he can locate any tool by just consulting the record. His ignorance is 0.

If Dad were to keep such a record he could also tidy up and then reverse his tidying-up by replacing
in Stu’s room the tools Stu had taken in the first place. Dad has no plausible reason for wanting
to do this, but I want to make the point that zero ignorance implies reversibility.

If Dad were to lose his record, his ignorance would again be 1 bit/tool and he could not reverse any

5Although the example I’ve chosen suggests that ignorance is something we could know but just happen not to
know, there is nothing in the word that implies this. Ignorance could also refer to what we don’t know and could

never know, such as, perhaps, the mechanisms underlying the amplitudes and probabilities of quantum physics.
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tidying he might have done. If Dad kept such a record every day for every tool, he could reproduce
any of Stu’s depredations for any day in the past, even after a daily tidying. Dad’s ignorance would
be always 0. But he might soon lose the slips of paper, or run out of room in his record book and
have to erase earlier records to make room for new records. Then, again, his ignorance increases
by the extent to which he has lost or erased data.

Stu and Dad are a little fantasy of mine. But now think of a gas of molecules. The physics of
billiard balls and of molecules colliding with each other and with the walls of the container is precise
and time-reversible. If we are writing a computer simulation, we keep a record of all the positions
(for a while). But if we are observing the gas we do not keep a record, so our ignorance does not
decrease and what we observe is not reversible. We will be looking at this a lot more closely in the
following Notes.

Stu and Dad can tell us about combined ignorance. Consider two tools—pliers and hammer.
Suppose the pliers are in Stu’s room 5/6 of the time. As above,

Ip = lg(6) − 5

6
lg(5) = 0.65

Suppose the hammer is in Stu’s room 1/3 of the time

Ih = lg(3) − 2

3
= 0.918

Dad’s ignorance of both is just the sum of his ignorance of either

Iph = 2 lg(3) − 5

6
lg(5) + 1/2 = 1.568

assuming that Stu makes off with the hammer independently of his making off with the pliers.

This is because, with independence, the combined frequencies are

p in W, h in W‘: WW = 1
6

2
3 = 2

18
p in W, h in S: WS = 1

6
1
3 = 1

18

p in S, h in W: SW = 5
6

2
3 = 10

18

p in S, h in s: SS = 5
6

1
3 = 5

18

By calling 1
6 “w1”,

5
6 “w2”,

2
3 “s1” and 1

3 “s2” we can see formally (by remembering w1 + w2 = 1
and s1 + s2 = 1) that

∑

jk

wjsk lg(wjsk) = w1s1 lg(w1s1)

+w1s2 lg(w1s2)

+w2s1 lg(w2s1)

+w2s2 lg(w2s2)

= w1s1(lg(w1) + lg(s1))

+w1s2(lg(w1) + lg(s2))

+w2s1(lg(w2) + lg(s1))

+w2s2(lg(w2) + lg(s2))

= w1 lg(w1) + s1 lg(s1)

+w2 lg(w2) + s2 lg(s2)

= (
∑

j

wj lg(wj))(
∑

k

sk lg(sk))
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Hence Iph = Ip + Ih as we said above.

We can also see that a combined average based on these frequencies is the sum of the individual
averages. Let’s suppose Dad hands out one demerit point for each tool he finds in Stu’s room.
Then the average demerit points for the pliers is

< demp >= 0 ∗ 1

6
+ 1 ∗ 5

6
=

5

6

and the average demerit points for the hammer is

< demh >= 0 ∗ 2

3
+ 1 ∗ 1

3
=

1

3

Then the combined average demerit points is

< demph >=
5

6
+

1

3
=

7

6

We can also see this formally:

0 × w1s1 + 1 × (w1s2 + w2s1) + 2 × w2s2 = w1s2 + w2s2 + w2s1 + w2s2

= (0 × s1 + 1 × s2) + (0 × w1 + 1 × w2)

Note that we have made an additional assumption in calculating demerits, namely that we don’t
care to discriminate between one pair of pliers in Stu’s room and one hammer. We only care that
there is one tool. So the four frequencies above become three: 2/18, 11/18 = 1/18 + 10/18 and
5/18. This in turn reduces the ignorance from 1.5683 for four frequencies to 1.2997 for three. (Work
this out!)

For a final insight into ignorance, suppose that shortly after all this fury and demerits blow up,
Mom travels to a conference. She wanted to forget the details of the family stress but couldn’t get
it totally out of her mind. So on the train coming home she decides to reconstruct the frequencies.
All she remembers is that the average demerits for pliers and hammer were 7/6 as we just worked
out above.

Mom reasons that since she knows only this, her ignorance about everything else must be maximum.
So she decides to maximize ignorance, subject to a)

p0 + p1 + p2 − 1 = 0

and b)

p0 × 0 + p1 × 1 + p2 × 2 − 7

6
= 0

In these equations, Mom uses pj to represent the frequencies she does not know. There are three
of them, p0 for no tools in Stu’s room, p1 for one tool and p2 for two tools. The symbol p stands
for “probability”, which we can now define for the first time.

A collection of probabilities is a collection (not a set: there may be duplicate values) of non-negative
numbers which sum to 1 and which generally behave just like a collection of frequencies. “Prob-
ability” is a tricky and often vague concept which can be made much clearer by just substituting
the word “frequency”, and, if helpful, by working out a concrete example of actual or invented
frequencies.

The two equations mean (a) the probabilities sum to 1 and (b) the mean is 7/6.

This is a problem in constrained maximization, with equations (a) and (b) giving the constraints.
It can be solved by Lagrange multipliers (Week 8 Note 11) which Mom proceeds to do. Since this
will involve finding slopes, Mom uses natural logarithms, ln, instead of logarithms to base 2, lg.

To maximize ignorance, Mom maximizes

p0 ln(p0) + p1 ln(p1) + p2 ln(p2)
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(or the negative of this: why does it make no difference?) subject to the above conditions. She uses
as Lagrange multipliers two new variables, α′ and β, which multiply the constraint expressions (a)
and (b) respectively before adding them to the above expression for the ignorance, to be maximzed.

0 =













slopep0

slopep1

slopep2

slopeα′

slopeβ













p0 ln(p0) + p1 ln(p1) + p2 ln(p2) + α′(p0 + p1 + p2 − 1) + β(p0 × 0 + p1 × 1 + p2 × 2 − 7

6
)

=













ln(p0) + 1 + α′ + 0 × β
ln(p1) + 1 + α′ + 1 × β
ln(p2) + 1 + α′ + 2 × β

p0 + p1 + p2 − 1
p0 × 0 + p1 × 1 + p2 × 2 − 7

6













=













ln 1
ln 1 1

ln 1 2
1 1 1

1 2

























p0

p1

p2

α
β













−













0
0
0
1
7
6













where α = 1 + α′ is the variable she’ll use from now on instead of α′.

Unlike Week 8 Note 11, we cannot just use linear algebra to solve this because of the logarithms,
ln, that appear in the matrix. But it is fairly easy to solve if we take α and β as parameters:

ln(p0) = −α so p0 = e−α

ln(p1) = −α − β so p1 = e−α−β

ln(p2) = −α − 2β so p2 = e−α−2β

and Mom can get rid of the α since

1 = p0 + p1 + p2 = e−α(1 + e−β + e−2β)

so
eα = 1 + e−β + e−2β

and we call this the “partition function” because it shows how the new distribution is divided up
among the three probabilities.

In this simple case Mom can even find the values for β, although it is not always necessary to
calculate them right out. Define x = e−β and note that e−2β is x2. Then use the constraint
equation for the average demerit

7

6
= (x + 2x2)/(1 + x + x2)

to get 0 =
5

6
x2 − 1

6
x − 7

6
or 0 = 5x2 − x − 7

so x = (1 ±
√

1 + 140)/10

= 1.2874

choosing the + from ±, and so
β = − ln(x) = −0.2526
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So the final answer for the probabilities (which needs only x, not β or α) is, using the partition
function,

Z = 1 + x + x2 = 1 + x(1 + x) = 3.9448

p0 =
1

Z
= 0.2535

p1 =
x

Z
= 0.3264

p2 = x × p1 = 0.4201

which sum to 1 and give p1 + 2 × p2 = 1.1666, i.e., 7/6 to the precision calculated.

These probabilities are quite different from the original frequencies, which Mom looked up when
she got home: 2/18, 11/18, 5/18 = 0.1111, 0.6111, 0.2778. We didn’t say this would reproduce
the original frequencies. Mom’s ignorance has been maximized, increasing from Dad’s ignorance of
1.2997 (over the three frequencies used to calculate demerits) to 1.554. (Check this!)

It should be apparent from the form of the maximization that the resulting probabilities will either
increase or decrease exponentially, and certainly cannot go up then down the way the original
frequencies do.

Maximizing ignorance to get the partition function, if not the probabilities directly, is a central
operation in thermodynamics. I have tried to demystify it in this Note by using it in the Stu-Dad-
Mom fable so that you can see it as a mathematical argument independent of the complications of
physics.

Following up on the Excursion “Increasing ignorance” we see that in a complicated process, one
might start off with a pretty good idea of the inner workings—at least of the frequencies and that
certain values result—but as time goes on one loses more and more of this knowledge until one is
left only something measurable, say an average, and ignorance is maximized. This can be thought
of as a settling of the process into an “equilibrium” of maximum ignorance.

9. Inside knowledge: the clients of Joe and Sue revisited.6 When in Note 2 we put together
the two uniform distributions

# people 1 1 1 # people 1 1 1
owes Joe −1$ 0$ 1$ owes Sue −1$ 0$ 1$

to get the sum

# ways 1 2 3 2 1 total 9
owes Joe or Sue −2$ −1$ 0$ 1$ 2$

we made an assumption.

Not only did we suppose that Joe and Sue are dealing with the same three people, which I stated,
but we also supposed that these three people had no preferences for Joe or Sue, or for borrowing
from both or lending to both, or all sorts of possible exclusions. This assumption we made is
plausible if we are completely ignorant of the interactions among these three people and Joe and
Sue.

Our ignorance-based assumption must be modified if we learn something about the three. For
instance, if each of them is exclusively either a borrower or a lender or disdaining of any interaction
with Joe or Sue, then the “sum” would be

# ways 3 0 3 0 3 total 9
owes Joe or Sue −2$ −1$ 0$ 1$ 2$

6Notes 9, 10 and 11 are important refinements needed by statisticians, and Note 11 is often used in artificial
intelligence. You may skip them if you want to go straight on the thermodynamics.
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How do we get this? Let’s look at the details. We’ll have to name the three clients, so we’ll call
them a, b and c.

How many ways can a, b and c, in combination, owe Joe −1$, 0$ and 1$, leading to one of them
owing only, one being owed only and one free of financial interaction? There are six ways, which
we can codify as

(a, b, c)ǫ{(−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 1,−1), (1,−1, 0), (1, 0,−1)}
where we leave off the $ sign from now on to save encumbrance.

The meaning of this codification can be illustrated by the first case.

(a, b, c) = (−1, 0, 1)

means a owes Joe −1$ (a lent the dollar to Joe), b is aloof (b neither owes Joe or is owed) and c
owes Joe 1$.

The same codification gives the six ways a, b or c can owe Sue, so that Sue’s distribution is also
uniform over the three possibilities.

Combining Joe and Sue gives a table of 6 × 6 = 36 ways a, b and c can separately interact with
them, leaving each of Joe and Sue with uniform distributions.

Sue abc = −101 −110 0−11 01−1 1−10 10−1
Joe abc = −101 −202 −211 −1−12 −110 0−11 000

−110 −211 −220 −101 −12−1 000 01−1
0−11 −1−12 −101 0−22 000 1−21 1−10
01−1 −110 −12−1 000 02−2 10−1 11−2
1−10 0−11 000 1−21 10−1 2−20 2−1−1
10−1 000 01−1 1−10 11−2 2−1−1 20−2

Each entry is just the sum of the corresponding margin entries.

Out of this table we can construct joint distributions for the combined financial interactions of Joe
and Sue with a, b and c. These joint distributions, or histograms, are, once again, abstractions,
eliminating a, b and c from consideration.

We’ll start with the assumption of complete ignorance, which we originally used in Note 2. That
is, we’ll forget for the moment that a and b and c might be exclusively a borrower, a lender, or not
transacting at all. We must extract from the table a matrix giving the nine elements

(owes Joe, owes Sue) ǫ{ (−1$,−1$), (−1$, 0$), (−1$, 1$),

(0$,−1$), (0$, 0$), (0$, 1$),

(1$,−1$), (1$, 0$), (1$, 1$)}
The first element, (−1$,−1$), means there will be a −2 in the table. This happens 12 times. So
the (−1,−1) element of the matrix is 12.

The element (−1$, 0$) corresponds to −1s in the table, but only those that are owed to Joe. These
are 12 of the 24 −1s. The other 12 are for element (0$,−1$).

Of the 36 0s in the table, 12 lead to (−1$, 1$), 12 lead to (1$,−1$) and 12 lead to (0$, 0$).

Completing this argument with the remaining positive elements, (1$, 0$), (0$, 1$) and (1$, 1$), we
get

owes owes Sue −1$ 0$ 1$
Joe Joe\Sue 1 1 1
−1$ 1 12 12 12
0$ 1 12 12 12
1$ 1 12 12 12
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I’ve shown the uniform histograms for Joe and Sue at the edges. You can sort of see how they can
be generated from the joint histogram in the matrix.

Let’s normalize the histograms into distributions (divide each matrix element by 108 = 3×36, their
sum).

owes owes Sue −1$ 0$ 1$
Joe Joe\Sue 1/3 1/3 1/3
−1$ 1/3 1/9 1/9 1/9
0$ 1/3 1/9 1/9 1/9
1$ 1/3 1/9 1/9 1/9

Now we see that the marginal distributions, the original uniform distributions for Joe and Sue, are
just the row-wise and column-wise sums over the joint distribution.

We can now see the sum of histograms from Note 2 as an amalgamation of the joint distribution
and the dollar contributions

Sue 1/3 1/3 1/3 Sue −1$ 0$ 1$
Joe 1/3 1/9 1/9 1/9 Joe −1$ −2$ −1$ 0$

1/3 1/9 1/9 1/9 0$ −1$ 0$ 1$
1/3 1/9 1/9 1/9 1$ 0$ 1$ 2$

The resulting sum uses the joint distribution as weights in counting the occurrences. Since the
weights are all the same in this case, we get what we had before.

owes Joe or Sue −2$ −1$ 0$ 1$ 2$
# ways 1 2 3 2 1

There are other joint distributions which also sum to uniform marginal distributions. Here is one
for exclusive lenders/borrowers/neutrals. You can construct it by eliminating all but the diagonal
in the Sue abc/Joe abc table above.

Sue abc = −101 −110 0−11 01−1 1−10 10−1
Joe abc = −101 −202

−110 −220
0−11 0−22
01−1 02−2
1−10 2−20
10−1 20−2

getting

Sue 1 1 1 i.e., Sue 1/3 1/3 1/3
Joe 1 6 Joe 1/3 1/3

0 6 1/3 1/3
1 6 1/3 1/3

Using this as weights for the dolar combination, we get the new sum of the Joe and Sue histograms

owes Joe or Sue −2$ −1$ 0$ 1$ 2$
# ways 3 0 3 0 3

We get a third joint distribution if we go on to imagine that no client is willing just to transfer
money between Joe and Sue, i.e., (owes Joe, owes Sue) = (−1$, 1$) and (1$,−1$) are excluded.
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Sue abc = −101 −110 0−11 01−1 1−10 10−1
Joe abc = −101 −202 −211 −1−12

−110 −211 −220 −12−1
0−11 −1−12 0−22 1−21
01−1 −12−1 02−2 11−2
1−10 1−21 2−20 2−1−1
10−1 11−2 2−1−1 20−2

giving

Sue 1 1 1 i.e., Sue 1/3 1/3 1/3
Joe 1 12 6 Joe 1/3 2/9 1/9

0 6 6 6 1/3 1/9 1/9 1/9
1 6 12 1/3 1/9 2/9

and

owes Joe or Sue −2$ −1$ 0$ 1$ 2$
# ways 2 2 1 2 2

One more: an asymmetrical variant in which only (owes Joe, owes Sue) = (−1$, 1$) is excluded,
i.e., the clients are only unwilling to transfer money from Joe to Sue but have no problem the other
way.

