
Excursions in Computing Science:

Week 7c. Coordinates, Angles and Reality

T. H. Merrett∗

McGill University, Montreal, Canada

June 10, 2015

I. Prefatory Notes
A. Reality

Gonna jump down, spin around, pick a bale of cotton.
Gonna jump down, spin around, pick a bale a day.

Norman Luboff, Harry Belafonte and William Attaway

1. Vectors are real.

• Independent of coordinate axes, so

• transform in a certain way when we change the axes.

Example transformations:

rotate

(

x′

y′

)

=

(

c s
−s c

) (

x
y

)

reflect x

(

x′

y′

)

=

(−1
1

) (

x
y

)

Note two assumptions underlying this Week: all the coordinate systems considered have common origin and
common units.

So what are not vectors?

A twirl is not:

it has magnitude m and direction θ,

so x = cos θ and y = sin θ

but it does not reflect the way a vector does.

∗Copyleft c©T. H. Merrett, 2006, 2009, 2013, 2015. Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation in a prominent place. Copyright for
components of this work owned by others than T. H. Merrett must be honoured. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or
fee. Request permission to republish from: T. H. Merrett, School of Computer Science, McGill University, fax 514
398 3883. The author gratefully acknowledges support from the taxpayers of Québec and of Canada who have paid
his salary and research grants while this work was developed at McGill University, and from his students and their
funding agencies.

1

y

0−
0−

0−

0−

m

m

m

Twirl (m,) This is not the reflectionReflected x −x

x

y

x x

y

We get m′ = −m, i.e., x′ = −x and y′ = −y

instead of

(

x′

y′

)

=

(−1
1

) (

x
y

)

In 3D, an area is like a twirl: it can have an orientation to distinguish above from below.

z

v1

v2

v1

v2

v1

v2

A

x

y

We saw that a right-handed twirl becomes a left-handed twirl in the mirror.

Similarly the direction of turn needed to rotate v1 into v2 is reversed in the mirror. This direction
can be taken to determine the orientation of the parallelopiped area defined by v1 and v2.

In some sense, v1v2 = −v2v1: the “product” is anticommutative. We’ll follow up this essential
insight shortly (Note 6).

2. Some pairs are not vectors: their components are not coordinates.

(

apples′

oranges′

)

??
=

(

c s
−s c

) (

apples
oranges

)

This is not a totally hokey example. Information retrieval (I.R.) often uses “vectors” to capture
the content of documents.

around bale cotton day down jump pick spin
doc1(1 1 1 0 1 1 1 1)
doc2(1 1 0 1 1 1 1 1)

2

I.R. even uses dot products (Week 2, Note 5) to detect similarity between documents:
(doc1 . doc2)/(|doc1||doc2|) = 6/(

√
7
√

7).

But documents are not vectors: it is not meaningful to rotate or reflect the axes.

3. Even pairs of numbers from geometry, where rotating and reflecting are meaningful, are not
always vectors. Let’s try

(

height
width

)

Here, no matter what the axes do, these numbers should not change.

w

x

y

x’

y’

h

What kind of thing remains invariant no matter what the axes do?

As with a vector, this thing, this pair of numbers, has a reality independent of the choice of
coordinate axes. But the components of this one do not change if axes are rotated or reflected.

How about a matrix whose eigenvalues are w and h?

T ~v1 = w~v1

T ~v2 = h~v2

For example, given the axes x and y shown,

T =

(

w
h

)

v1 =

(

1
0

)

v2 =

(

0
1

)

Then, for axes x′ and y′, related to x and y by rotation R,

~v′1 = R~v1 =

(

c s
−s c

) (

1
0

)

and
RTR−1 ~v′1 = RTR−1R~v1 = RT ~v1 = Rw~v1 = wR~v1 = w~v′1

This suggests that T transforms to the new axes as T ′ = RTR−1.

Hence T ′ ~v′1 = w~v′1

Similarly T ′ ~v′2 = h~v′2

3

This is called a tensor transformation. Height and width (almost) form a “tensor”. This tensor is

a diagonal matrix,

(

w
h

)

, when the axes are aligned with the rectangle, as x and y are.

This tensor is not diagonal for all coordinate axes, but we can see that it is a symmetric matrix.

T ′ = RTR−1 =

(

c s
−s c

) (

w
h

) (

c −s
s c

)

A symmetric matrix, T , equals its own transpose, T = T T .

In general we may think of a tensor loosely as a matrix describing some real thing, as opposed to
an operation or transformation.

T ′ = RTR−1 is symmetric because the inverse of R is the transpose of R, R−1 = RT , which is the
case for rotations, reflections and other “orthogonal” transformations of coordinate axes.

4. Maybe twirl is a tensor too.

Try S =

(

a b
c d

)

and reflect in y by reversing the direction of x using the reFlection matrix F to

give the tensor transformation FSF−1

−
(

a b
c d

)

=

(−1
1

) (

a b
c d

) (−1
1

)

=

(

a −b
−c d

)

(Remember, Note 1 found out that the reflection just changes the sign of the twirl, i.e., of the
tensor representing it.)

So a = 0 = d.

Any reflection will give a similar sign change, so let’s see what reflecting in the line x = y gives us:

F =

(

1
1

)

−
(

b
c

)

=

(

1
1

) (

b
c

) (

1
1

)

=

(

c
b

)

and so c = −b.

Unfortunately, we’ve gone too far. We now have only one number, b, to describe a twirl, which we
saw in Note 1 requires two numbers, m and θ.

So maybe two dimensions is too small to contain a twirl. This rather makes sense now that we
think of it.

Let’s see if we can decribe a twirl in three dimensions.

First note that

(−b
b

)

is an antisymmetric matrix: it equals the negative of its transpose.

So we’ll try an antisymmetric matrix in 3D. A 3×3 antisymmetric matrix has three components.

u v
−u w
−v −w

Try reflecting in the yz plane: x ↔ −x

−1
1

1

u v
−u w
−v −w

−1
1

1

 =

−u −v
u w
v −w

This almost just changes the sign of the matrix. Is it right?

4

wx

y

z

v

u

Yes, if we interpret w as the x-component of the twirl, v as the y-component and u as the z-
component. Check the diagram carefully!

Let’s see what happens if we rotate in the xy plane.

c s
−s c

1

u v
−u w
−v −w

c −s
s c

1

 =

u sw + cv
−u cw − sv

−(sw + cv) −(cw − sv)

This should be, and is, the same result we would get with

w
v
u

 being just a vector, transformed

in the usual vector way,

c −s
s c

1

w
v
u

So a twirl, while transforming like a vector under rotation, is in general a tensor; for instance, it
does not transform like a vector under reflection.

(Even though “twirl” is in one sense a rotation, we are here looking at it as a “real thing” so
the matrix representing it is a tensor—as opposed to the quite different matrix that describes the
operator, rotation.)

5. Twirl and area are “pseudovectors” or “axial vectors” in Willard Gibbs’ vector analysis (which
is widely used in spatial science). We now know that they are really tensors. It is just a coincidence
that 3×3 antisymmetric tensors have 3 components, like a vector. This does not happen in two
dimensions (1 component) or four dimensions (6 components).

Vector analysis generates pseudovectors by a “cross product” of two vectors: A = v1×v2 = −v2×v1,
to use the area example from Note 1.

Vector analysis is unsatisfactory because

a) it is not a closed system: operating on vectors we get things that are not vectors (and, worse,
they look like vectors);

b) it only works in three dimensions and does not generalize to more, or fewer, dimensions.

Can we make better abstractions for spatial entities, instead of vectors?

We need a formalism

• which is independent of coordinate axes;

• which captures the notion of area being the anticommutative combination of two vectors;

• which does not depend on the number of dimensions of the space.

5

B. Interval Algebra
6. Vectors and Areas and .. All Together

• Parts of space are lines, areas, volumes, ..

• We’ll ignore absolute position and consider only direction and magnitude.

• We’ll take the basis elements to be orthonormal and anticommutative.

(We’ll use the word “elements” instead of “vectors”: some but not all elements can be thought of
as vectors.)

1. The basis elements are e1 and e2, which are defined to have the following properties.

e1e1
def
= 1

e2e2
def
= 1

e12
def
= e1e2

def
= −e2e1

2. An arbitrary element can be a linear combination of basis elements. Its product with itself is
the square of its length or magnitude.

u = e1 + e2

uu = (e1 + e2)(e1 + e2) = 1 + 1 = 2

v =
√

3e1 + e2

vv = (
√

3e1 + e2)(
√

3e1 + e2) = 3 + 1 = 22

v = 3 e + e

1

e2

/6

_
4

u
=

e
+

e2
1

1
2

e

3. The product of two different elements gives their magnitudes times the cosine and sine of the
angle between them.

uv = (e1 + e2)(
√

3e1 + e2)

=
√

3 + 1 + (1 −
√

3)e12

= 2
√

2(

√
3 + 1

2
√

2
+

1 −
√

3

2
√

2
e12)

= 2
√

2(cos(π/6 − π/4) + sin(π/6 − π/4)e12)

(ce1 + se2)(c
′e1 + s′e2) = (cc′ + ss′) + (cs′ − c′s)e12

= cos(v − u) + sin(v − u)e12

6

where cos(v − u) and sin(v − u) are respectively the cosine and sine of the angle from u to v:
an interval from a to b is b − a because adding s to it gives b.

7. Rotation

Let’s have a magnitude operator (| v | is an alternative notation),

mag(v) =| v |=
√

vv = length of v

and a normalizing operator (nv is an alternative notation),

norm(v) =n v = v/mag(v) : norm(v)norm(v) = 1; v norm(v) = mag(v)

and norm(v)norm(u)u = norm(v)mag(u), which rotates u into the direction of v.

Try norm(u) = ce1 + se2

v = mag(v)(c′e1 + s′e2) = xe1 + ye2

norm(u)norm(v) = (cc′ + ss′) + (cs′ − sc′)e12

= C + Se12

where C = cos(v − u) and S = sin(v − u) as in Note 6. Compare this with 2-numbers, C + iS.

If we note that e12e12 = e1e2e1e2 = −e1e2e2e1 = −1, we seem to find that e12 is the square root
of −1. It’s better to think of e12 as a π/2 rotation when postmultiplied (or a −π/2 rotation when
premultiplied):

e1e12 = e2

e2e12 = −e1

e12e2 = e1

e12e1 = −e2
(It is even better to think of e12 as a plane: see Note 11, below.)

So what is the meaning of C + Se12?

u(C − Se12) = (xe1 + ye2)(C + Se12)

= (Cx − Sy)e1 + (Sx + Cy)e2

= (e1 e2)

(

C −S
S C

) (

x
y

)

It’s the rotation that rotates u onto v (the figure uses nv for norm(v)): unorm(u)norm(v) = v =
norm(v)norm(u)u.

u

1

e2

−0

−0

0 − 0
−

−

u

v

vn

n u

v

e

7

8. Reflection

If uuv and vuu rotate u → v what is uvu?

Let’s try it with u and v normalized.

u = c′e1 + s′e2

v = ce1 + se2

uvu = (c′e1 + s′e2)(ce1 + se2)(c
′e1 + s′e2)

= Ce1 + Se2 where

C = cos(θu − θv + θu) = cos(θu − (θv − θu))

S = sin(θu − θv + θu) = sin(θu − (θv − θu))

uvu

1

e2

−0v

−0u−0v

−0u

uv

e

uvu is the reflection of v in u.