Sue abc = −101 −110 0−11 01−1 1−10 10−1
Joe abc = −101 −202 −211 −1−12 −110

−110 −211 −220 −101 −12−1
0−11 −1−12 0−22 1−21 1−10
01−1 −12−1 02−2 10−1 11−2
1−10 0−11 1−21 2−20 2−1−1
10−1 01−1 11−2 2−1−1 20−2

giving

Sue 1 1 1 i.e., Sue 1/3 1/3 1/3
Joe 1 12 12 Joe 1/3 2/12 2/12

0 6 6 12 1/3 1/12 1/12 2/12
1 6 6 12 1/3 1/12 1/12 2/12

and

owes Joe or Sue −2$ −1$ 0$ 1$ 2$
# ways 2 3 2 3 2

10. Correlation and co-ignorance. Matrices such as

Sue or Sue
Joe 1/9 1/9 1/9 Joe 1/3

1/9 1/9 1/9 1/3
1/9 1/9 1/9 1/3

are just distributions, but in two dimensions.

Distributions have moments so we should be able to find means, variances, etc. from these 2-D
distributions.

The mean of
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Sue −1$ 0$ 1$ Sue 1/3 1/3 1/3
Joe −1$ −1,−1 −1, 0 −1, 1 Joe 1/3 1/9 1/9 1/9

0$ 0,−1 0,0 0,1 under 1/3 1/9 1/9 1/9
1$ 1,−1 1,0 1,1 1/3 1/9 1/9 1/9

would be
∑





(−1,−1) (−1, 0) (−1, 1)
(0,−1) (0, 0) (0, 1)
(1,−1) (1, 0) (1, 1)



 . ∗




1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9



 = (0, 0)

(where .* is MATLAB notation and means multiply the matrices element by element, not as
matrices).

This is just the two original means, 0$ for Joe and 0$ for Sue. You can readily show that this is
true for any joint distribution giving back the original (uniform in this case) marginal distributions.

So the 2-D mean does not give us anything new.

Let’s try the 2-D variances, with a twist. The 1-D variance, say for Joe, is
∑

(J − µJ)2dj , where
Jǫ{−1$, 0$, 1$} and djǫ(1/3, 1/3, 1/3) and similarly for Sue. (And µJ = 0 = µS in this example of
centralized distributions.)

We now have dj , the 2-D joint distribution, and (J − µJ) and (S − µS). It is tempting to multiply
them together instead of squaring each:

∑

(J − µJ)(S − µS)djs, i.e.,

∑





1 0 −1
0 0 0

−1 0 1



 . ∗




1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9



 = 0

Before we try to interpret this, let’s try the diagonal joint distribution.

∑





1 0 −1
0 0 0

−1 0 1



 . ∗




1/3
1/3

1/3



 =
2

3

Compare this with the two variances (where the squares on the vectors are applied element-by-
element)

σ2
J =

∑

(J − µJ)2dj =
∑





−1
0
1





2

. ∗
∑





1/3
1/3
1/3



 =
2

3

and
σ2

S =
∑

(S − µS)2ds =
∑

(−1, 0, 1)2. ∗ (1/3, 1/3, 1/3) = 2/3

We would call
∑

(J − µJ)(S − µS)djs the covariance, σ2
JS . Normalizing by dividing by the two

standard deviations we get what is called the correlation:

ρJS =
σ2

JS

σJσS
=

∑

(J − µJ)(S − µS)djs
√

∑

(J − µJ)2dj

√
∑

(S − µS)2ds

For our two joint distributions so far, the correlations are

ρJS =
0

√

2/3
√

2/3
= 0

for
∑





1 0 −1
0 0 0
−1 0 1



 . ∗




1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9
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and

ρJS =
2/3

√

2/3
√

2/3
= 1

for
∑





1 0 −1
0 0 0
−1 0 1



 . ∗




1/3
1/3

1/3





You can check that

ρJS =
−2/3

√

2/3
√

2/3
= −1

for
∑





1 0 −1
0 0 0
−1 0 1



 . ∗




1/3
1/3

1/3





Here is the interpretation. The first joint distribution does not correlate Joe and Sue at all. They
are independent of each other. Their clients treat them independently.

The second joint distribution is maximally correlated: if you know Joe’s lending/borrowing status
then you know Sue’s and vice-versa. Since their clients are exclusively borrows or exclusively lenders
or exclusively neutral, we found out that the client borrowing from Joe also borrows from Sue and
so on.

The third joint distribution is maximally anticorrelated: you can show that each client is simply
transferring money from Joe to Sue or vice-versa. Again, if you know Joe’s transactions then you
know Sue’s and vice-versa, but they are opposite.

We can also find two-dimensional ignorance.

The co-ignorance for the distribution




1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9





is −∑ 1
9 lg 1

9 = lg 9 = 2 lg 3 = 3.17.

For




1/3
1/3

1/3





the co-ignorance is −∑ 1
3 lg 1

3 = lg 3 = 1.58 which is just the same as each of the marginal ignorances
for Joe and for Sue.

We can adjust co-ignorance to give a measure of the dependence/independence described by the
joint distribution, just as we modified covariance to correlation.

In that case we normalized by dividing the covariance by the two standard deviations. But ignorance
is additive as we saw in Note 7. So we should subtract.

So we define mutual ignorance as the co-ignorance minus the two marginal ignorances, IJS−IJ −IS .
The mutual information is the negative of this

IJ ;S = IJ + IS − IJS

and be careful! I’ve used the same letter I for both ignorance and information: use the semicolon
to flag the inversion of meaning.

For the first joint distribution (independent)

IJ ;S = lg 3 + lg 3 − 2 lg 3 = 0
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For the second (fully equivalent)

IJ ;S = lg 3 + lg 3 − lg 3 = lg 3

You can show that for the anticorrelated joint distribution

IJ ;S = lg 3 + lg 3 − lg 3 = lg 3

—the same!

Here is the interpretation. For uncorrelated data, the joint distribution allows us to infer nothing
about either distribution given the other.

For fully correlated data, the joint distribution tells us everything about either distribution given
the other.

For fully anticorrelated data, the joint distribution dispels exactly the same amount of ignorance.
Since ignorance derives only from the distribution and not from the underlying values, anticorrela-
tion cannot be distinguished from correlation in terms of ignorance.

11. Conditional distributions and ignorance. What is the joint histogram of Joe’s debts with
the sum of Joe’s or Sue’s debts?

1 2 3 2 1
Joe or Sue −2$ −1$ 0$ 1$ 2$

Joe 3 −1$ 1 1 1
3 0$ 1 1 1
3 1$ 1 1 1

If 1$ is owed Joe there is one way that 2$ is owed Joe or Sue (i.e., 1$ is also owed Sue); there is
one way that 1$ is owed Joe or Sue (i.e., 0$ is owed Sue); there is one way that 0$ is owed Joe or
Sue (i.e., −1$ is owed Sue: Sue owes 1$); and there are no ways that either −1$ or −2$ are owed
Joe or Sue. This explains the bottom line of the joint histogram. The other two lines are explained
similarly.

Note that the marginal histograms are the row and column sums of the joint histogram, respectively.

The same thing for max is even more useful for us. I am doing this to produce final histograms
with nonuniform marginals to motivate the discussion of conditional distributions.

1 3 5
Joe max Sue −1$ 0$ 1$
Joe 3 −1$ 1 1 1

3 0$ 2 1
3 1$ 3

Each of the rows of this joint histogram is itself a histogram, and has a corresponding distribution,
mean, variance and ignorance.

1 3 5
Joe max Sue −1$ 0$ 1$ µ σ2 I
Joe 3 −1$ 1/3 1/3 1/3 0 2/3 lg 3 = 1.58

3 0$ 2/3 1/3 1/3 2/9 lg 3 − 2/3 = 0.92
3 1$ 1 1 0 0

And for sum

1 2 3 2 1
Joe or Sue −2$ −1$ 0$ 1$ 2$ µ σ2 I

Joe 3 −1$ 1/3 1/3 1/3 −1 2/3 lg 3
3 0$ 1/3 1/3 1/3 0 2/3 lg 3
3 1$ 1/3 1/3 1/3 1 2/3 lg 3
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Now suppose we have a “black box”, which is an opaque device accepting inputs and responding
with outputs but having completely hidden inner workings. Suppose we are allowed to input Joe’s
debt and the black box responds with mean, variance and ignorance.

We would like to infer from the response what is going on inside the black box. Suppose

1

µ

σ

I

Joe 2

1.5839

0.6563

  0.0270

Of the two possible outputs from the or (+) and max conditional distributions corresponding to
Joe owing −1$, the output numbers look closer to those for max: −0.0270 is sort of 0, 0.6563 is
not far from 2/3, and 1.5839 is pretty close to lg 3. We might guess that the black box is generating
a certain quantity of numbers uniformly distributed over the values −1, 0 and 1, then taking the
max of the numbers it finds with the input and returning the three statistics.

A further test strengthens this hypothesis.

0

µ

σ

I

Joe 2

0.3350

0.9200

0.2228

Finally

1

µ

σ

I

Joe 2

1.7764e   15

0

1

These distributions are called conditional distributions because they are conditional on the selected
value of Joe’s debt.

d
max|J
jm = dJ,max

jm /dJ
j

=





1/9 1/9 1/9
2/9 1/9

3/9



 ./





1/3
1/3
1/3





=





1/3 1/3 1/3
2/3 1/3

1





The conditional distribution dmax|J is pronounced “distribution of the maximum given J”.

There is a transpose conditional distribution

d
J |max

jm = dJ,max

jm /dmax

m
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=





1/9 1/9 1/9
2/9 1/9

3/9



 ./(1/9, 3/9, 5/9)

=





1 1/3 1/5
2/3 1/5

3/5





with corresponding means (−1,−1/3, 2/5) (read down the columns for dJ |max as opposed to along
the rows as for dmax|J), variances (0,1/3,4/5) and ignorances (0, lg 3 − 2/3, lg 5 − (3/5) lg 3).

The ignorance associated with a conditional distribution may be called conditional ignorance and
written more explicitly Imax|J , say:

I
max|J
j =





lg 3
lg 3 − 2/3

0





“Conditional mean” and “conditional variance” are terms not generally used.

When the black box returns mean, variance and ignorance we can uniquely determine which of +.
×,∧, max or min is being generated (see the MATLAB blackboxes program in excursion “Black
boxes” for this Note). Only + and − are indistinguishable by these three measures.

⋆ ⋆ ⋆

Now let’s suppose the black box returns only means, and let’s do some “Bayesian inference” on our
experiment. If we start with some guess as to the likelihood of a certain cause (we’ll call this guess

a hypothesis, H) then evidence, E, will refine our guess through the conditional distribution dH|E .

A black box which generates one of the sum, difference, product, max or min of the number input
and an internally generated random value will give the following means for an input of −1.

+ − * max min

mean, µ−1 −1 −1 0 0 −1

For an input of 0 the means will be

+ − * max min

mean, µ0 0 0 0 1/3 1/3

And for an input of 1 the means will be

+ − * max min

mean, µ1 1 1 0 1 0

Check these out!

If we know only that the black box uses these five operators we should start by granting equal
likelihood to each of the five. Here is the marginal distribution (for the hypothesis as to which of
the five is being used) that we can construct from this supposition.

H + − * max min
dH 1/5 1/5 1/5 1/5 1/5
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Now suppose we input −1 to the black box. The possible means, µ−1, are, from above, −1 and 0.
We can use these, and how they are arrived at, to construct a joint distribution (for hypothesis H
and evidence E):

dHE H + − * max min
E : µ−1 −1 1/5 1/5 1/5

0 1/5 1/5

This joint distribution must be consistent with the marginal distribution, above, for H. It is easy
to invent in this case, because the resulting means have disjoint probabilities: the mean is either
−1 or 0 and cannot be both.

Finally, from the joint distribution, we have the other marginal distribution, for E.

E dE

−1 3/5
0 2/5

Hitherto we have been deriving both marginal distributions from the joint distribution. Here we
proceed by steps from the marginal distribution for the hypothesis to the joint distribution—which
is not necessarily unique—then to the marginal distribution for the evidence.

That is, dH is prior, dHE must be consistent, and dE can be derived.

What happens next is we put a −1 into the black box and see what comes out. Then we must
find the conditional distribution dH|E of the hypothesis given this evidence, so we can revise our
estimate of the likelihood of the hypotheses given the evidence of the value for the mean returned
by the black box.

dH|E H + − * max min
E : µ−1 −1 1/3 1/3 1/3

0 1/2 1/2

So, if we got −1 for µ−1 (i.e., for E) then we can revise dH to

H + − * max min
dH 1/3 1/3 1/3

from

H + − * max min
dH 1/5 1/5 1/5 1/5 1/5

On the other hand, if we had got 0, we would have made a similar revision, to

H + − * max min
dH 1/2 1/2

Let’s say we got µ−1 = −1 on our first probe of the black box, i.e., the first alternative. Then we
can refine our ideas by a second probe. Say we input the number 0.

(This won’t work with the program in the excursion. You’ll have to write your own secret program.)

Here is the step from marginal distribution for the hypothesis to joint distribution for hypothesis
and evidence. Since there are three possible results for the mean given 0 as input, −1/3, 0 and
1/3, we have three rows in the joint distribution. The possibilities are again disjoint so we can go
uniquely from the marginal to the joint distribution.

H + − * max min
dH 1/3 1/3 1/3
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dHE H + − * max min
E : µ0 −1/3 1/5

0 1/5 1/5 1/5
1/3 1/5

Well, I wrote it down completely, but since * and max could not have made the black box output −1
when −1 was input, I should have left these columns out and weighted the remaining probabilities
in dHE accordingly.

H + − min
dH 1/3 1/3 1/3

dHE H + − min
E : µ0 −1/3 1/3

0 1/3 1/3

Then

dH|E H + − min
E : µ0 −1/3 1

0 1/2 1/2

If the evidence from this second probe was µ0 = −1/3 then we can revise

H + − * max min
dH 1/3 1/3 1/3

To

H + − * max min
dH 1

and we have discovered that the black box has been giving us min.

On the other hand, let’s suppose that the alternative evidence resulted, µ0 = 0. Then the revised
dH is

H + − * max min
dH 1/2 1/2

So we do a third probe of the black box, using 1 as input. The possible means are, we found above,
0 and 1.

dHE H + − * max min
E : µ1 0 1/5 1/5

1 1/5 1/5 1/5

or, since the first two probes eliminated all but two, this should be

dHE H + −
E : µ0 0

1 1/2 1/2

and we calculate

dH|E H + −
E : µ0 0

1 1/2 1/2
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We’ve run out of probes and so we’re left with being unable to distinguish + from − using means.
(We saw earlier that variances or ignorances cannot distinguish them either.) So we stop, But we
have refined the hypothesis likelihoods significantly.

⋆ ⋆ ⋆

We do not always have the luxury of being able to figure out dHE . Sometimes we know only dE|H

and must derive dH|E from this.

“Bayes’ theorem” says

dH|E = dE|H . × dH ./dE

where I am using MATLAB notation to indicate multiplication and division element-by-element,
rather than of whole matrices.

Furthermore we also might not know dE, say. But we can show

dE = dE|HdH

where this time the multiplication is matrix multiplication.

I’ll illustrate both of these assertions using the first example of this Note, where H is max and E
is J . (Because dmaxJ is not as clearly the joint distribution as is dHE where we have only single
letters, I’ll write the joint distribution with a comma: dmax,J .)

dmax,J = dJ |max. ∗ dmax

=





1 1/3 1/5
2/3 1/5

3/5



 . ∗ (
1

9
,
3

9
,
5

9
)

=





1/9 1/9 1/9
2/9 1/9

3/9





Then

dmax|J = dmax,J ./dJ

=





1/9 1/9 1/9
2/9 1/9

3/9



 ./





1/3
1/3
1/3





=





1/3 1/3 1/3
2/3 1/3

1





Which illustrates Bayes’ theorem.

To illustrate the second assertion from this same example

dJ = dJ |maxdmax

=





1 1/3 1/5
2/3 1/5

3/5



 .





1/9
3/9
5/9





=





1/3
1/3
1/3





These two assertions form the basis of “Bayesian inference”. Let’s apply them to a classical problem
of disease diagnosis (adapted on 09/9/30 from en.wikipedia.org/wiki/Bayesian-inference).

Suppose we are testing (E) for a disease (H) which every tenth person has.
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H d d′

dH 1/10 9/10

Suppose statistics are known to say that if you have disease (d) your test will be positive p nine
times out of 10, and if you don’t have it (d′) your test will be positive two times out of ten.

dE|H H d d′

E p 9/10 2/10
n 1/10 8/10

(Of course, the test coming out negative—which is good news for you but apparently bad news for
the medical profession—is complementary to it coming out positive. We see here the typical dE|H ,
that the columns, but not the rows, sum to 1.)

Now

dE = dE|HdH

=

(

9/10 2/10
1/10 8/10

)(

1/10
9/10

)

=

(

27/100
73/100

)

and

dH|E = dE|H . ∗ dH ./dE

=

(

9/10 2/10
1/10 8/10

)

. ∗ (
1

10
,

9

10
)./

(

27/100
73/100

)

=

(

9/100 18/100
1/100 72/100

)

./

(

27/100
73/100

)

=

(

1/2 2/3
1/73 72/73

)

(Now the rows, but not the columns, sum to 1.)

Let’s think about “false positives”. That is, the element (p, d′), which gives the probability that
you do not have the disease but get a positive result anyway.

Looking at dE|H you might think this is 20%. But dH|E tells us it is 67%.

“False negatives” on the other hand are much less likely than you might have supposed: 1/73
instead of 10%.

These two counterintuitive results stem from the relative rarity of the disease. The rarer it is the
more extreme the discrepancy.

Bayesian inference is controversial. It can be used to refine a vague guess as to a distribution into
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something more precise, but beware GIGO (garbage in, garbage out).

12. A gas simulation 1: the collisions

13. A gas simulation 2: statistics

14. The Boltzmann and Maxwell distributions.

15. Fluctuations, variations and samples.

16. Entropy.

17. Temperature.

18. Pressure.

19. State function for monatomic gases.

20. Thermostatic equations of state.

21. More on multivariate slopes.

22. Work and heat.

23. Correlation.

24. Collision theory.

25. Mobility, diffusivity and Brownian motion.

26. Three potentials and dissipation.

27. Active transport and biochemistry.

28. Combined transport.

29. Phase transitions.

30. Phase transitions in random graphs.

31. Point-to-point resistance in a network.

32. Van der Waals.

33. Sublimation.

34. Ferromagnets.

35. Particle individuality and Bose-Einstein condensation.

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. My sources for the two stories in Note 1 are [vB98, pp.157–8] and [Hoy60, p.211]. The first
is a wonderful book on the history and ideas behind thermodynamics. The second is science
fiction by an outstanding physicist and cosmologist. Look them up. What does Alexandrov,
the character in The Black Cloud who makes the argument about the golf ball, have to say
earlier on about correlation versus prediction in science?

2. When somebody puts a hair on the diary cover to detect if a sibling has been snooping, is
the hair-and-diary an ordered system?

3. a) What is the sum of the temperature histogram with itself? The difference? The product?
b) What is the sum of

# ways 1 1 1
value 1 2 3
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with itself?

c) What is the sum of
# ways 1 1 1
value −2$ 0$ 2$

and
# ways 1 1 1
value 1$ 2$ 3$

?

4. Here is a different take on the product of histograms. How does this relate to the sum of
histograms in Note 2?

1 1 1
* 1

2 1 2

1 1
2

1
4

1
2 1

1 1 1
2 1 2

1 2 1 2 4

and

1 2 3 2 1
* 1

4
1
2 1 2 4

1 1
4

1
16

1
8

1
4

1
2 1

2 1
2

1
8

1
4

1
2 1 2

3 1 1
4

1
2 1 2 4

2 2 1
2 1 2 4 8

1 2 1 2 4 8 16
If there are enough of these, what is the limiting distribution?

5. Not all distributions are symmetric. The binomial distribution concerns positive values only.
Here, for two arbitrary probabilities, p and q, which must sum to 1, is the beginning of its
construction (by histogram addition). (I’ve picked values 1 and 2 arbitrarily.)

p q
+ 1 2

p 1 2 3
q 2 3 4

* p q
1 2

p 1 p2 pq
q 2 pq q2

a) What is the resulting histogram?
b) Explore further sums of this histogram with itself.
c) What about differences?

6. histogArith(hist1,op,hist2). Write a MATLAB program to calculate the sum of two ar-
bitrary histograms, and to plot the result. We will need this in Note 6, but you can start
working on it after working through Note 2.
Hint. Use an extended histogram, which includes zero entries in the # ways row, to accumu-
late results and for the plot. Then compress it to eliminate the zero entries. E.g.,

# ways 2 3 1
value −4 0 1

+
# ways 1 4 2
value 1 2 3

gives an extended histogram from −3 (= −4 + 1) to 4 (= 1 + 3). This is initialized to zeros,
then products of # ways are added for each of the second set of values, for each of the first
set of values at a time.

value −3 −2 −1 0 1 2 3 4
# ways 0 0 0 0 0 0 0 0
2 −4 2 8 4
3 0 3 12 6
1 1 1 4 2
# ways 2 8 4 0 3 13 10 2

⇓
# ways 2 8 4 3 13 10 2
value −3 −2 −1 1 2 3 4

(Adaptations for the ranges of the extended histogram will allow this to work for subtraction,
multiplication, max and min of histograms, too. What other histogram operations can you
invent?)

7. What is ∆v in Note 3 for converting a distribution of 7 values, over −1 to 1, to the continuous
density?
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8. What is the difference between the mean of the numbers in the two sets {1,2,3} and {1,4},
and the mean of the means in each set? What if the second set were {1,3,4}? {1,3}?

9. For the distribution

1/4 1/4 1/2
−1 0 1

show that the variance σ2 = 3/4, the coefficient of skewness is 2/(3
√

3) and the kurtosis is
−5/3.

10. Confirm that slopev(1 + v + v2/2! + v3/3! + ..) = 1 + v + v2/2! + v3/3! + .. and so that
antislopev(1 + v + v2/2! + v3/3! + ..) = 1 + v + v2/2! + v3/3! + ..

11. a) Using the moment generating function etv show that the k − 1st moment of the uniform
density 1/(b − a) from a to b is

bk − ak

k(b − a)

and hence µ = (b − a)/2 and σ2 + µ2 = (b2 + ba + 2a)/3 (so σ2 = (b − a)2/12).
b) From this show that the density is uniquely determined by the first two moments and in
particular by µ and σ.
c) Work out the k − 1st moment in terms of µ and σ.

12. Mean, median, mode. The mean, µ, is a measure of “central tendency”—an indication of
where the centre of the distribution is.
Two other important measures of central tendency are the mode and the median. The mode
is the location of the peak of the distribution. The median is the location of the middle
element of the distribution. Note that mode and median both occupy actual values of a
discrete distribution, while the mean may be any number.
Draw the histogram

occurrences 2 1 1 1
value 2 3 10 18

and show for it that

mode median mean
2 3 7

If these were salaries, in hundreds of dollars per week, would it be correct to tell a prospective
employee that the average salary is 700 $ per week? Given that the CEO makes 1800 $, the
chair of the board makes 1000 $, the secretary makes 300 $ and the workers make 200 $ each,
would it be fair to tell the prospective worker that the average is 700 $? What would be the
honest answer to the inquiry?
Look up the story by Martin Gardner [Gar82, p.114] highlighting the “paradox” of “average”.
(“Median” generalizes to “quantile”, in that the median is the 1/2 quantile: the sum of the
histogram occurences up to value 3, but not including it, is 2; the sum above it is also 2, so
value 3 is the middle. The sum up to 10 but not including it is 3 so the 3/4 quantile (“3rd
quartile”) occurs at value 10. (This notion is imprecise, but more precise for continuous
distributions, i.e., densities [MGB74, p.73].) An equivalent to “quantile” is “percentile”, with
appropriate scaling: the median is the 50th percentile.)
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13. Geometric and harmonic means. The mean we’ve discussed so far is the arithmetic mean
of n numbers

µA =
1

n

n
∑

j=1

vj

The geometric mean

µG = (
n
∏

j=1

vj)
1/n

tells, for instance in the case n = 2, the side of a square having the same area as a rectangle
of sides v1 and v2, or in the case n = 3, the side of the cube having the same volume as a
rectangular hexahedron of sides v1, v2 and v3.
The harmonic mean

µH =
n

∑n
j=1

1
vj

is used for rates and ratios.
a) What is the average rate of interest over three years if v1 = 5%, v2 = 8% and v3 = 3% for
each of three successive years, respectively? By how much does this differ from the arithmetic
mean?
b) If you drive 10 km at 50 km/hr then 10 more km at 100 km/hr, what is your average
speed?

14. Show that the matrix M =
∑

k wk ~vk
~vT
k , for any set of orthonormal vectors, ~vk, has ~vk as

eigenvectors (Week 9 Note 1) with wk as corresponding eigenvalues.

15. For any matrix A and any normalized vector ~v show that

~v∗T = Tr(~v ~v∗TA = Tr(ρA)

for the density matrix ρ = ~v ~v∗T.

16. What are the expected values for rotation by angle β about the z-axis for state (1/
√

3, 1/
√

3, 1/
√

3)?
(1/

√
4, 1/

√
2, 1/

√
4)? (i/

√
2, 0, −i/

√
2)?

17. In a (1-number) state (p, q), what are the expected values of the three Pauli matrices (Week
6 Note 3)?

18. Are the sums and products of density matrices themselves density matrices? Hint: multiply
(I + σx)/2 and (I + σy)/2 where σx and σy are Pauli matrices (Week 6 Note 3).

19. Density matrices were proposed by John von Neumann in his book [vN55]. We’re not ready
for that book yet but you can check out some of the many stories about him. Are the following
two true or apocryphal?
a) During the Manhattan project, Fermi, von Neumann and Feynman were doing a calculation
together. Feynman took to his calculator. Fermi whipped out the slide rule he always carried.
Von Neumann looked at the ceiling. Von Neumann got the answer first.
b) Two trains approach each other (each on its own track) each doing 40 km/hr. When
they were 1 km apart a bee left the front of one, flew to the other at 120 km/hr, turned
immediately on encountering the second, flew back to the first at 120 km/hr, and kept back
and forth at this speed until the moment the fronts of the trains passed each other. How
many km did the bee fly?
This problem can be solved in two ways. A physicist would supposedly calculate the time
it takes for the trains to meet then calculate how far the bee can fly in that time. This can
be done mentally. A mathematician, again supposedly, would find the series and sum it, an
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exercise usually needing pencil and paper.
When tested with this problem, von Neumann looked at the ceiling then promptly gave the
correct answer. “Aha! You’re a physicist at heart.” But when the reason for this conclusion
was explained, von Neumann said “Oh, no, I summed the series.”

20. I really cheated in arguing in Note 6 that the moment generating function of the sum of m

distributions tends to eσ2t2/2 because I omitted higher powers of t in (1+σ2
1t

2/2!+ ..)m. Show
for m uniform distributions that these higher powers of t are all divided by higher powers of
m and so can be neglected.

21. Notation. a) The argument showing I2 = πa in Note 6 was quite long, involving careful
thinking at each step. The length was because of this careful thinking. I’d like to show you
how good notation actually captures operations of thought and can make the argument much
shorter.
The slope/antislope notation I’ve been using is my own, and is not as good as the standard
notation in calculus. Its advantage is that it requires explicit thought at each step, and this
is very important for beginners. But it is a crutch which you can eventually throw away.

Standard notation writes df(x)
dx for slopexf(x) and

∫

f(x)dx for antislopexf(x). Here is the

I2 = πa argument from Note 6 in standard notation. (It is a slight adaptation of the footnote
in [FLS64, p.40-6].)

I =

∫ ∞

−∞
e−x2/adx

I2 = (

∫ ∞

−∞
e−x2/adx)(

∫ ∞

−∞
e−y2/ady)

=

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/adxdy

=

∫ ∞

0
e−r2/a2πrdr

= −πa

∫ ∞

0
e−sds

= πa

Only the swap of sum and product, the change of variables from x and y to r and the
subsequent change from r2/a to s are given explicitly in this version of the argument. The
Fundamental Theorem of Calculus is embedded in the notation, especially in the appearance

of dx, dy, dr and ds in the “integrals” (antislopes). We don’t even see the use of df(x)
dx as the

slope, but it is implicit in ds = 2rdr.
The importance of good notation is captured by Alfred North Whitehead

Civilization advances by extending the number of important operations which we
can perform without thinking about them. Operations of thought are like calvary
charges in battle—they are strictly limited in number, they require fresh horses,
and must only be made at decisive moments.

quoted by Strachey [Str66]. Strachey never explicitly cites this introductory quotation nor
says why he quotes it, but the implication of the article is that a good notation, and in
particular a good programming language, captures past operations of thought thus saving us
repeating them.
Without looking back at the text, use the above to reproduce the argument of Note 6.
b) Language is also, among other aspects, notation, and grammar can incorporate important
knowledge. For example “I teach you” is grammatical; “I learn you” is not. “Teach” is a
transitive verb, but the intransitivity of “learn” (strictly speaking, ambitransitivity: “learn”
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can also take an object as in “learn French”) indicates the gap between teaching and learning:
you must do the learning yourself. “Learn” is also an active verb, and the passive form, “you
were learned by me”, is not grammatical.
Is the grammar for “to learn” correct? Try to find counterexamples to the idea that you can
only learn by doing. When did you ever really learn by not doing anything?
(Syntax cannot be counted on to correct every error. It allows oxymorons such as “win
the war” and “unshared language”, and could never eliminate one-word oxymorons such as
“object” and “jihad”. Could some of this be fixed?)

22. For a non-central normal distribution the density is

1√
2πσ2

e−(v−µ)2/(2σ2)

Work out the first four moments, showing in particular that µ is the mean and σ2 the variance.

23. When there is a moment generating function, the moments completely determine the density
or distribution. This is reminiscent of the way the Fourier transform (Week 9) completely
determines the original function.
The Fourier transform maps a function written in terms of position, x, say, to a representation
in terms of frequency, ω.
The moments might be thought of as describing the density in terms of the basis 1, x, x2, x3, ..
This is not exactly so, because the moments in fact are the antislopes over a fixed range of
the product of density and 1, x, x2, x3, ..
But the idea is suggestive and I’d like to explore in this excursion the “basis” 1, x, x2, x3, .. of
an infinite-dimensional space of functions.