(Another viewpoint: since w(vu) rotates w by the angle between v and u, so u(vu) is the reflection
of v in u.)

Note that the projection of v in u is (uvu + v)/2, which can be written as a relationship among the
reflection operator, F , the identity operator, I, and the projection operator, P : P = (F + I)/2.

Note finally that a rotation is two reflections:

1. in e1;

2. in “half-u”, an element whose angle with e1 is half the angle we wish to rotate through.

(We’ll use the subscript J to indicate half-angles, since J sort of looks like 2 upside-down.)

v = xe1 + ye2 c = cos θ cJ = cos θ/2

uJ = cJe1 + sJe2 s = sin θ sJ = sin θ/2

uJe1ve1uJ = (cJ − sJe12)v(cJ + sJe12)

= (e1 e2)

(

c −s
s c

) (

x
y

)

which is the rotation. (Recall that c = c2
J − s2

J and s = 2cJsJ .) θ/2 + θ/2 + α − α = θ:

8

2

0_
2

e1

e2

−0 c

c

u = xe + ye

v

u
1

1

2u

−

9. 3D rotations

Outside of a 2-D plane we can’t use C + Se12 in 3-D:

e3(C + Se12) = Ce3 + Se123

(Note the extension of the rule for combining basis elements:

e3e12 = e3e1e2 = −e1e3e2 = e1e2e3
def
= e123)

So let’s try two reflections:

rotate v = xe1 + ye2 + ze3

in plane P = re12 + pe23 + qe31

with P normalized: p2 + q2 + r2 = 1.

(cJ − sJP)v(cJ + sJP) =

(e1 e2 e3)

c −sr sq
sr c −sp
−sq sp c

 + (1 − c)

p
q
r

 (p, q, r)

x
y
z

Note that pe1 + qe2 + re3 ⊥ P = re12 + pe23 + qe31.

Note also that

p
q
r

 is an eigenvector of the rotation matrix: what is the significance of that?

Now two rotations:

by (c, s) about pe1 + qe2 + re3

then by (c′, s′) about p′e1 + q′e2 + r′e3

⇓
a rotation by (c′′, s′′) about p′′e1 + q′′e2 + r′′e3

(cJ + sJ(re12 + pe23 + qe31))(c
′
J + s′J(r′e12 + p′e23 + q′e31))

= c′′J + s′′J(r′′e12 + p′′e23 + q′′e31)

where

c′′J = cJc′J − sJs′J(rr′ + pp′ + qq′)

s′′Jr′′ = sJc′Jr + cJs′Jr′ + sJs′J(qp′ − pq′)

s′′Jp′′ = sJc′Jp + cJs′Jp′ + sJs′J(rq′ − qr′)

s′′Jq′′ = sJc′Jq + cJs′Jq′ + sJs′J(pr′ − rp′)

9

Note that in 3-D all the angles are half angles.

Note that 3-D rotations do not commute.

10. Intervals plus locations. The intervals described by the interval algebra have magnitude and
orientation but no location.

Thus they cannot solve problems such as finding the distance from a point to a line.

We must work with both points and line intervals.

For a start, the line interval must be anchored to a point, say (x, y).

Then we can formulate the problem as “find the distance from a point (x′, y′) to the line that is
the interval m(pe1 + qe2) starting from point (x, y).

(x,y)

(x ,y)

m(pe + qe)

1
21d

d
2

Here, m is the magnitude of the interval and p and q give its orientation (normalized so p2+q2 = 1).
(x, y) and (x′, y′) are two points, which are beyond the scope of the interval algebra, and our task
is to find the length of the dashed line, which is the distance from (x′, y′) to the interval starting
at (x, y), and to ascertain that this vertical actually meets the original line within the interval.

We can find the dashed line as an interval, p′e1+q′e2, which we might as well normalize, p′2+q′2 = 1.
This does not locate the interval, but we can do that by making it start at (x′, y′). For orthogonality,
either pp′ + qq′ = 0 or, directly, take the interval product with the containing plane

p′e1 + q′e2 = (pe1 + qe2)e12 = −qe1 + pe2

We consider as unknowns the two distances to the intersection of the solid and dashed lines, d1

from (x, y), and d2 from (x′, y′).

Then we can switch to vector notation and write
(

x
y

)

+ d1

(

p
q

)

=

(

x′

y′

)

− d2

(−q
p

)

(Why is there a − sign before d2?)

This becomes
(

p −q
q p

) (

d1

d2

)

=

(

x′ − x
y′ − y

)

which is easily solved, especially since the determinant is 1.

If d1 ≤ m, the dashed line does meet the solid line within the given interval.

11. Interval algebra in 3D. We can get a better feeling for interpreting the interval algebra from
using it in 3D than from using it in 2D.

First, let’s define the order of an interval, or part of an interval, as the number of subscripts on
the basis elements. Intervals can be of homogenous order, such as the line interval pe1 + qe2 + re3

10

(order 1) or the plane interval pe23 + qe31 + re12 (order 2), or of mixed order, such as the product
pp′ + qq′ + rr′ + (pq′ − qp′)e23 + (qr′ − rq′)e31 + (rp′ − pr′)e12.

In three dimensions, order-1 intervals are line intervals and order-2 intervals are plane intervals.
The magnitude of a line interval is its length.

A plane interval can be considered equally as a plane area (the “area” is its magnitude) or as a twirl.
In either case. it can also be thought of, in 3D, as the line interval orthogonal to it (pe23+qe31+re12

or pe1 + qe2 + re3), and in the twirl case, this line interval is the axis of rotation.