The most important operation on a set of vectors, ~a,~b, .. which may form a basis of a “vector

space” is the inner or dot product, ~a •~b, ... This determines if the vectors are orthogonal to

each other, in which case, ~a •~b = 0. In general, ~a •~b is the length of the projection of ~a onto
~b and of ~b onto ~a.
It also allows us to construct orthogonal vectors if they are not already orthogonal.

Starting with ~a as a not necessarily normalized basis vector we would like to map ~b into ~b′

orthogonal to ~a.

We do this by subtracting from ~b its projection on ~a

~b′ = ~b − ~a •~b

| ~a |2~a
ab.a

  a 2
a

b
b’

If the space has higher dimensions, so that there is a vector ~c not coplanar with ~a and ~b′, we

can find ~c′ orthogonal to both ~a and ~b′ by a similar process.

~c′ = ~c − ~c • ~b′

| ~b′ |2
~b′ − ~c • ~a

| ~a |2~a

And so on.

~d′ = ~d −
~d • ~c′

| ~c′ |2
~c′ −

~d • ~b′

| ~b′ |2
~b′ −

~d • ~a

| ~a |2~a

This process is called Gram-Schmidt orthogonalization.
We are going to find that 1, x, x2, x3, .. are not “orthogonal” to each other. We will need to
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define an “inner product” < f(x), g(x) > of two functions f(x) and g(x), akin to < ~a,~b >= ~a•~b
for vectors.
The vector inner product just sums the product of coefficients

~a •~b =
∑

j

ajbj

a) So it is plausible that a functional inner product will be given by the area under the product
of the functions

< f(x), g(x) > =
∑

x

f(x)g(x)∆x

= antislopef(x)g(x)

Since the inner product is a number, not a function itself, we should take this antislope over
a definite range of values of x.
Let’s start with the range −1 to 1, which we used for uniform distributions.

< 1, x >= antislopex1 × x |1−1=
x2

2

∣

∣

∣

∣

∣

1

−1

= 0

So 1 and x are orthogonal according to the inner product.
Similarly, x and x2 are orthogonal.

< x, x2 >= antislopexx × x2 |1−1=
x4

4

∣

∣

∣

∣

∣

1

−1

= 0

Show that < j | k >=< xj , xk >= 0 for any j + k odd.
But 1 and x2 are not orthogonal.

< 1, x2 >= antislopex1 × x2 |1−1=
x3

3

∣

∣

∣

∣

∣

1

−1

=
2

3

So we need to make a function out of x2 which is orthogonal to both 1 and x. We’ll call it
L2(x).
(We’ll let L0(x) = 1 and L1(x) = x.)

L2(x) = x2 − < x2, L1(x) >

< L1(x), L1(x) >
L1(x) − < x2, L0(x) >

< L0(x), L0(x) >
L0(x)

= x2 − < x2, x >

< x, x >
x − < x2, 1 >

< 1, 1 >
1

= x2 − 0x − 2/3

2
1

= x2 − 1

3

where you should show that < 1, 1 >= 2.
Two changes before we go on: first, we’ll drop the (x) after the functions Lj, Lk in < Lj , Lk >,
just to keep it shorter; second we’ll stop writing every second term, which you should show
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always has j + k odd and so is zero.

L3(x) = x3 − < x3, L1 >

< L1, L1 >
L1(x)

= x3 − antislope x3 × x |1−1

antislope x × x |1−1

x

= x3 − x5/5 |1−1

x3/3 |1−1

x

= x3 − 3

5
x

L4(x) = x4 − < x4, L2 >

< L2, L2 >
L2(x) − < x4, L0 >

< L0, L0 >
L0(x)

= x4 − (
x7/7 − x5/15) |1−1

(x4/5 − 2x3/9 + x/9) |1−1

(x2 − 1

3
) − x5/5 |1−1

2
1

= x4 − 6

7
x2 +

6

21
− 1

5

= x4 − 6

7
x2 +

3

35

These calculations will get larger and larger because Lk will have k projections on Lk−1, .., L0

to be subtracted. (Well, half of them are zero, but it’s still long.) Let’s see if there is a
shortcut.
Try

Lk = xLk−1 − ckLk−2

L2 = xL1 − c2L0

= x2 − c2

L3 = xL2 − c3L1

= x(x2 − 1

3
) − c3x

= x3 − (c3 +
1

3
)x

L4 = xL3 − c4L2

= x(x3 − 3

5
x) − c4(x

2 − 1

3
)

= x4 − (c4 +
3

5
)x2 +

c4

3

By comparing these with what we found previously we see
c2 = 1

3 which we used in L3

c3 = 3
5 − 1

3 = 22

5×3 which we used in L4

c4 = 32

7×5 which we could use in L5

and here we spot a pattern.
If

ck =
(k − 1)2

(2k − 1)(2k − 3)

then we have a much shorter way of finding all the Lk(x).
These are a variant of the Legendre polynomials that are normalized so that the leading
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coefficient is 1.
[Wei09] tells us that, starting with

P0(x) = 1

P1(x) = x

and given a polynomial inner product < f, g >=< f(x), g(x) >, then

Pk+1(x) = (x − < xPk, Pk >

< Pk, Pk >
)Pk(x) − < Pk, Pk >

< Pk−1, Pk−1 >
Pk−1(x)

This is a recurrence relation involving only the previous two polynomials, instead of all k + 1
previous. Check that it works for the Legendre polynomials.
b) If we extend the range to −∞ to ∞, which is used in the normal distribution, simple
integration will give infinite answers: try, say,

antislope x2 |∞−∞

So we must modify our definition of the inner product to unclude a weight function which will
keep things small out at the extremes. To beat down a polynomial we’ll need an exponential,
and to beat it down in both positive and negative directions, it must be exponential in x2.

Try e−x2/2:

< f, g >=< f(x), g(x) >= antislope f(x)g(x)e−x2/2 |∞−∞
Now we need the calculus we’ve developed in Note 6: for present calculations we can just set
σ = 1.

< 1, x >= antislope 1 × xe−x2/2 |∞−∞= 0

and < j | k >=< xj , xk >= 0 for j + k odd, as we saw in Note 6.

< x, x >=< 1, x2 >= antislope x2e−x2/2 |∞−∞=
√

2π

So 1 and x2 are not orthogonal, again. We must create a polynomial orthogonal, under the
new definition, to both 1 and x. We’ll call it H2(x) (with H0(x) = 1,H1(x) = x).

H2(x) = x2 − < x2,H1 >

< H1,H1 >
H1(x) − < x2,H0 >

< H0,H0 >
H0(x)

= x2 − < x2, x >

< x, x >
x − < x2, 1 >

< 1, 1 >
1

= x2 − 0x − antislope x2e−x2/2 |∞−∞
antislope e−x2/2 |∞−∞

1

= x2 − 1

H3(x) = x3 − < x3,H1 >

< H1,H1 >
H1(x)

= x3 − antislope x4e−x2/2 |∞−∞
antislope x2e−x2/2 |∞−∞

x

= x3 − 3
√

2π√
2π

x

= x3 − 3x

H4(x) = x4 − < x4,H2 >

< H2,H2 >
H2(x) − < x4,H0 >

< H0,H0 >
H0(x)

= x4 − 6x2 + 3
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Check that Hk(x) = xHk−1(x) − (k − 1)Hk−2(x)
Check that this is also given by the [Wei09] recurrence relationship.
These are the variant of the Hermite polynomials that are normalized so the leading coefficient
is 1. We saw other variants in Book 8c Note 39.
Both the Legendre and the Hermite polynomials form orthogonal bases for infinite-dimensional

function spaces. They have different ranges (−1 : 1,−∞ : ∞) and weight functions (1,e−x2/2),
respectively.
c) Other ranges and weight functions lead to other sets of orthogonal polynomials. Look some
up.

24. What functions other than negative logarithms have values at 0 and 1 that would make them
suitable for surprisal?

25. What is the surprisal of each of 27 values uniformly distributed?

26. Where is the maximum of −x ln x? −x lg x? Plot them on your calculator and also find the
max.

27. Just as the curtain rises on the dancers, two and a half minutes into Igor Stravinski’s “Le
Sacre du Printemps”, he sounds an arpeggio of four E-minor notes with the conventional
4/4 rhythm 1 2 3 4. Twenty seconds later, these notes are played as a chord along with the
corresponding E-major chord, with the surprising rhythm 1 2 3 4 5 6 7 8. This is immediately
followed by more repetitions of the chord with the emphasis on the second beat and further
surprises 1 2 3 4 5 6 7 8 / 1 2 3 4 5 6 7 8. We would now expect 1 2 3 4 5 6 7 8 but instead
we next hear 1 2 3 4 5 6 7 8. Discuss this development in terms of surprisal.
(This astute musical analysis must make me look pretty good, so I’ll say I got it all from
Robert Harris on Michael Enwright’s Canadian Broadcasting Corporation “Sunday Edition”
on Sept. 27 2009. I had to run my recording into a visual display before I could count the
rhythms. Harris went on to point out that the 1913 premier of this ballet, which triggered a
riot in the audience, anticipated the outbreak of World War I fifteen months later, which the
artist in Stravinski foresaw and which probably accounts for the violence of the reception.)

28. “It’s a crime for a man to go philandering/and fill his wife’s poor heart with grief and doubt/..”
I originally wanted to use “doubt” for “ignorance”, so invent an example for this and anal-
yse it in terms of “doubt”, i.e., ignorance in the technical sense. The rest of this verse is
also apposite. Dig up George Bernard Shaw’s Cinderella story “Pygmalion” in its musical
incarnation “My Fair Lady”, particularly the performance of the song by Stanley Holloway.

29. a) An abstraction throws away information considered to be irrelevant. What does this do to
ignorance?
b) A theory could be thought of as a compressing of all the empirical data that could be
deduced from it. Does compression change ignorance? Consider both lossy and lossless
compression.
c) Speculate, in terms of ignorance increasing, about the immolation of Black Clouds in Fred
Hoyle’s novel of the same name when they get too close to solving the “deep problems” of
the universe [Hoy60, pp.203–4].

30. If Stu never removes a tool (or always replaces it before Dad gets home), what is Dad’s
ignorance (Note 8)?

31. Occasionally Stu is on his way to his room with the pliers when Mom calls “Drop everything!
Supper’s ready”. So he drops them in the hall. What happens to Dad’s ignorance? Suppose,
say, that this happens once a week, with the other likelihoods, S and W, remaining equal to
each other.
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32. Mom had only an arithmetic calculator with her on the train, so she had to calculate β = ln(x)
for x = 1.2874 (the last step in Mom’s exercise of calculating the probablities in Note 8) by
using

ln(1 + q) = q − q2

2
+

q3

3
− q4

4
+ ..

She even had to remind herself of this series by showing that it is the series that inverts

er = 1 + r +
r2

2!
+

r3

3!
+

r4

4!
+ ..

(That one is easy to remember because slopere
r = er.)

Having read these three steps, put this text aside and reproduce Mom’s calculation on your
own.

33. Increasing ignorance. This excursion shows ignorance increasing as Dad forgets details
from Note 8. Consider three independent tools, starting with frequencies

W S
1 1/6 5/6
2 2/3 1/3
3 1/4 3/4

a) Show that the combined frequencies for demerit points are

0 1 2 3
(3W) (2W1S) (1W2S) (3S)
2/72 17/72 38/72 15/72

for an average demerit of 23/12 and a ignorance of 1.1044
b) Show that the constrained maximization performed by Mom in Note 8 gives x = e−b, ea =
Z = 1 + x + x2 + x3 and p0 = 1/Z, p1 = x/Z, p2 = x2/Z, p3 = x3/Z. Show that the average
demerit is thus (x + 2x2 + 3x3)/(1 + x + x2 + x3) = 23/12 so 0 = 13x3 + x2 − 11x − 23.
Solve this using MATLAB to give x = 1.4112 and Z = 7.2616 so the probabilities are
p0 = .1386, p1 = .1993, p2 = .2761, p3 = .3896 giving ignorance = 1.3157, β = −0.3444 and
α = 1.9758.
c) Now suppose Dad also remembered p3 = 15/72. Confirm the following. 1 = p0 + p1 +
p2 + p3 = (1 + x + x2)/Z + 15/72 so 1/Z = (57/72)/(1 + x + x2), 138/72 = 23/12 =
p1 + 2p2 + 3p3 = (x + 2x2)/Z + 45/72 so 93/72 = (x + 2x2)/Z, i.e., 0 = 21x2 − 36x − 93
so x1 = 3.1294, Z1 = 17.5866 and probs1 = (.0569, .1779, .0554, 15/72). This gives finally,
ignorance = 1.1230, β = −1.1408 and α = 2.8671.
d) Put these three results together in a progression of increasing ignorance as Dad remembers:
all frequencies, the average and p3, and the average only. (The more Dad forgets the greater
his ignorance.)

34. My discussion of maximizing ignorance to give the partition function is based on 1957 work
by E T Jaynes, cited by [Rob93, p.5]. This book assumes familiarity with statistical physics
and will be frustrating reading for a beginner. But it is worth dipping into in many places
and should provide some further insights even at this level.

35. a) Does ignorance really never decrease? “The rich get richer and the poor get poorer”:
invent an example for this and see if ignorance decreases in your analysis. b) It is said that
the more we know the more questions we have. Discuss this in terms of increasing ignorance.
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36. We can use Mom’s maximization of ignorance in Note 8 to invert the process of going from
probabilities (frequencies) to moments and go instead from moments to probabilities. Let’s
work an example in which we do not have a complete set of moments.
Consider the values 3, 1, 2, 4, 2, for which the first three moments are 12/5, 34/5 and 108/5.
There are four different values, the set {1, 2, 3, 4}.
a) To maximize the ignorance

p1 ln p1 + p2 ln p2 + p3 ln p3 + p4 ln p4

subject to

p1 + p2 + p3 + p4 = 1

1p1 + 2p2 + 3p3 + 4p4 =
12

5

1p1 + 4p2 + 9p3 + 16p4 =
34

5

1p1 + 8p2 + 27p3 + 64p4 =
108

5

show that

Z = e−β−γ−δ + e−2β−4γ−8δ + e−3β−9γ−27δ + e−4β−16γ−64δ

12

5
Z = e−β−γ−δ + 2e−2β−4γ−8δ + 3e−3β−9γ−27δ + 4e−4β−16γ−64δ

34

5
Z = e−β−γ−δ + 4e−2β−4γ−8δ + 9e−3β−9γ−27δ + 16e−4β−16γ−64δ

108

5
Z = e−β−γ−δ + 8e−2β−4γ−8δ + 27e−3β−9γ−27δ + 64e−4β−16γ−64δ

where α−1, β, γ and δ are the four Lagrange multipliers, and α is represented by the partition
function Z = eα as Mom found out in Note 8.
b) Divide every term by e−β−γ−δ and show that the following equations must be solved





2 − 12/5 3 − 12/5 4 − 12/5
4 − 34/5 9 − 34/5 16 − 34/5
8 − 108/5 27 − 108/5 64 − 108/5









e−β−3γ−7δ

e−2β−8γ−26δ

e−3β−15γ−63δ



 =





1 − 12/5
1 − 34/5
1 − 108/5





giving




e−β−3γ−7δ

e−2β−8γ−26δ

e−3β−15γ−63δ



 =





2
1
1





c) That was step 1. Now take the logarithm and show that the following equations must now
be solved.