For those familiar with Gibbs’ vector notation, this orthogonal to a plane interval is the “pseu-
dovector” that is the “cross product” of the two vectors in the plane whose magnitudes times the
sine of the angle between them is the magnitude of the cross product. It is much better to think of
plane intervals than pseudovectors. For one thing, intervals generalize to any number of dimensions.
Pseudovectors do not.

It is also useful to be able to extract components of any given order, so we define a cmpt operator
with a parameter specifying the order of the component to be extracted.

cmpt(0, (pe1 + qe2 + re3)(p
′e1 + q′e2 + r′e3) = pp′ + qq′ + rr′

and similarly for cmpt(2, (pe1 + qe2 + re3)(p
′e1 + q′e2 + r′e3)), etc.

The Gibbs’ “dot product” between the two vectors is given by cmpt(0,) and the “cross product”
is given by cmpt(2,).

Now, the interval product between two homogeneous intervals of the same order gives the angle
between them and the plane common to them.

uv = mag(u)mag(v)(c + s normPlane(u, v))

For example,

(pe1 + qe2 + re3)(p
′e1 + q′e2 + r′e3) = pp′ + qq′ + rr′ + (pq′ − qp′)e23 + (qr′ − rq′)e31 + (rp′ − pr′)e12

= −(pe23 + qe31 + re12)(p
′e23 + q′e31 + r′e12)

where

mag(u) = 1 = mag(v)

c = pp′ + qq′ + rr′

s =
√

(pq′ − qp′)2 + (qr′ − rq′)2 + (rp′ − pr′)2

and normPlane(u, v) is the normalized plane consisting of the second-order component divided by
s.

The interval product between a homogeneous interval and a containing interval gives the interval
within the containing interval that is orthogonal to the first interval. Here is a slightly more general
example.

(p′e1 + q′e2 + r′e3)(pe1 + qe2 + re3) = (pp′ + qq′ + rr′)e123 + (pq′ − qp′)e3 + (qr′ − rq′)e1 + (rp′ − pr′)e2

= (p′e23 + q′e31 + r′e12)(pe1 + qe2 + re3)

where, if the line (order-1) intervals are contained, respectively, in the plane (order-2) intervals,
pp′ + qq′ + rr′ = 0 because the line intervals are orthogonal, respectively, to the line intervals
orthogonal (“normals”) to the plane intervals. (The word “normals” can be confused with the
word “normal”, describing an interval of magnitude 1, so we do not continue to use it.)

We can use these interpretations to find a new set of orthonormal axes (orthogonal to each other
and normalized) given one desired axis. We work a specific example in which f1 = (e1+e2+e3)/

√
3.

First, find the plane interval orthogonal to f1

(e1 + e2 + e3)e123/
√

3 = (e23 + e31 + e12)/
√

3

11

Second, find any line interval in this plane: the condition is that p′e1 + q′e2 + r′e3 is orthogonal to
f1 so p′ + q′ + r′ = 0. This eliminates one of the three unknowns, and we might as well make a
choice among the others which is as simple as possible. So suppose r′ = 0 and q′ = −p′:

f2 = (e1 − e2)/
√

2

Third, find a second line interval in the orthogonal plane which is orthogonal to the first.

f3 = (e1 − e2)(e23 + e31 + e12)/
√

3/
√

2

= (e1 + e2 − 2e3)/
√

6

Check that fjfj = 1 and fjfk = −fkfj if j 6= k, the same properties that the ej have..

Finally, observe that the matrix transforming from the ej to the fk is just given by the coefficients.

f1

f2

f3

 =

1/
√

3 1/
√

3 1/
√

3
1/
√

2 −1/
√

2
1/
√

6 1/
√

6 −2/
√

6

e1

e2

e3

Check that the inverse of this matrix is its transpose, and convince yourself that the transformation
of coordinates, if the space were to be rotated the same way, relative to the original axes, ej , is this
transpose.

12. Summary

(These notes show the trees. Try to see the forest!)

• Vectors are real things, independent of coordinates.

• So where they are written in terms of coordinates, these coordinates must transform correctly
under rotation, reflection, projection and inversion: X~v.

• Some real things are not vectors, but tensors, and so tensor elements must also transform
correctly: XTX−1.

• Clifford or geometric or angle or interval algebra:

– parts of space: lines, areas, volumes, ..;

– ignore position, consider only magnitude, direction;

– basic elements are orthonormal and commutative.

• 2-D rotation from u to v is uuv or vuu.

• Reflection of v in u is uvu.

• 3-D rotation by (c, s) about re12 + pe23 + qe31 ..

• Two 3-D rotations need half angles and are not commutative.

• Intervals have no locations, only magnitudes and orientations, so the interval algebra must
be supplemented by points if, say, distances are to be found.

• Interval products have a number of useful interpretations, including angles between lines and
planes, and orthogonals to lines and planes.

NB In 2-D: 1, e1, e2, e3, e12. In 3-D: 1, e1, e2, e3, e23, e31, e12, e123.

12

13. Appendix: Summary of vector and matrix operations

+

~u + ~v =

(

u1 + v1

u2 + v2

)

A + B =

(

a11 + b11 a12 + b12

a21 + b21 a22 + b22

)

•

~u.~v = (u1 u2)

(

v1

v2

)

= u1v1 + u2v2

= | ~u || ~v | cos(6 (~u,~v))

A~u =

(

a11 a12

a21 a22

) (

u1

u2

)

=

(

a11u1 + a12u2

a21u1 + a22u2

)

~uA = (u1 u2)

(

a11 a12

a21 a22

)

= (u1a11 + u2a21 u1a12 + u2a22)

AB =

(

a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)

⊗

A ⊗ B =

(

a11B a12B
a21B a22B

)

Clifford algebra

uv = (u1e1 + u2e2)(v1e1 + v2e2)

= u1v1 + u2v2 + (u1v2 − u2v1)e12

= ~u.~v+ | ~u × ~v | e12

= mag(u)mag(v)(cos(6 (~u,~v)) + sin(6 (~u,~v))e12)

(The third line does not use the Clifford algebra mag() operator because it is not Clifford algebra.
It is a digression for those familiar with Gibbs’ vector algebra.)

Compare

(

u1

u2

)

(v1, v2) =

(

u1v1 u1v2

u2v1 u2v2

)

Finally, compare these with 2-numbers (Week 4: we use 2-number notation for the magnitude
instead of the Clifford algebra mag() operator):

u + v = u1 + v1 + i(u2 + v2)

uv = (u1 + iu2)(v1 + iv2)

= u1v1 − u2v2 + i(u1v2 + u2v1)

= | u | ei6 u | v | ei6 v

= | u || v | ei(6 u+ 6 v)

13

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. Dot product.
a) The dot product (see Week 2 Note 5) of two normalized vectors in any number of dimensions
equals the cosine of the angle between the vectors. Show this: i) use (Xu)T Xv = uT v to
discover that the dot product is invariant under any axis transformation, X, whose transpose
is its inverse; and ii) use this invariance to reduce any two d-dimensional vectors, ~u and ~v, to
the two dimensions of their common plane.
b) What is the angle between doc1 and doc2 in Note 2?
c) How does the dot product of a vector, v, with itself relate to the interval algebra product
vv in Note 6?
d) How would you define the dot product of the interval algebra basis elements e1 and e2 so
that for any vectors u = u1e1 + u2e2 and v = v1e+v2e2, u.v = u1v1 + u2v2? Relate this to the
definition of the dot product (Week 2 Note 5) in terms of some particular coordinate system.
Why is the product axbx + ayby of any coordinates ax, ay, bx and by invariant, i.e., has the
same value no matter what axes are used to specify the coordinates?
e) Show that ~u.~v/ | v | is the component of ~u along the direction of ~v for any two vectors ~u
and ~v.

2. Calculate the reflections in the yz plane of twirls pointing along each of the x, y and z axes,
and explain why what you get is right.

3. Confirm that w, u and v in the 3D twirl tensor must refer to the x, y and z components,
respectively.

4. Is there a way to use 2-numbers to represent 3D twirl as a 2×2 tensor?

5. Show that postmultiplyimg by e12 is the same as premultiplying by e21 in Note 7. What does
this imply for expressing the rotation from u to v as a premultiplication?

6. What is the matrix for the reflection of v = xe1 + ye2 in u = ce1 + se2 (c and s are cosine
and sine, respectively, so u is normalized)?

7. Why is u(vu) the reflection of v in u? Explain in terms of the rotation, (uv). (Take u and v
to be normalized.)

8. A ball moving along trajectory b bounces off a wall w. What is its new trajectory?

9. Explain why the projection of v on u is (uvu + v)/2. For u = c′e1 + s′e2 and v = ce1 + se2,
give the matrices F (reflection) and P (projection). What is the significance of P − I, where
I is the identity matrix?

10. Show that 3D rotation by angle (c, s) about re12 + pe23 + qe31 is the matrix given in Note 9.
Show that (p, q, r)T is an eigenvector (Note 1 of Week 8), find the corresponding eigenvalue,
and explain what these mean.

11. Check the derivation of the expression for double rotation in 3D. How would we find p′′, q′′

and r′′?

12. Compare rotating by π/2 about (1,0,0) then π/2 about (0,1,0) with rotating π/2 about (0,1,0)
then π/2 about (1,0,0). Use both interval algebra and your hands and some physical object
such as a book.

14

13. Using rotations (and other operations) in the interval algebra and a starting edge, e1, find the
other two edges of an equilateral triangle. How would this help you draw it with a graphics
program?
Once you’ve found the second edge, there are at least three ways of finding the third: figure
them all out and compare.

14. Rotate the equilateral triangle of the previous Excursion just enough to map it onto itself
and show that the edges you found there do indeed map onto each other.

15. Why can the Interval Algebra not be used to find the intersection of two lines?

16. Tetrahedron. Using rotations (and other operations) in the interval algebra and the equi-
lateral triangle of the previous Excursion, calculate the three edges needed to build it into an
equilateral tetrahedron. How would you find the angles between the planes in the tetrahe-
dron?

17. What is the 3-by-3 matrix that gives a 1/3 rotation (i.e., by 2π/3) about the axis (1,1,1)?
Check that this make sense: multiply it by itself once, then once more.

18. a)
(Warmup and check.) What is
the plane formed by the edges
e1 and (e2 + e3)/

√
2? What

is the angle between these two
edges? What angle does the
plane make with e12? (Keep
all edges and planes normal-
ized! Be careful about signs,
and check what they mean!)
b) Answer the questions from
(a) for the edges (e1 + e3)/

√
2

and (e2 + e3)/
√

2.