1 3 7
2 8 26
3 15 63









β
γ
δ



 =





ln 2
0
0





giving




β
γ
δ



 =





−6.5849
2.7726

−0.3466
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d) From this, show that the numerators of the probabilities are exponentials of









1 1 1
2 4 8
3 9 27
4 16 64













β
γ
δ



 =









4.1589
4.8520
4.1589
4.1589









giving








64
128
64
64









and hence probabilities








.2

.4

.2

.2









Show that the ignorance is thus 1.3322 (using ln).
e) That was step 2. To check the final answer, confirm that the three moments are indeed





1 2 3 4
1 4 9 16
1 8 27 64













.2

.4

.2

.2









=





12/5
34/5
108/5





f) Note that this approach does not always work:
If we had only two moments, we would have two equations in two unknowns, say β and γ, but
breaking the solution into two steps causes the first matrix problem to be underdetermined
with two equations in three unknown exponentials, e−β−3γ , e−2β−8γ and e−3β−15γ . Check this
claim.
If we had all four moments, we would have four equations in four unknowns, β, γ, δ and, say,
ε, but the first matrix problem would be overdetermined: four equations in three exponential
unknowns.
So we need a way to do the solution in one step, not the two we used for this excursion.
If we have n different values and know m moments, how must m and n relate in order for us
to use the above two-step solution?

37. Newton’s method 1. This is motivated by the previous excursion, but is self-contained.
Given the values, 3, 1, 2, 4, 2, for which the first three moments are 12/5, 34/5 and 108/5,
let’s try to reconstruct the probabilities (0.2, 0.4, 0.2, 0.2) for the four different values 1, 2,
3, 4, respectively, assuming we know only the first moment, 12/5.
a) Show that

Z = e−β + e−2β + e−3β + e−4β

12

5
Z = e−β + 2e−2β + 3e−3β + 4e−4β

so that we must solve

0 = (1 − 12

5
)e−β + (2 − 12

5
)e−2β + (3 − 12

5
)e−3β + (4 − 12

5
)e−4β

or, simpler,
0 = −7 − 2e−β + 3e−2β + 8e−3β
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b) This is a bit more elaborate than, say, a quadratic equation for which we know a simple
formula. So we introduce Newton’s method.
Isaac Newton (1642–1727) invented the calculus and found a way to find, in principle, the
zeros of any expression.
Newton’s idea is easy to visualize (see Week v Notes 1–5). We have a known curve, f(x),
whose zero (where it crosses the x-axis) we want to find. So we guess at a value of x which
might be the zero, or at least close to it, and we call this guess x1.
The slope of the curve, slope f (or slopexf(x)), approximately obeys the relation

(slopef)x1
∆x = f(x1)

if ∆x is the x-distance between the guess x1 and x0 (which is what we are looking for), where
the function goes to zero, f(x0) = 0.
So if we solve this equation for ∆x (in MATLAB notation)

∆x = (slopef)x1
\f(x1)

we can change our guess by ∆x to
x2 = x1 − ∆x

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−10

−5

0

5

10

15

20

25

30

35

f(x
0
)=0

x
0

∆ x

f(x
1
)

f(x)

x
1

The figure shows why we must have the minus: the slope of the curve in the figure (it is just
the above expression we are trying to solve for β) is negative, so ∆x ≈ x1 − x0 is negative if
our first guess is x1 as shown. So to advance to where the black line crosses the x-axis in the
figure (about 0.08) we must subtract ∆x from x1

x0 ≈ x1 − ∆x ≈ x1 − (x1 − x0)

If we keep repeating this process, x1 → x2 → x3 → .., eventually we should get close enough
to x0. Let’s try it for the probability problem, starting with β = 0 as our first guess.
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First we need slopeβ for the function

f(β) = 8e−3β + 3e−2β − 2e−β − 7

= (−2, 3, 8)





e−β

e−2β

e−3β



− (7)

slopeβf = ff (β) = (−2, 3, 8)





−e−β

−2e−2β

−3e−3β





Now calculate:

β f ff ∆β = ff \f
0 2 −28 −0.0714

0.0714 0.1955 −22.7100 −0.0086
0.0800 0.0024 −22.1434 −1.1055 × 10−4

0.0801 3.9725 × 10−7 −22.1362 −1.7946 × 10−8

That converged to four decimal places for β in four iterations. You can see that each successive
∆β is approximately the square of its predecessor: Newton’s method converges “quadrati-
cally”.
c) Now work out the probabilities, starting with the numerators.

pnum = (e−β , e−2β , e−3β , e−4β)

and divide by Z

prob =
pnum

sum(pnum)

= (0.2808, 0.2592, 0.2392, 0.2208)

Compare our ignorance

ign = −sum(prob. × log(prob))

= 1.3823

with our ignorance in the previous excursion, where we assumed we knew three moments, not
just one.
Finally, check the moments

moments =





1 2 3 4
1 4 9 16
1 8 27 64



× prob ′ =





2.4000
7.0032
22.9440





The moment we started with (12/5 = 2.4) comes back exactly. The other two are not bad.

38. Newton’s method 2. Here is a more advanced form of Newton’s method, which we can
motivate by supposing we are given two moments, 12/5 and 34/5, for the set of values 1, 2,
3, 4 from the previous two excursions.
a) Show that

Z = e−β−γ + e−2β−4γ + e−3β−9γ + e−4β−16γ

12

5
Z = e−β−γ + 2e−2β−4γ + 3e−3β−9γ + 4e−4β−16γ

34

5
Z = e−β−γ + 4e−2β−4γ + 9e−3β−9γ + 16e−4β−16γ
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so we must solve (simplified as in the previous two excursions)

(

0
0

)

=

( −2 3 8
−14 11 46

)





e−β−3γ

e−2β−8γ

e−3β−15γ



−
(

7
29

)

= f(β, γ)

The Newton method equations
(slopef)x1

∆x = f(x)

also holds up if x,∆x and f(x) are vectors, as above. (slope f)x1
must be a matrix. It is

called the Jacobian of f and consists of partial slopes.
Here it is for f1(x, y) and f2(x, y)

(

slopexf1 slopeyf1

slopexf2 slopeyf2

)

To be specific, write it out for our probability problem

Jacobian = ff (β, γ) =

( −2 3 8
−14 11 46

)





−e−β−3γ −3e−β−3γ

−2e−2β−8γ −8e−2β−8γ

−3e−3β−15γ −15e−3β−15γ





In the second matrix, see how the first column is the slope with respect to β of the vector in
f(β, γ), and the second column is its slope with respect to γ. This Jacobian is a 2×2 matrix:
I’ve separated out the coefficients (first matrix) from the dependence on β and γ.
The iteration then is

(

∆β
∆γ

)

= ff \f

and

(

β
γ

)

=

(

β
γ

)

−
(

∆β
∆γ

)

until the error is small enough.

(

β
γ

)

f ff ff\f
(

0
0

) (

2
14

) ( −28 −138
−146 −736

) (

1
−0.2174

)

( −1
0.2174

) (

0.2253
0.8924

) ( −23.4455 −115.1033
−115.0461 −586.3209

) ( −0.0582
−0.0099

)

( −0.9418
0.2075

) (

0.0036
0.0138

) ( −22.7637 −111.8194
−111.8178 −569.1081

) ( −0.0011
0.0002

)

( −0.9407
−0.2073

) (

0.0995
0.3538

) ( −22.7525 −111.7655
−111.7655 −569.8488

) ( −0.3622
0.0648

)

10−6

Another fast convergence.
c) Probabilities, ignorance and check:

pnum = (e−β−γ , e−2β−4γ , e−3β−9γ , e−4β−16γ)

prob = (0.2285, 0.3144, 0.2856, 0.1715)

ign = 1.3614

moments = (2.4000, 6.8000, 21.4287)
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What should they be, exactly?
d) Work out the case of three given moments using Newton’s method instead of the two-step
exact solution of two excursions ago.
Take the last step for the four different values in 3, 1, 2, 4, 2 and find the probabilities and
ignorance if you are given four moments.

39. Continuous distributions. The discussion of continuous distributions in Note 3 omits some
tricky considerations. What can we make of a distribution of salaries such as

180$ 210$ 300$ 1000$ 1800$
A continuous histogram for this could be

1

0 500 1000 1500 2000

3

1

It does not give satisfactory aggregates. For example the mean might calculate to

1

5
(3 × 250 + 1250 + 1750) = 750

whereas the true mean is 698.
So there are problems designing histograms to describe continuous distributions: what range
do we use? how many buckets? what width(s) for the buckets?
A better way would be to round off each value, say for this example, to one significant figure:

200$ 200$ 300$ 1000$ 2000$
giving a discrete histogram

occurrences 2 1 1 1
values 200 300 1000 2000

The mean of this is 740, still not close to 698 but better.
But we can maximize our ignorance and find probabilities (to replace what I just now put
down as occurrences) which gives back the aggregate exactly.
Show that the function of β we need to get to zero is

f = −498 − 398e−100β + 302e−800β + 1302e−1800β

find the slope ff (the “Jacobian”) and calculate the sequence

β f ff ∆
0 708 −2.55 × 106 −2.78 × 10−4

2.78 × 10−4 145.8 −1.58 × 106 −9.26 × 10−5

3.71 × 10−4 11.0 −1.34 × 106 −8.19 × 10−6

3.79 × 10−4 0.08 −1.33 × 106 −5.81 × 10−8

3.79 × 10−4 3.8 × 10−6

Find the resulting probabilities and check that they give a mean of 698.
Do it again to match the mean 698 and the second moment 881300.
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40. More on continuous distributions. On the other hand, using an equal-width distribution
allows us to find β analytically, without writing a program, and gives β = 1/a in some limiting
cases, where a is the mean value.
Let’s try this for the distribution of the previous excursion. The partition function

Z = e−250β + e−750β + e−1250β + e−1750β

= e−250βY

where

Y = 1 + e−500β + e−1000β + e−1500β

≈ 1

1 − e−500β

because

1 = (1 − x)(1 + x + x2 + x3 + ..)

The mean, a, satsifies

aZ = 250e−250β + 750e−750β + 1250e−1250β + 1750e−1750β

= e−250β(250 + 750e−500β + 1250e−1000β + 1750e−1500β)

= e−250β(250(1 + e−500β + e−1000β + e−1500β) + 500e−500β + 1000e−1000β + 1500e−1500β)

= e−250β(250Y − slopeβY )

So

aY = 250Y − slopeβY

0 = (a − 250)Y + slopeβY

a) Show that this means (yes, really multiply by 1 − e−500β)

0 ≈ (a − 250)(1 − e−500β) − 500e−500β

= (a − 250) − (a + 250)e−500β

b) Show then that

β ≈ 1

500
ln

(

a + 250

a − 250

)

and for a = 698 this gives 1
β = 667 to three significant figures, closer to a than 740 or 750

from the previous excursion.
c) The width of the histogram buckets is w = 500 in this example, so

ewβ ≈ a + w/2

a − w/2

=
1 + w/(2a)

1 − w/(2a)

= (1 +
w

2a
)(1 +

w

2a
+

w

2a

2
+ ..)

≈ 1 +
w

a
+

1

2
(
w

a
)2

to the second power of w/a supposing w ≪ a. Show that this gives β = 1/a to this second
power.
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d) Repeat the calculation to show that if the start value for the first bucket in the histogram
is s then

β =
1

a − s

under the assumptions above. These assumptions were (i) that the histogram has a large
number of buckets and (ii) that the bucket size is very small compared to the mean value. A
third assumption (iii) that s = 0 gives

β =
1

a

e) Since the width of the buckets for the example of this and the previous excursion is too
big to make the analytic approximations, and since some buckets are empty in that example,
write a program to calculate β along the lines of this excursion, and hence the mean value of
exactly 698.

41. Ignorance and continuous distributions. Show that our ignorance of a continuous dis-
tribution is unbounded (“infinite”).
a) For a finite, equal-width approximation, yj = j∆y (∆y is the bucket width), to a continuous
distribution, the ignorance

ign = −
∑

j

(Pr) ln(Pr)

= −
∑

j

(Pr) ln

(

e−βyj

∑

k e−βyk

)

=
∑

j

(Pr)(βyj + ln(Z))

=





∑

j

(Pr)βyj



+ ln(Z)

= β





∑

j

(Pr)yj



+ ln(Z)

= βy + ln(Z)

where the probability Pr = e−βyj/Z, Z =
∑

k e−βyk and y is the average of yj. Check this
argument, then use the previous excursion to show

ign ≈ 1 + ln
∑

k

e−βyk

b) As β gets smaller, y is a better approximation to the true average of the continuous
distribution and β gets closer to y so there is no problem about the 1 in this expression for
the ignorance.
The problem is with Z =

∑

k e−βyk =
∑

k e−βk∆y. This gets arbitrarily large as ∆y gets small
and the number of terms in the sum increases to compensate. Even if the upper limit is ∞
in both cases this remains a problem.
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−5 0 5 10
0

0.5

1

y

Z

delY = 1,  sumZ = 1.5814

−5 0 5 10
0

0.5

1

y

Z

delY = 0.5,  sumZ = 2.5401

∆ y ∆ y’

It is easy to see that the sum on the right is about twice the sum on the left because ∆y′ =
∆y/2.
So as ∆y → 0, Z → ∞ and ln(Z) → ∞.
Write a program to draw the two plots and calculate the two sums.
c) The area under the curve does not depend (so heavily) on ∆y. We can make a general
comparison between areas and sums.
For example, show that

sum1 =
∞
∑

j=0

e−β∆yj =
1

1 − e−β

sum2 =
∞
∑

j=0

e−(β/2)∆yj =
1

1 − e−β/2

area = antislopeye
−βy |∞0 =

1

β
e−βy |0∞=

1

β

(For β = 1 in the above equations, sum1 = 1.5820, sum2 = 2.5415 and area = 1.) And show
that the relationship between sum and area, as ∆y gets small, is

∞
∑

j=0

e−β∆yj =
1

∆y
antislopeye

−βy |∞0

Hint. What is the meaning of ∆y
∑∞

j=0 e−β∆yj?
d) You might want to motivate part (c) by comparing sums and areas for a simpler function.

4
∑

0

j = antislopexx |4.5
−0.5

1

2

8
∑

0

j

2
= antislopexx |4.25

−0.25

Draw a picture to convince yourself that these equalities should hold.
Why do corresponding equalities not hold (exactly) for j2 and x2? How close do they come?
e) Why don’t we change the definition so that we use areas instead of sums for Z and for the
ignorance?

Z = antislopeye
−βy |∞0 =

1

β

ign = antislopeyβy
e−βy

Z
|∞0 + ln(Z) = 1 − ln(β)

This is OK for the ignorance, since it is the ratio of two areas, which will be the same as the
ratio of the two corresponding sums.
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And it will leave Z finite, and thus similarly, ln(Z).
But Z will have the wrong physical dimensions. Suppose y is an energy. We say it has
physical dimension E. Then β will have physical dimension 1/E, so βy is “dimensionless”,
E/E. This is necessary in an exponent, as in s−βy.
Z originally was just a sum of dimensionless numbers, e−βy, and so Z was also originally
dimensionless. But converting from sum to area multiplies the sum by ∆y, which has physical
dimension E, like y itself. So the new definition of Z has dimension E.
Since ln(Z) can be expanded in a power series in Z (ln(Z) = (Z−1)−(Z−1)2/2+(Z−1)3/3−..
is one possibility), ln(Z) has undefined physical dimensions (E,E2, E3, ..) if Z has physical
dimension E. This is not acceptable and the area definition of Z is wrong.
Argue that exponents must be dimensionless, as in s−βy.

42. Continuous distributions by antislope: average distance. The previous excursion
looked at equal-width distributions and at the limit of very small width. In these conditions
we can use antislopes.
Here is an (eventually) purely analytical average for which antislopes are appropriate: show
that the average distance from the centre of a disc approaches the radius of the disc, R, as
the dimension of the disc increases.
(A 1-D disc is a line from −R to R; a 2-D disc is bounded by a circle of radius R; a 3-D disc
is bounded by a sphere of radius R; and so on. We’ll look at these three cases.)
a) Write a program which constructs a grid in any number of dimensions and counts the grid
points that lie within distance R of the centre, and sums the radii of each of these grid points.
The average distance is this sum, s, divided by the count, c.
Here are two examples in 2-D, R = 1.
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(1 +      +      ) = 0.68
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��
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What grid size gives s/c = 2/3 to four significant figures? What grid spacing, w, gives
cw2 = π to four significant figures? What is s/c in 1-D? 3-D?
Hint. You don’t need to write a separate program, with d nested loops, for each dimension
d. A grid from (0 : n− 1)d can be built from a single index 0:nd − 1 along the following (3-D)
lines—I’ve used three different values for n, i.e., n1 = 3, n2 = 4, n3 = 3, to make the example
easier to figure out. The single index, a, runs from 0 to n1 × n2 × n3 − 1 = 23, and is shown
for each grid point.

1

14  17  20  23
13  16  19  22
12  15  18  21

 2   5   8  11
 1   4   7  10
 0   3   6    9

n  = 2

n  = 4

n  = 3

3

2
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Figure out how to construct the three coordinates for each value of a shown, e.g., a = 0 →
(0, 0, 0); a = 7 → (1, 2, 0); a = 19 → (1, 2, 1)
b) Areas. The area (length) of a 1-D disc is easy to find.

antislopex1 |R−R= 2 antisloper1 |R0 = 2R

where I’ve switched from x to r as variable.
The area of a 2-D disc

antislopexantislopey1 |©R = antisloper(r antislopeθ |2π
0 ) |R0

= 2π antisloperr |R0
= 2πR2

where S |©R means limit the antislopes by the circle of radius R, where I’ve switched from
variables x, y to variables r, θ, and where the extra r arises as follows.
Antislopex functions as a sum, like the count, c, in (a), over a lot of little steps, ∆x. Similarly,
antislopey sums many ∆y. When we switch variables from x, y to r, θ, we must find the small
increments of r and θ that correspond to ∆x and ∆y and in particular to their product, the
small area ∆x∆y. This must be ∆r(r∆θ), because the area swept out by ∆r at a distance r
from the centre of a circle when the angle changes by ∆θ is proportional to r.

r

y∆ ∆θr

∆ x
θ

r ∆

Another way of seeing this, in this case, is to consider the angle fully swept out, giving a ring
of area approximately 2πr∆r.

r

r

∆

The area (volume) of a 3-D disc uses similar reasoning, this time for two angles: the small
volume element is ∆r(r∆φ)(r sin φ∆θ)
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r

θ

r sin φ

φ

So

antislopexantislopeyantislopex1 |©R = antisloper(antislopeφr sinφ(antislopeθr |2π
0 ) |π0 ) |R0

= antisloper(antislopeφr2 sin φ(2π) |π0 ) |R0
= 2π antisloperr

2(2) |R0

= 4π
R3

3

c) Total and average distances. The total distances are also sums expressed as antislopes, by
analogy with (b).

1 − D 2 antisloperr |R0 =
2R2

2

2 − D 2π antisloperr
2 |R0 =

2πR3

3

3 − D 4π antisloperr
3 |R0 =

4πR4

4

So the averages are these totals divided by the areas from (b).

1-D R2

2R = R
2

2-D 2πR3

3πR2 = 2R
3

3-D πR4

4πR3/3 = 3R
4

Compare these results with your program from (a).
d) Beta. Maximizing ignorance gives probabilities

e−βr

antislopex...e−βr |©R
for each radius r, where there is one antislope for each dimension.
So the averages are

antislopex...re−βr

antislopex...e−βr |©R
Show, by comparing these expressions for the averages with those in (c), that e−βr = 1 hence
β = 0 in all three cases. Do the integration by parts if you need to convince yourself.
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What, then, is the ignorance? Is this plausible: how does the probability vary, across all
locations, of there being a distance from the centre to that location?
e) Instead of counting all the grid points within a disc in 2-D we can use the change of
variables in (b) without going to antislopes.
For the disc of radius R = 1 and points separated by ∆x = ∆y = 1/2 or ∆r = 1/2, here are
the rectangular-grid and polar-grid pictures.

c = 3

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

= 2   (    r)  (0 + 1 + 2)π ∆

= 3
= 2π 3

4
π
2

2

��

�
�
�
�

��
��
��
��

����

�
�
�
�

��
��
��
��

��

�
�
�
�

��

�
�
�
�

�
�
�
�

��
��
��
��

������
��
��
��

��
��
��
��

����

���� ����

����

��
��
��
��

��
��
��
��

c = 13 c = 17count

area

= 3.25

= 13
∆ ∆ π∆ 1

2

4

a = c   x   y a = 2     r (0 +     + 1)

�
�
�
�

Note that 0 + 1
2 + 1 is the sum of the radii over the 3 points,

∑2
r=0 r∆r.

Both of these results for the area can be taken as approximations to π. The rectangular one
is better in this example of spacing 1/2. But the polar one also gets arbitrarily close to π as
the number of points increases and ∆r commensurately decreases.
Show that

a = 2π
1

(c − 1)2

c−1
∑

r=0

r =
c

c − 1
π

which approaches π as c increases for a disc of radius 1 and hence area π.

43. Hyperspheres. Part (c) of the previous excursion found average distances in “spheres” of
1, 2 and 3 dimensions. We can go further. Here we look at the volumes and surface areas of
“hyperspheres” in these and higher dimensions.
The excursion on hyperspheres in Week 1 worked out the Cartesian coordinates for the surface
of a d-dimensional hypersphere in terms of its radius and d − 1 angles. Here we use the way
we visualized hyperspheres in that excursion, but we will not need the coordinates.
We need to visualize hyperspheres the way we did in Week 1 rather than the way we did
in the previous excursion. We start at the same place, with a 1-D hypersphere of radius R
whose “volume” is

V1 = 2R

Note that its “surface area” is just the two endpoints

A1 = 2

and note that this is consistent with saying A1 = slopeRV1.
We build on this.
a) A 2-D hypersphere is made up of many 1-D hyperspheres, separated by distances R∆φ sin φ.
Each one has a 1-D “volume” of 2R sin φ.
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φ

R sin

R

R      sin

R

φ

∆φ

∆φ

∆φ φ

To add them all up we need
π
∑

φj=0

2R2 sin2 φj∆φ

which we’ll write as an antislope.

antislopeφ2R2 sin2 φ |π0= 2R2antislopeφ sin2 φ |π0

An important side benefit of this excursion will be finding antislopes of powers of sin. We
need to use “integration by parts” (cf Note 6 and Book 8c Note 37).
To the chain rule (Book 8c Note 30)

slope uv = u slope v + v slope u

we can apply antislopes

antislope(u slope v) = uv − antislope(v slope u)

and this may help us in evaluating the first if we can devise a u and a v such that u slope v
gives the function we want the antislope of and v slope u is easier to find the antislope of.
For powers of sin we’ll find ourselves taking two integration-by-parts steps each time. Here
is sin2.
Pick u = sin φ, slopeφv = sin φ; so v = − cos φ and slopeφu = cos φ. Then

antislopeφ sin φ sin φ = − sin φ cos φ + antislopeφ cos φ cos φ

Thus
antislopeφ cos φ cos φ = cos φ sin φ + antislopeφ sin φ sin φ

This first time, we need not do it again for cos2 because cos2 = 1 − sin2 so

antislopeφ sin2 φ = − sin φ cos φ + antislopeφ(1 − sin2 φ)

i.e.,
2 antislopeφ sin2 φ = φ − sinφ cos φ

since antislopeφ 1 is φ (plus a constant which I’ve omitted since we are about to put definite
limits on this antislope).
Back to the 2-D “volume”.

2R2antislopeφ sin2 φ |π0 = 2R2 1

2
(φ − sinφ cos φ) |π0

= R2
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The volume is V2 = πR2 and the surface area is its slope A2 = 2πR. (Why does slopeRV2 =
A2?)
b) A 3-D hypersphere (and this is the special hypersphere which is just called a sphere) is
made up of many 2-D hyperspheres in exactly the same way, each separated by a distance
R∆φ sin φ and each of radius R sinφ.

φ

R sin

R

R      sin

R

φ

∆φ

∆φ

∆φ φ

The sum
π
∑

φj=0

π(R sin φ)2R sin φ∆φ

goes over to
πR3antislopeφ sin3 φ |π0

and we must digress to find the antislope of sin3.
Pick u = sin2 φ, slopeφv = sinφ; so v = − cos φ and slopeφu = 2 sin φ cos φ. Let’s abbreviate
sinφ to s and cosφ to c and understand implicitly that slopes and antislopes are with respect
to φ. Then

antislope s3 = −s2c + antislope sc2

Now we must integrate by parts a second time, to deal with antislope sc2.
Pick u = sc, slope v = c; so v = s and slope u = c2 − s2 = 1 − 2s2 (because c2 + s2 = 1). So

antislope sc2 = s2c − antislope(s − 2s3)

= s2c − antislope s + 2antislope s3

We’re back to antislope s3, but we can put our two results together.

antislope s3 = 4 antislope s3 + s2c − 2 antislope s

so
3 antislope s3 = −s2c + 2 antislope s

i.e.,

antislope s3 = −1

3
s2c +

2

3
antislope s

= −1

3
(s2 + 2)c
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Back to the 3-D sphere:

V3 = πR3 antislope s3 |π0=
4

3
πR3

and
A3 = slopeRV3 = 4πR2

c) Show, by generalizing the procedure of part (b), that

antislope sd =
1

d
sd−1c +

d − 1

d
antislope sd−2

d) Hence use the 1-D and 2-D results to build up the following list (a blank entry is taken to
be 1 when multiplied)

d Vd−1 R d−1
d

∫ π
0 sd Vd

1 R 2 2R
2 2R R 1/2 π πR2

3 πR2 R 2/3 2 (4πR3)/3
4 (4πR3)/3 R 3/4 π/2 (π2R4)/2
5 (π2R4)/2 R 4/5 4/3 (8π2R5)/15
6 (8π2R5)/15 R 5/6 (3π)/8 (π3R6)/6
7 (π3R6)/16 R 6/7 16/15 (16π3R7)/105
8 (16π3R7)/105 R 7/8 (15π)/48 (π4R8)/24
:

I’ve written antislopeφ sind φ |π0 almost in its conventional form,
∫ π
0 sind φdφ, because it is

shorter. Notice that this is constructed from the product of (d − 1)/d two lines earlier and
itself two lines earlier.
Notice that the even dimensions, d = 2n, give the simple expressions

V2n =
πnR2n

n!

What is the relationship between Vn+1 and V2n−1? Write the expression for v2n−1 directly as
a power of R. Show from the recurrence in part (c) that these are always true.
e) You might want to work out the 4-D case explicitly, using the visualization in the hyper-
sphere excursion of Week 1.
f) Show that almost all the volume of a hypersphere is found within a shell of thickness
∆R = R/d at the surface. (Hint. Use Ad = slopeRVd.)
How does this confirm and explain the tendency we noticed in part (c) of the previous excur-
sion?
g) Show that, as the number of dimensions increases, the ratio of the volume of the hyper-
sphere to the volume of the hypercube whose sides it touches goes to zero.

44. Here are some other possible exclusions to continue Note 9. Find the joint distribution in
each case and the “owes Joe or Sue” distribution. Also find correlations and co-ignorance.
a) No client will lend to Joe while remaining neutral to Sue: exclude (owes Joe, owes Sue) =
(−1$, 0$);
b) No client may lend 2$: exclude (owes Joe, owes Sue) = (−1$,−1$) or exclude 2$ from
result;
c) No client may borrow 1$: exclude −1$ from result;
d) No client will lend to Sue at all;
e) Either every client treats Joe and Sue identically, or no client is neutral.

67



45. Mutual information from Chesapeake clams. Here is an alternative derivation of the
idea of mutual information, following [Ula86, Ex.5.4]. Three categories of clam harvest in
Chesapeake Bay can be distinguished by their tonnages: b1 > 3000, 1500 ≤ b2 < 3000, b3 <
1500. The minimum January air temperatures (in Celcius) the year before the harvest can
be put into four classes: a1 < −12,−12 ≤ a2 < −10,−8 ≤ a3 < −10, a4 > −8. Hypothetical
data for the numbers of harvests in each category and class over 50 seasons could be

a1 a2 a3 a4

b1 9 3 3 1
b2 2 6 5 2
b3 2 3 4 10

which turn into joint and marginal frequency distributions

p(aj , bi) a1 a2 a3 a4 p(bi)
b1 .18 .06 .06 .02 .32
b2 .04 .12 .10 .04 .30
b3 .04 .06 .08 .20 .38

p(aj) .26 .24 .24 .26 1.00

So we might use this to forecast the probability of a good harvest (category b1) as p(b1) = .32.
But if we additionally knew that last January’s temperature had averaged −12.7 degC then
we could revise this probability upwards to 0.18/0.26 = 0.69, i.e., p(a1, b1)/p(a1).
So although our surprisal about bi is − lg p(bi) a priori, after aj is known, our surprisal
becomes − lg p(bi | aj) = − lg p(aj , bi)/p(aj).
Averaging these two surprisals, our ignorance is reduced from

−
∑

ij

p(aj , bi) lg p(bi)

to
−
∑

ij

p(aj , bi) lg p(aj , bi)/p(aj)

i.e., by
∑

ij

p(aj , bi)(lg p(aj , bi)/p(aj) − lg p(bi)) =
∑

ij

p(aj, bi) lg p(aj , bi)/p(aj)p(bi)

=
∑

ij

p(aj, bi)(lg p(aj, bi) − lg p(aj) − lg p(bi))

=
∑

ij

p(aj, bi) lg p(aj , bi) −
∑

ij

p(aj , bi) lg p(aj) −
∑

ij

p(aj , bi) lg p(bi)

=
∑

ij

p(aj, bi) lg p(aj , bi) −
∑

j

p(aj) lg p(aj) −
∑

i

p(bi) lg p(bi)

= −(Iab − Ia − Ib)

= Ia + Ib − Iab

It takes information to reduce ignorance, so this quantity is reasonably called ”mutual in-
formation”: how much our knowledge of one distribution reduces our ignorance of a related
distribution.
a) Check the above derivations.
b) Write a MATLAB function [mI,tot] = mutInfo(M) which calculates the mutual infor-
mation, mI, of a given unnormalized matrix, M, and also calculates tot = sum(sum(M)), the
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total of all entries in M. You may find it useful to display M extended by its row and column
sums and by tot. There are several ways to find mI as we saw above: which is the clearest
and involves the least amount of calculation?
c) Calculate the three harvest surprisals (b) and the twelve revised surprisals given specific
knowledge of a for this clam data; confirm your result by calculating the average value of the
differences and comparing with mI from mutInfo().

46. a) Show that if the joint distribution of two variables a and b, p(a, b) = p(a) × p(b) (the
variables are independently distributed), then the mutual information is zero.
b) It is plausible that if one variable, b, is a function of the other, a, the mutual information
will be a maximum. This will be the case if the m-by-m matrix giving the joint distribution
has exactly one entry in each row and each column. In particular, show that the mutual
information is maximized in such a case if all entries have the same value. (What if the
matrix is m-by-n, not square?) Relate this to our discovery in Note 10 that the mutual
information is the same for purely correlated and purely anticorrelated distributions.
c) Modify the 4-by-4 matrix as shown, where p+q = 1, and show that the mutual information
decreases in the modified matrix.
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Do this again with a modification which preserves both row and column sums:
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Does this support your intuition that mutual information is maximum if one variable is a
function of the other?