1

e

e

e

e

e

2

12

23

31

e + e

e1

1
2

3

()

2 1

1
3

e + e
()

e
 +

 e
2

3

(

)

1
22

c) Examine and test the MATLAB function

% function [cos12,sin12,face12] = product(edge1,edge2)
% THM 070410 in file: product.m
% edge1: normalized 3-vector, e.g. [p1,q1,r1]
% edge2: normalized 3-vector, e.g. [p2,q2,r2]
% cos12 = p1p2+q1q2+r1r2
% sin12 = +sqrt(1-cos^2)
% face12: normalized 3-vector,
% [(q1r2-r1q2)/sin12,(r1p2-p1r2)/sin12,(p1q2-q1p2)/sin12]
% (Works for planes as input, but use -cos12, -sin12)

15

function [cos12,sin12,face12] = product(edge1,edge2)
p1 = edge1(1); q1 = edge1(2); r1 = edge1(3);
p2 = edge2(1); q2 = edge2(2); r2 = edge2(3);
cos12 = p1*p2+q1*q2+r1*r2;
sin12 = sqrt(1-cos12^2): % when might this be 0?
if abs(sin12)<10^-8 face12 = [0,0,0]; else
face12 = [(q1*r2-r1*q2)/sin12,(r1*p2-p1*r2)/sin12,(p1*q2-q1*p2)/sin12];
end

Why must we change the sign if edge1 and edge2 represent faces rather than edges on input?
(Hint. Multiplying by e12 in 2D gives a quarter-rotation. Does multiplying by e123 in 3D also
do this? What does a “quarter rotation” mean in this case for an edge? For a face? What is
e123e123?)
d) (Warmup and check.) Rotate the edges e1 and (e2 + e3)/

√
2 through the angle you found

in (a) so as to put them both in e12: this should give e1 itself and e2, respectively.
e) Rotate the edges from (b) so as to put them both in e12. Check that they have the same
angle with each other that they did before rotating.
f) Find two additional normalized edges that share with each of the new edges from (e) the
same angle you found in (b) that they have with each other. (Note that the solution is direct
if the input edges are in e12 but would require iteration if the e3 components of the edges are
nonzero: try it!)
g) Write a MATLAB function, e12equiAngle(), for (f), i.e., which given two edges in e12

finds an edge sharing with those two edges the angle that is between the input edges.
Write a MATLAB function, equiAngle(), which given any two edges finds an edge sharing
with those two edges the angle that is between the input edges: find the plane of the given
edges, rotate it into the e12 plane, use e12equiAngle() to find the new edge, and rotate this
back again. (The next excursion gives a possible rotate3D() function interface.)
h) Rotate the edge from (f) that has the negative e3 component inversely to the rotation in
(e). What is the resulting combination of this edge and the two original edges in (b)?

19. Inspect and run the following MATLAB function.

% function [pentcoords,pentedges,pentface] = pentagon(startcoords,startedge,pentface)
% THM 070409 in file: pentagon.m
% Makes pentagon of unit edges, given 3D coords for 1 vertex, 1 edge, 1 plane
% startcoords 3-vector, e.g. [0,0,0]
% startedge 3-vector, e.g. [1,0,0]
% pentface 3-vector, e.g.[0,0,1] The plane in which the pentagon is made
% pentcoords 5*3 array, e.g. [0,0,0;1,0,0;..]
% pentedges 5*3 array, e.g. [1,0,0;..]
% uses rotate3D
function [pentcoords,pentedges,pentface] = pentagon(startcoords,startedge,pentface)
angle = 2*pi/5;
edgesIN = startedge’;
planesIN = pentface’;
pentedges = edgesIN;
pentcoords = startcoords’;
[edgesOUT,planesOUT] = rotate3D(pentface,angle,edgesIN,planesIN);
for k = 1:4

pentedges = [pentedges,edgesOUT];
coords = pentcoords(k,:) + pentedges(k,:)

16

pentcoords = [pentcoords,coords];
[edgesOUT,planesOUT] = rotate3D(pentface,angle,edgesOUT,planesIN);

end

Write the function rotate3D(plane,angle,edgesIN,planesIN), which rotates arbitrary sets
of edgesIN and planesIN about angle in plane.
Write a program which calls pentagon() and uses quiver3 to draw the resulting pentagon.

20.

Above are the five “Platonic solids”: the tetrahedron (4 faces), the cube (hexahedron, 6 faces),
octahedron (8 faces), dodecahedron (12 faces) and icosahedron (20 faces). Use the techniques
of the previous excursions to build them in MATLAB.
(The cube and octahedron do not need interval algebra machinery and their edges can be
written down straight from pairs of coordinates. They make a good place to start. The
tetrahedron can also be written down directly from coordinates, or it can be made from
an equilateral triangle and an additional vertex out of the plane and equidistant from each
vertex of the triangle; but it is good exercise to use interval algebra for this, following the
Tetrahedron Excursion, above, or the notes on Clifford Algebra available from the course
home page.)
By finding a way to draw the octahedron inside the cube and the icosahedron inside the do-
decahedron, show that these are two pairs of “duals”—the faces of one of each pair correspond
to the vertices of the other, and vice-versa. What is the dual of the tetrahedron?

21. Use the pdf notes “Clifford Algebra” for this week to find the coordinates of the centre of a
tetrahedron (the point equidistant from each vertex) and to show that the angle between any
two edges connecting the centre with two vertices is about 109o27′.

22. How many colours are needed to colour the vertices of each of the Platonic solids, if no two
vertices of the same colour may be joined by an edge? How many colours for the faces, if
no two faces separated by an edge as a boundary may have the same colour? What about
colouring vertices of polygons in 2D?

23. Confirm that the Platonic solids satisfy

2 + E = F + V

where E is the number of edges, F is the number of faces and V is the number of vertices.
Does this hold for any other figure?

24. How many spheres can be packed around a sphere of the same radius? (Hint: start with 2D
and show that six circles pack a centre circle. What angle does each circle subtend at the
centre? Approximately what proportion of the spherical surface area, 4πr, is inside one of
the packing spheres centred at distance r? Must the centres of the packing spheres form the
vertices of one of the Platonic solids?)

17

25.

The red additions to the cube and the dodecahedron above are the paths of length 2. That
is, since the cube has a blue edge (0,0,0)–(1,0,0) and a blue edge (1,0,0)–(1,1,0), then (0,0,0)–
(1,1,0) will be a red edge.
Here are all the coordinate pairs for the cube, in two different orders: the set on the left is
sorted by columns 4, 5 and 6; the set on the right is sorted by columns 1, 2 and 3.