47. Ascendency. The matrix over which we calculate mutual information does not need to de-
scribe a joint distribution. Ulanowicz [Ula86] makes interesting use of it for matrices describ-
ing flows and in particular “trophic” flows in an ecology (Greek τρoφικoς, nourishment)—the
flows of energy or carbon or nitrogen or phosphorus transferred between species which prey
on or otherwise nourish each other.
Here is the matrix of the flows of energy (kcal/m2/year) for the Cone Spring ecosystem
on [Ula86, p.32]

in/out plants detrit bacter detriv carniv dissip totals
0 11184 635 0 0 0 0 11819

300 0 8881 0 0 0 2003 11184
860 0 0 5205 2309 0 3109 11483
255 0 1600 0 75 0 3275 5205

0 0 200 0 0 370 1814 2384
0 0 167 0 0 0 203 370

1415 11184 11483 5205 2384 370 10404 42445

Here the flows go from row to column, so, for instance, the flow of 11184 is from outside the
ecosystem (“in/out”) to the “plants” category (representing an aggregation of species). The
abbreviations are “detritus”, “bacteria”, “detrivores”, “carnivores”, and “dissipation”. This
latter covers all output from the ecosystem which cannot be used by any other species or
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system, and so is lost.
I have added the last column and the last row as checks: they sum the earlier rows and
columns, respectively. Note that the column sums match the row sums for each (aggregated)
species: energy (and flows generally) are conserved and do not accumulate in any node. (Ac-
cumulations may also be modelled, however, by self-loops, which would be nonzero entries on
the diagonal of the matrix. The row sums and column sums would still be equal.) Note that
the sum of useful and dissipated outputs, 1415 + 10404 = 11819, the sum of the inputs.
Running the program from the earlier Excursion Mutual information from Chesapeake clams
on this,

[mI,tot] = mutInfo(coneSpring2)
gives

mI = 1.3364 tot = 42445
where totis just the grand total of all the matrix entries, and is considered in this context to
be the total flow in the ecosystem.
Ulanowicz defines ascendency to be the product, in this case mI*tot = 56725.
Ulanowicz claims that the ascendency tends to increase. This would give ecologists a systems-
level quantity to indicate the state of development of an ecology: a quantity permits mea-
surement and precision; systems-level makes the measure specifically ecological, rather than
something microscopic and complicated such as the biochemistry of nutrition. He is circum-
spect in his claims, so some of the explorations in this and the next Excursions might attempt
to go too far. But it is worthwhile to explore the concept itself.
The first thing to do is to ask whether ascendency really does increase with ecosystem devel-
opment. I am not an ecologist and so will depend on Ulanowicz’ book (and its sequel [Ula97]
which is less technical in an attempt to be accessible to Ulanowicz’ ecological colleagues).
The obvious example given consists of two related “marsh gut ecosystems” in Crystal River,
Florida. One is stressed by its location near a power plant outflow, increasing its temperature
by 6 C◦. This is not historical development of a single system, but one would suppose that
the ascendency of the stressed system would be less than that of the unstressed system.
a) Code the matrices for the carbon flows (mg/m2/day) of the marsh gut ecosystems given
in [Ula86, pp.69,75]. I copied the networks of 17 taxa into 18×19 matrices (and probably
made many mistakes) and got mI = 1.2640, tot = 22414, mI*tot = 28331 for the un-
stressed system and mI = 1.2417, tot = 18048, mI*tot = 22410 for the stressed system,
bearing out the supposition. Check my work!
A possible invariant among all these numbers is the efficiency of a species. That is the com-
plement to the proportion of flow that is dissipated. If we sum all the inputs in the Cone
Spring ecosystem above we get

in/out plants detrit bacter detriv carniv
1415 11184 11483 5205 2384 370

Dividing the dissipation column of the Cone Spring system above by these numbers respec-
tively gives 1− the efficiencies of each species. So the efficiencies are

in/out plants detrit bacter detriv carniv
1.0000 0.8209 0.7293 0.3708 0.2391 0.4514

(with the 1.0 for the “efficiency” of the in/out element: only the last five numbers count for
efficiencies of actual species).
Ulanowicz [Ula86, p.58] shows an ecology of four species in which one is replaced by a more
efficient species. Does this actually happen?
b) Code the two cases of this example and show that the ascendency in the first part, with the
less efficient species, is 562.8816, while the ascendency in the second part, with the slightly
more efficient species, is less, 554.4457. But then in this second case, Ulanowicz has killed
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the output, so the comparison is unequal. So we’ll need to do some more programming to be
able to vary the ecosystems we are experimenting with.
c) Ulanowicz also gives an example (p.33) of cash flows in an economy. You can calculate
the ascendency for this system, but economics is a less plausible candidate for a quantity
such as ascendency to be useful. For one thing, economics is open to micromanaging, say by
governments. More significantly, economics is susceptible to large-scale psychological effects,
as when a large portion of the population loses confidence in the banks or, through a prevalent
ideology of greed, the trust basic to agreements and contracts is eroded.

48. A playpenful of baby ecologies. Here are some baby ecologies you can play with in this
Excursion.
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433.4

591.1, 551.2

438.6

450.5

441.8,407.8

491.2, 589.3

e

Assume that the efficiencies of each species is given: (e1, e2, e3) = (0.8, 0.9, 0.7) until we get
to ecology 4 (the second part of what is shown as 3 in the figure) when e1 changes to 0.9,
supposing replacement of species 1. The dissipations are not shown explicitly, but are implied
by the efficiencies.
Assume that the input, in1, is always 100. The outputs are usually given but sometimes may
be derived from the internal flows, a, b, c, d, f .
The numbers in red are the ascendencies, which we will now proceed to calculate along with
the internal flows.
The only other fixtures available to us, apart from the efficiencies, are the equations that say
that flow is conserved at each node. There is one such equation for each node. Sometimes
the flows are fewer and overdetermined: for the network to be connected there can only be
one less flows than nodes, so in such a case we’ll simply allow an output to be determined as
well as the internal flows. Sometimes there are more flows than nodes, and so the flows are
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underdetermined: in such cases, superfluous flows can be treated as parameters and supplied
with values.
It’s probably most straightforward to start with the ecology shown as network 3 in the figure.
Here the number of flows equals the number of nodes. So in1, out2 and out3 can be given
and the three conservation equations solved to find the three flows a, b and c.
Here is the network matrix.

in/out 1 2 3 dissip
0 in1 0 0 0
0 0 a 0 (1 − e1)(in1 + c)

out2 0 0 b (1 − e2)a
out3 c 0 0 (1 − e3)b

To constrain node 1 to conserve flows, we must set its input (column sum) equal to its output
(row sum) including dissipation:

in1 + c = a + (1 − e1)(in1 + c)

From this
a = e1(in1 + c)

so we see that we can just equate the bottom row with the rightmost column in

in/out 1 2 3
0 in1 0 0
0 0 a 0 a

out2 0 0 b out2 + b
out3 c 0 0 out3 + c

e1(in1 + c) e2a e3b

to give the three conservation equations. These follow as





1 0 −e1

e2 −1 0
0 e3 −1









a
b
c



 =





e1in1

out2

out3





If we put numbers into this, (e1, e2, e3) = (0.8, 0.9, 0.7), in1 = 100, out2 = 52 and out3 =
5, we get (a, b, c) = (94.5, 33.1, 18.1). Finally, running the network matrix, with these values
plugged in, through mutInfo() (previous two Excursions) we get mI = 1.42, tot = 345.7 and
ascendency 491.2 which is the first red value for network 3 in the figure.
a) Write a program which accepts symbolic inputs such as (corresponding to network 3)

LHS3 = [1,0,-sym(’eff1’);sym(’eff2’),-1,0;0,sym(’eff3’),-1]
and

RHS3 = [sym(’eff1’)*sym(’in1’);sym(’out2’);sym(’out3’)]
and uses

eval(RHS)\eval(LHS)
to solve for the flows a, b, c.
Your program should also use these flows and the earlier values given symbolically to construct
the network matrix, in this case supplied symbolically as

net3 = [0,sym(’in1’),0,0,0;0,0,sym(’flow1’),0,...
(1-sym(’eff1’))*(sym(’in1’)+sym(’flow3’));sym(’out2’),0,0,...
sym(’flow2’),(1-sym(’eff2’))*sym(’flow1’);sym(’out3’),sym(’flow3’),...
0,0,(1-sym(’eff3’))*sym(’flow2’)]

This program will have to be adapted for overdetermined and underdetermined networks
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(coming up).
b) Networks 1, 2 and 7 in the figure are overdetermined: two equations for one flow for (1)
and three equations for two flows for the other two. In each case an output will also be
determined. Show that the network matrix and resulting equations for network 1 are

in/out 1 2 3
0 in1 0 0
0 0 a 0 a

out2 0 0 0 out2

out3 0 0 0 out3

e1in1 e2a 0

and




1
e2

0





(

a
)

=





e1in1

out2

out3





Adapt your program from (a) to use only the appropriate part of the left-hand matrix to
solve only for a, and then to go on to solve also for out2. You should find a = 80 and out2

= 72. From this derive the ascendency shown for network 1 of the figure.
Do the same for network 2, having specified out2 = 62. Where does the missing 10 go?
For network 7 I used out2 = 52.
c) Networks 5 and 9 are underdetermined: three equations to find four flows. So I used flow d
in network 5 and flow f in network 9 as additional givens: 1 in both cases (but I tried again
with 10 to give networks 6 and 10, which are otherwise identical respectively with 5 and 9).
Show that the matrix and conservation equations for network 5 are

in/out 1 2 3
0 in1 0 0
0 0 a d a + d

out2 0 0 b out2 + b
out3 c 0 0 out3 + c

e1(in1 + c) e2a e3(b + d)

and




1 0 −e1

e2 −1 0
0 e3 −1









a
b
c



 =





e1in1 − d
out2

out3 − e3d





Notice that flow d appears on the right-hand side.
Adapt your program to handle underdetermined equations. (Hint: the inputs can convey
this, but there must be a way to supply values for the flows that are given.)
d) Now explore all ten possibilities presented in the figure and discuss the resulting ascen-
dencies (discuss the contributions of mI and tot):

(1.) e1 = 0.8, e2 = 0.9, in1 = 100

(2.) e1 = 0.8, e2 = 0.9, e3 = 0.7, in1 = 100, out2 = 62

(3.) e1 = 0.8, e2 = 0.9, e3 = 0.7, in1 = 100, out2 = 52, out3 = 5

(4.) e1 = 0.9, e2 = 0.9, e3 = 0.7, in1 = 100, out2 = 52, out3 = 5

(5.) e1 = 0.9, e2 = 0.9, e3 = 0.7, in1 = 100, out2 = 52, out3 = 5, d = 1

(6.) e1 = 0.9, e2 = 0.9, e3 = 0.7, in1 = 100, out2 = 52, out3 = 5, d = 10

(7.) e1 = 0.9, e2 = 0.9, e3 = 0.7, in1 = 100, out2 = 52
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(8.) e1 = 0.9, e2 = 0.9, e3 = 0.7, in1 = 100, out2 = 52, out3 = 21

(9.) e1 = 0.9, e2 = 0.9, e3 = 0.7, in1 = 100, out2 = 52, out3 = 21, f = 1

(10.) e1 = 0.9, e2 = 0.9, e3 = 0.7, in1 = 100, out2 = 52, out3 = 21, f = 10

What do you speculate about small cycles in ecological networks? What about large cycles?
e) For the species substitution example of [Ula86, p.58] evaluate the flows both before and
after the species replacement and confirm (almost) Ulanowicz’ numbers.

49. Maximizing ascendency. Ulanowicz does not claim that ascendency is maximized, but
it would be nice if it were and we could predict the future of an ecology by calculating its
configuration under maximum ascendency.
We can use numerical techniques loosely based on what Sketchpad does for nonlinear con-
straints (Week 8, Note 8): from guessed values of the parameters (e.g., outputs and under-
determined flows as discussed in the previous Excursion), try shifting to either side and see
what the resulting ascendency calculates out to be. Then pick the best of these as a new
guess and start again. (I wrote code to fit a parabola to the three resulting numbers, in case
a maximum could be extrapolated directly, but the curves I got were always convex if not
linear—at best they had minima not maxima.)
What happens is that flows soon go negative and resulting ascendencies become 2-numbers
(complex numbers), so these must be watched for. Essentially, then, in the cases I tried,
the program attempts to increase ascendency, using some predetermine step size, until any
further steps produce impossible flows.
So it’s not very good, but can still be played with and the results may be interesting.
a) Build such a program and see what it does to the system

in/out 1 2
0 in1 0
0 0 a a

out2 b 0 out2 + b
e1(in1 + b) e2a

Starting with out2 = 0 and stepping it by ±5 units each time (except where this would make
it go negative, when the steps are forced to be 5 and 10) I got the following “evolution” until
flow b started to go negative. (Efficiencies of the two nodes are set at 50%.)

in1 a b out2 ascendency
100 66.7 33.3 0 259
100 60 20 10 268
100 56.7 13.3 15 276
100 53.3 6.7 20 287
100 50 0 25 311

b) Run your program for the merged example [Ula86, p.58] with five species, one of them
competing with a more efficient one. You should build in an additional constraint, that the
outputs from the two competing species should sum to 10.

50. Shannon and Weaver’s 1949 channel coding theorem says that when transmitting information
across even a “noisy” channel the probability of the output differing from the input can
be made arbitrarily small, provided that the number of messages to be sent is small (and
certainly much smaller than the number of possible messages). How does mutual information
figure in the proof?
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51. What are the covariance, correlation, co-ignorance and mutual information for the two joint
distributions discussed at the end of Note 9 but not in Note 10?

52. What are the correlation and mutual information for the following joint histograms? Are
there conditions on the clients of Joe and Sue that would give rise to these joint histograms?

2 1 3 1 11 1 35 1 1 35
2 1 3 1 11 1 35 1 1 35

1 2 1 3 1 11 1 35 35 1

3 4 12 36 36
2 1 3 1 11 1 35 1 1 35
1 2 1 3 1 11 1 35 35 1

53. Correlation is not causation. For example, among schoolchildren height is strongly correlated
with weight but neither causes the other. Mathematical ability is correlated, less strongly,
with both but does not cause them. Collect data to test these statements. What is the cause
of all three? Can you measure it?

54. If Joe is owed 1$ then the maximum owed to Joe or Sue cannot be −1$ or 0$. This explains
the first two entries of the last line of the “Joe max Sue” vs. “Joe” table in Note 11. Explain
the 3 that is the last entry of this last line.

55. Black boxes. Run the following MATLAB program and see if you can figure out each time
what it is doing. Note that the conditional distributions for all three allowed inputs, −1, 0
and 1, are calculated each invocation.

% function blackboxes THM 090921
% Give x the values -1, 0, 1. z is some combination of x and a hidden variable y
% also -1, 0, 1. The combination is determined by an initial random choice of op
% Blackbox finds n different ys (n is a parameter set within blackbox, say 1000)
% and returns the resulting mean m, variance v and ignorance u of z.
% The user is intended to figure out what the combination is after trying
% several values for x.
function blackboxes
%function [m,v,u] = blackboxes(op) % test only
op = round(rand(1)*6 - 0.5); % range 0,1,2,3,4,5
n = 1000;
out = cell(4,4); % results will be displayed in out
out(1,1) = {’x’}; out(1,2) = {’mean’}; % column titles: next 3 rows will
out(1,3) = {’var’}; out(1,4) = {’ignor’}; % correspond to x = -1, 0, 1
for x = -1:1

t = 0; % total
s = 0; % sum squares
hist = zeros(1,5); % to calculate ignorance
for k = 1:n
y = round(rand(1)*3 - 1.5); % range -1,0,1
switch op
case 0

z = x+y;
hist(z+3) = hist(z+3)+1; % hist(1:5) for z = -2:2

% 1 2 3 2 1 m v u
% x\y -2 -1 0 1 2
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% 1 -1 1 1 1 -1 2/3 lg3
% 1 0 1 1 1 0 2/3 lg3
% 1 1 1 1 1 1 2/3 lg3

case 1
z = x-y;
hist(z+3) = hist(z+3)+1;

% ditto
case 2

z = x*y;
hist(z+2) = hist(z+2)+1;

% 2 5 2 m v u
% x\y -1 0 1
% 1 -1 1 1 1 0 2/3 lg3
% 1 0 3 0 0 0
% 1 1 1 1 1 0 2/3 lg3

case 3
y = round(rand(1)*2 - 0.5)*2 - 1; % range -1,1 NB need nonzero y this case
z = y^x;
hist(z+2) = hist(z+2)+1;

% 2 4 m v u
% x\y -1 1
% 1 -1 1 1 0 1 1
% 1 0 2 1 0 0
% 1 1 1 1 0 1 1

case 4
z = max(x,y);
hist(z+2) = hist(z+2)+1;

% 1 3 5 m v u
% x\y -1 0 1
% 1 -1 1 1 1 0 2/3 lg3
% 1 0 2 1 1/3 2/9 lg3-2/3
% 1 1 3 1 0 0

case 5
z = min(x,y);
hist(z+2) = hist(z+2)+1;

% 5 3 1 m v u
% x\y -1 0 1
% 1 -1 3 -1 0 0
% 1 0 1 2 -1/3 2/9 lg3-2/3
% 1 1 1 1 1 0 2/3 lg3

end %switch
t = t + z;
s = s + z^2;

end %for y
% hist % test only

u0 = log2(n);
sh = size(hist);
for k = 1:sh(2)
h = hist(k);
if h>0

u0 = u0 - h*log2(h)/n;
end %if k

end %for k
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out(x+3,1) = {x}; out(x+3,2) = {t/n};
out(x+3,3) = {s/n - (t/n)^2}; out(x+3,4) = {u0};

end %for x
out

56. Using dJ
j =

∑

m dJ,max

jm show that dJ
j =

∑

m d
J |max

jm dmax

m , the second basis for Bayesian infer-

ence in Note 11. (Note that dJ,max and dmax,J are two ways of writing the same thing, the
joint distribution.)

If you know dmax|J and dJ how would you get dmax? Using dJ
j =

∑

m dJ,max

jm show that

57. Thongs. How long must we type randomly before we produce a complete Shakespeare
sonnet? I won’t address this problem here, but look instead at ways of biassing the outcome
in favour of success. We could start by adjusting the probabilities of striking the keys so they
coincide with typical English usage. But then why not take into account what’s already been
typed? We could look one letter back and produce the next letter according to the probability
that the resulting dipthong occurs in normal English usage. Or we could go further and look
two letters back and use “tripthong” probabilities. Or three letters and ”quadripthongs”, and
so on.
So we talk about “n-thongs” or thongs and their probabilities. We actually need conditional
distributions (Note 11) as we can see from the text abbaabaa, drawn from a binary alphabet.

1-thongs a b
freqs. 5/8 3/8

2-thongs aa ab ba bb
freqs. 2/7 2/7 2/7 1/7

Here are the numbers of occurrences ..

a b

a 2 2 4
b 2 1 3

4 3

.. and hence the frequencies.

a b

a 1/2 1/2 4/7
b 2/3 1/3 3/7

Note that the denominators are 1 less than for the 1-thongs, because there are n−1 dipthongs
in a text of length n.

3-thongs aab aba abb baa bba
freqs. 1/6 1/6 1/6 2/6 1/6

With occurrences and frequencies
a b

aa 0 1 1
ab 1 1 2
ba 2 0 2
bb 1 0 1

4 2

a b

aa 0 1 1/6
ab 1/2 1/2 2/6
ba 2 0 2/6
bb 1 0 1/6

a) Write a program to analyze a text and calculate conditional probabilities for all thongs up
to a given parameter n. Write another program which uses these probabilities for m-thongs,
given parameter m, to generate a random text starting with the same m letters as a given
text. Here are samples of what I got using, for both programs, the text
the quick red fox jumps over the lazy brown dog. but the dog did not bark.
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Using 1-thongs
t juid fothere bazy the but d ove qumps bazy bazy bumps fog downot bazy d
Using 2-thongs
the lazy brown did fox jumps over the dog dog did fox jumps over the quick
and
the lazy but bark.
(Note that there can be no statistics for the last dipthong in this text, so because the text is
short it is quite possible to get to a point from which there is nowhere to go further.)
b) Run your programs on a file containing Shakespeare’s sonnets. For what m do your m-
thongs give results that are somewhat Shakespearean? What major aspects are missing?
c) My generalizations of “dipthong” are inelegant because I don’t even use that word correctly.
Find better terminology.

58. Order of a symbol system. How far is it valid to increase m in the previous Excursion? In
the red fox example of that Excursion m=2 provided results containing only English words.
But we’d have to go to bigger m if the statistics were drawn from a large corpus.
We can define the order of a system of symbols as the number of adjacent symbols from
which the conditional distribution is extracted. Thus a 2nd-order system is constructed by
considering pairs of symbols and using the frequencies in some given corpus by which a
single symbol is followed by one of the symbols of the alphabet. Third order arises from
triplets of symbols and frequencies with which the first pair is followed by the third symbol.
Backtracking, 1st order arises from using the frequencies of occurrence of single symbols in
the corpus, and 0th-order from simply assigning all symbols the same frequency.
As well as generating such systems, as we did in the previous Excursion, we can analyze
existing systems, including whole languages if we have sufficiently large corpi. Apparently,
human natural languages are, if we take the symbols to be words rather than letters, between
8th and 9th order. That is, at 1st through 8th or 9th order we can make better-than-
random predictions about what will come next, but beyond that we do no better than random
guessing. (Try this at third order: “How are —”.) Apparently, too, dolphin symbols systems
are about 4th-order. (But my source is shakey, so do your own research.)
Such predictions are best made using mutual information (Note 10). For example, using the
frequencies from text abbaabaa of the previous Excursion, the 2nd-order mutual information
is I1;1 = I1 + I1 − I2 where

I1 = −4

7
lg

4

7
− 3

7
lg

3

7
= lg 7 − (8 + lg 3)/7

I2 = −(
2

7
lg

2

7
) × 3 − 1

7
lg

1

7

= lg 7 − 6

7

I1;1 = lg 7 − 10

7
− 2

7
lg 3 = 0.926

The 3rd-order mutual information is I2;1 = I1 + I2 − I3 where

I1 = −4

6
lg

4

6
− 2

6
lg

2

6

= lg 6 − 5

3

I2 = −(
1

6
lg

1

6
) × 2 − (
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6
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6
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= lg 6 − 2

3
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I3 = −(
1

6
lg

1

6
) × 4 − 2

6
lg

2

6

= lg 6 − 1

3
I2;1 = 2 lg 3 − 2 = 1.17

a) Show that I3;1 = lg 5−8/5 = 0.7219, I4;1 = 2−3(lg 3)/4 = 0.8113, I5;1 = lg 3−2/3 = 0.9183
and In;1 = 0 for n = 6 and 7.
b) Write a program to calculate mutual information from an input file containing a text or
a corpus of texts. Note how the denominators above decrease as the order increases. But
with a large corpus they will not change much and you can get away with using directly the
frequencies you get from the singletons, pairs, etc. For example in the above you can use 5/8
and 3/8 for a and b, respectively, instead of 4/7 and 3/7 for 2nd order, 4/6 and 2/6 for 3rd
order, etc.
So you can build up lists of “thongs”, rowsort to cluster duplicates, and just count occurrences
instead of building matrices. But you may need matrices if you want to find conditional
distributions.
c) Explore mutual information for various orders in a corpus such as Shakespeare’s sonnets,
and discuss. (Remember that we are still working with letters, not words, as the basic
symbols.)

59. Marilyn vos Savant on the Monty Hall problem. In his game show Let’s Make a Deal
Monty Hall hid an expensive car and two goats behind three doors respectively and invited
the contestant to choose one door. Monty then opened another door, revealing a goat. Monty
next allowed the contestant to switch to the remaining door. What should the contestant do?
In her column Ask Marilyn in Parade magazine, Marilyn vos Savant said: switch! She was
vilified by thousands including many mathematicians, who knew that you can’t change prob-
abilities this way.
a) Write a computer simulation, probWin = montyHall(switch) in which switch is false if
the contestant does not switch after Monty Hall reveals the goat behind one of the non-chosen
doors, and true if hey does. Here are my results for 1000 trials

>> probWin = montyHall(false)
probWin = 0.3460
>> probWin = montyHall(true)
probWin = 0.6570

b) Why? Hint: what is the probability of the contestant losing as a result of switching?
c) Here is a more elaborate answer, applying Bayes’ theorem. If you don’t switch, the prob-
abilities are unchanged as we all know: 1/3.
If you do switch, you’re taking advantage of the additional knowledge that Monty won’t reveal
the car: Prob(mj | cj) = 0, where cj is the event that the car is behind door j and mk is the
event that Monty opened door k.
The above does not apply to the case j = d where d is the door you chose, because Monty
does not open that door. Let’s fix our ideas by supposing d = 3 since the analysis will be the
same for any other d.
We need to find Prob(cj | mk) for the two possibilities j, k ∈ {1, 2} with j 6= k, given
Prob(mk | cj) and Prob(cj) for all j, k. We can use Bayes,

Prob(cj | mk) =
Prob(mk | cj)Prob(cj)

∑

e llProb(mk | cell)Prob(cell)

First, Prob(cj) = 1/3 for all j, the original probabilities.
Second, with d = 3, Prob(m1 | c1) = 0 = Prob(m2 | c2), because Monty never picks a winning
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door.
Third, Prob(m1 | c2) = 1 = Prob(m2 | c1), because if the car is not behind door 3, Monty
will open a door it is not behind.
Finally, Prob(m1 | c3) = 1/2 = Prob(m2 | c3) if we assume that Monty chooses randomly
between door 1 and door 2 if the car is behind door 3.
From all this, show that Prob(c1 | m2) = 2/3 = Prob(c2 | m1), twice the original chance of
winning.
(The clue that Bayes should be used here is that the contestant learned something by Monty
opening a non-car door.)
d) Apart from the math, what is the psychological aspect? Why might it be best not to
switch? (What have we assumed in the above solutions?)

60. Decision trees. The task of classification algorithms is to use a certain amount of training
data to find rules for classifying any new data of the same form that may happen along in
the future. This is also the task of science in general, here caricatured by application to very
specific data of fixed format.
A classic example (and I will not say—but leave you to guess—what a P result tells us that
the weather permits us to do, because that would interfere with your formal understanding
of the process) classifies various types of weather as negative N or positive P [Qui86].

Training (Outlook Temperature Humidity Windy Class)
1 sunny hot high f N
2 sunny hot high t N
3 overcast hot high f P
4 rain mild high f P
5 rain cool normal f P
6 rain cool normal t N
7 overcast cool normal t P
8 sunny mild high f N
9 sunny cool normal f P
10 rain mild normal f P
11 sunny mild normal t P
12 overcast mild high t P
13 overcast hot normal f P
14 rain mild high t N

From this we would like to build a decision tree which can classify any future configuration
of weather—i.e., find out if it is N or P—in as few steps as possible. The decision tree we will
find out how to build from the above training data is

F

Outlook

P

Overcast

Sunny Rainy

N P

Humidity Windy

P N

High
Normal

T

Note that Temperature plays no role in the decision tree: look carefully at the original data
and confirm that cool versus hot Temperature makes no difference to the classification if
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every other attribute (Outlook, Humidity and Windy) stays the same.
a) Confirm that using this decision tree on the following new data will give the classifications
Class as shown.

Outlook Temperature Humidity Windy Class
sunny cool high t N
rain hot high f P
rain hot high t N

To construct this decision tree from the training data, we would like to minimize ignorance.
The ignorance left us by the whole set of training data, which has 5 N and 9 P among its 14
entries, is

I(5, 9) = − 5

14
lg

5

14
− 9

14
lg

9

14
= lg 14 − (5 lg

5

14
+ 9 lg

9

14
)/14 = 0.940

bits.
Since we are using counts of the numbers of occurrences of N and P, let’s recast the training
data using pairs (#N,#P) and at the same time getting rid of the Temperature attribute,
keeping only the two double counts (rows 1, 8 and 5, 10) that result from the presence of
Temperature data.

Training (Outlook Humidity Windy #Class)
sunny high f (2,0)
sunny high t (1,0)

overcast high f (0,1)
rain high f (0,1)
rain normal f (0,2)
rain normal t (1,0)

overcast normal t (0,1)
sunny normal f (0,1)
sunny normal t (0,1)

overcast high t (0,1)
overcast normal f (0,1)

rain high t (1,0)

To decide which attribute to place at the root (or at any other node) of the decision tree,
we must aggregate these counts in all possible ways. This is best shown as a datacube (and
fortunately we got rid of Temperature so that the result is three-dimesional). Here it is, with
the original data pulled out from inside so we can see it, and the aggregations shown as
surfaces and edges and one corner.

T
3,0  0,2  1,1
0,2  0,2  1,2

1,0  0,1  1,0
0,1  0,1  1,0

0,1  0,1  0,2
2,0  0,1  0,1

2

2,1  0,2  0,3  2,6
1,1  0,2  2,0  3,3 2

4,
,

,
, ,

,

6

2

4
3,2  0,4  2,3  5,9

1

1

2
1

3
0

Outlook

Windy

Humidity

S    O    R

N
H

F

81



b) Confirm the original data and all the aggregations shown in the datacube.
What we will call the “Outlook edge” of this datacube are the three pairs of counts, (3,2),
(0,4) and (2,3). Similarly the “Humidity edge” is the two pairs, (1,6) and (4,3); and the
“Windy edge” is (2,6) and (3,3).
Each pair in each of these edges has an associated ignorance, e.g., I(3,2), I(0,4) and I(2,3)
for the Outlook edge. We can find the expected ignorance for each edge, using the function
I() introduced above.

Outlook 5
14I(3, 2) + 4

14I(0, 4) + 5
14I(2, 3) = 0.694

Humidity 7
14I(4, 3) + 7

14I(1, 6) = 0.788

Windy 8
14I(2, 6) + 6

14I(3, 3) = 0.892

Of these the least ignorance comes from the Outlook attribute, so this becomes the root node
of the decision tree.
To find the subtrees, we repeat this process for the two aggregate planes containing this edge
for Outlook. For Outlook=sunny, this requires us to compare

3

5
I(2, 1) +

2

5
I(1, 1) = 0.951

(Windy) with
3

5
I(3, 0) +

2

5
I(0, 2) = 0

(Humidity), which is smaller, so Humidity forms the subtree below Outlook=sunny.
For Outlook=overcast, the total ignorance, I(0, 4), is already zero, so no subtree is needed:
every Class for Outlook=overcast is P.
Finally, for Outlook=rain, the comparisons

3

5
I(0, 3) +

2

5
I(2, 0) = 0

(Windy) with
2

5
I(1, 1) +

3

5
I(1, 2) = 0.951

(Humidity) give the subtree to Windy.
c) Write a program which automates this process of building an optimum decision tree.
d) Write a program which uses the final decision tree to make further classifications.
e) Look up automatic classification. Where do Bayes’ classifiers fit into the framework of
aggregation we’ve examined above? “One-rule” classifiers? “Instance-based learning”?

61. Any part of the Preliminary Notes that needs working through.
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