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 1 0 0 1
1 0 1 0 0 1
0 0 0 0 1 0
0 1 1 0 1 0
1 1 0 0 1 0
0 0 1 0 1 1
0 1 0 0 1 1
1 1 1 0 1 1
0 0 0 1 0 0
1 0 1 1 0 0
1 1 0 1 0 0
0 0 1 1 0 1
1 0 0 1 0 1
1 1 1 1 0 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 1 1 0
0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 0 1 1
0 0 1 1 0 1
0 1 0 0 0 0
0 1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 1
0 1 1 0 1 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 1 0 1
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 1 0 0
1 0 1 1 1 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

a) Confirm that these coordinate pairs link up so as to give the red edges shown with the
cube.
b) Examine the following MATLAB code which will make the links you checked in (a). It
implements a simplified natural composition operator of the relational algebra. It is built
in terms of three other relational algebra operators, natural join, projection and a family
of operators that treat relations as sets of rows and produce set difference (−), union (u),
intersection (n) and symmetric difference (+). (Note that this last operator is here applied
to the set of columns of the relations being put together.)
Look up [Mer99, Database programming], implement these operators, and show that

18

relationCompos() applied to the coordinate pairs for the cube produces the red figures
shown.
c) Run your relationCompos() on the coordinate pairs you got for the dodecahedron in an
earlier excursion.

% function joinOut = relationCompos(joinIndices,joinIn1,joinIn2)
% THM 070420 in file relationCompos.m
% joinIndices 2*m array giving indices to be joined
% joinIn1 n1*m1 array
% joinIn2 n2*m2 array
% joinOut n*(m1-m+m2) array
% joinOut rows will be unduplicated if joinIn1 and joinIn2 rows are
% Uses relationSetOp(), relationJoin(), relationProject()
function joinOut = relationCompos(joinIndices,joinIn1,joinIn2)
sizIn1 = size(joinIn1);
sizIn2 = size(joinIn2);
sizInd = size(joinIndices(1,:));
%all = zeros(sizInd); % indices for compareRows(): all columns
for k = 1:sizIn1(2) - sizInd(2) + sizIn2(2) all(k) = k; end
projIndices = relationSetOp(’-’,all’,joinIndices(1,:)’)
joinOut = relationProject(projIndices’,relationJoin(joinIndices,joinIn1,joinIn2));

26. Combine the methods of Notes 10 and 11 to find the distance in three dimensions between a
given point and a line made up of an interval and another given point as start point. (You
will need to solve for three distances, and combine two of them to give the desired distance.)

27. Note 11 gives the expression c + s normPlane(u, v).
a) Show that c2 + s2 = 1 so that it is plausible to interpret c and s as cos() and sin(),
respectively. (Try it in two dimensions first.)
b) Use the axis-rotating method of Note 11 to change axes so that a new f3 is orthogonal to
the plane containing u and v, and thereby establish that c and s really are cos() and sin() in
the two-dimensional f12 plane.

28. Show that pp′ +qq′+rr′ = 0 also results from the condition that the reflection of p′e1 +q′e2 +
r′e3 in the plane orthogonal to pe1 + qe2 + re3 equals p′e1 + q′e2 + r′e3 itself.

29. Direction cosines. The normalized p, q and r we have been using in Notes 9–11 for three
dimensions are also known as direction cosines

p = cos α, q = cos β, r = cos γ

a) For line intervals, what are the angles α, β and γ?
b) What are the direction cosines in two dimensions (what must sin() be replaced by)?
c) When two line intervals, angle θ apart, are given by direction cosines, show that the sines
of the projections of θ on the e12, e23 and e31 planes are, respectively,

sin θ12 =
pq′ − qp′

√

p2 + q2
√

p′2 + q′2
, sin θ23 =

qr′ − rq′
√

q2 + r2
√

q′2 + r′2
, sin θ31 =

rp′ − pr′
√

r2 + p2
√

r′2 + p′2

(In the figure, red is used for the primed direction cosines. Use the differences between the
angles δ, ǫ and ζ shown and their red counterparts.)

19

2

θ

θ23
θ

31θ

12
δ

ε
ζ

p

q

r

p

r

q

p + q + r = 1

p + q + r = 1

2 2 2

2 2

d) What are the cosines of these projections of θ?
e) Note that the redundancy of p2 + q2 + r2 = 1 hides the signs. Why is it useful to have all
three direction cosines? (All two in 2D?)

30. The Gibbs “cross product” of two vectors in 3D is defined as

(a, b, c) × (a′, b′c′) = ((bc′ − cb′, ca′ − ac′, ab′ − ba′)

Show that this is not a vector but a tensor. Write the tensor.
Show that it is not a line interval but a plane interval. Write the plane interval.

31. Nonorthogonal axes and tensor notation. We’ve seen that the two “tensors” in Notes
3 and 4 are independent of rotations of the coordinate system. Tensor notation is intended
to cope with any linear transformation of the axes. After the following discussion, show that
the twirl of Note 4 survives nonorthogonal axis transformations but the height- and width-
eigenvalues of Note 3 do not.
Here is a non-orthogonal axis transformation, from the black axes (solid lines) to the red
(dashed lines).

20

y

p
x

p
y

β

α

p

p
p

ppx

y

x

y

pp

NB p = p , p = px
x y

a) To transform the vectors
(

1
0

)

and

(

0
1

)

to the red axes shown, persuade yourself that we would use the matrix

S =
1

√
c+

(

cα sβ

sα cβ

)

where cz is cos(z), sz is sin(z) for z either α or β, and c+ is cos(α + β) = cos(α) cos(β) −
sin(α) sin(β). (This latter is the determinant of the part of S written above as a matrix. We
need not divide that matrix by

√
c+ but to do so normalizes the matrix in a way that allows

the example to illustrate a minor but significant point (see (j)).)
The first point to make is that to transform the coordinates describing the point p = (px, py),
so that the same point, p, is identified by new (red) coordinates, p = (px̄, pȳ), we use the
inverse of S,

S−1 =
1

√
c+

(

cβ −sβ

−sα cα

)

b) Persuade yourself that this statement is true. (Think about rotations as an example, and
compare finding a rotated point, p, with finding new coordinates for p under rotated axes.)
So

(

px̄

pȳ

)

=
1√
c+

(

cβ −sβ

−sα cα

) (

px

py

)

c) The new red coordinates are non-orthogonal : the red axes are not at right angles to each
other. What is different about a non-orthogonal coordinate system is that invariants such
as the length of a vector (say, the distance from p to the origin) or the angle between two
vectors will apparently change under the transformation: calculate

√
px̄ × px̄ + pȳ × pȳ and

compare it to
√

px × px + py × py. This does not happen with orthogonal transformations
such as rotations: such invariants are left safely fixed by the rotation. (Show that the two
above square roots are the same if β = −α but not necessarily for other β. If your algebraic

21

results do not convince you, try it with the two angles drawn in the above figure: cα = 12/13
and cβ = 24/25. Show that the squares of the lengths are about 2.75 versus 5. Or just look
at the drawing.)
So we need to think of something else. This is the first contribution of tensor theory. Because

we used S−1 to transform pj to pk̄ this transformation is called contravariant. A correspond-
ing transformation using ST is called covariant, and that is what we need. Tensor notation
writes contravariant elements with superscript indices. (That is why I repeated the px and
the py above to square them instead of writing px2 and py2: it is best in tensor notation not
to use superscript operators to denote powers.)
And covariant elements are written with subscript indices. You’ll find this in the blue com-
ponents, px̄ and pȳ, in the diagram.
Only in orthogonal coordinate systems are the contravariant and the covariant components
the same. Thus, in black, px = px and py = py.
In the diagram, the blue (dot-dash lines) shows the transformation.

(

px̄

pȳ

)

=
1

√
c+

(

cα sα

sβ cβ

) (

px

py

)

(d) Show that the covariant transformation of (1,0) is orthogonal to the contravariant trans-
formation of (0,1) and vice-versa in this example.
Now we consider how to describe the invariant length of p (that is, the distance of point p
from the origin). We use both contravariant and covariant coordinate systems. Writing the
transformations as matrices and the coordinates as vectors

(px̄, pȳ)

(

px̄

pȳ

)

= (px̄, pȳ)SS−1
(

px̄

pȳ

)

= (px, py)

(

px

py

)

= (px, py)

(

px

py

)

Here I used row vector × column vector to express the sum of products (in this case, the
sum of squares), and I’ve used the less usual way of writing the transformation ST×(column
vector) as (row vector)×S.
Let’s look at this in terms of the indices. I’ll write them out first in the conventional matrix
way with all indices as subscripts.

∑

j

pjpj =
∑

j

(
∑

k

pkSkj)(
∑

k′

S−1
jk′pk′)

=
∑

k

pk

∑

k′

(
∑

j

SkjS
−1
jk′)pk′

=
∑

k

pk(
∑

k′

Ikk′pk′)

=
∑

k

pkpk

From the first to the second line we rearranged the order of the sums, which you should con-
vince yourself we can always do. Then we got SS−1, and this is the identity I. The identity
gets rid of the sum of k′ by just setting k′ to k.
Because we can always rearrange summation order and because multiplication of the individ-
ual elements commutes, even though multiplication of the matrices does not, tensors introduce
a second notational simplification: the Einstein summation convention says drop the

∑

signs
and just repeat indices to sum.
Combining this with the use of superscript indices for contravariant tensors and subscript
indices for covariant, we can write this argument in tensor notation. Transposes don’t ap-
pear at all. But I’ve written a place-holding dot just to indicate which was the left (row)

22

and which the right (column) matrix index, in order to maintain a connection with matrix
multiplication.

pjp
j = pkS

k
.j(S

−1)j.k′p
k′

= pkI
k
.k′pk′

= pkp
k

e) We saw that the second-order tensors in Notes 3 and 4 transform using both the transfor-
mation matrix and its inverse, e.g., T → RTR−1. Write this in tensor notation and argue that
tensors that transform as T does should be written with one contravariant and one covariant
index. That is why I wrote the transformation matrices, say S, above as Sk

j .
The above discussion requires that we have both contravariant and covariant components in
order to compute invariants such as the inner product (length of one vector or angle between
two different normalized vactors). But there is a way to find length, say, if we have only one of
these sets, such as the contravariant components. We start with the length in the orthogonal
system.

pjpj = Sj
.kp

kSj
.k′p

k′

= pk(ST).jk Sj
.k′p

k′

= pk(ST S)kk′pk′

= gkk′pkpk′

where gkk′

def
= (ST S)kk′ is the covariant double tensor called the fundamental metric tensor.

g enables us to find invariants even though limiting ourselves to contravariant coordinates.
f) Calculate gkk′ for the working example of this Excursion.
g) Show that gkk′ is symmetric, i.e., gkk′ = gk′k.

h) What is the contravariant fundamental metric tensor, gkk′

?
i) Show that gkk′ applied to any tensor with a contravariant index k′ (or k) lowers that index,

making it covariant. Hint: use pj̄p
j̄ = pjp

j .
At last, the “minor but significant point” I promised to illustrate back at the beginning of this
Excursion when I introduced 1/

√
c+ as a normalizing factor in the example transformations.

j) Show that without that factor, S would transform (1,0) and (0,1) into vectors of the same
length, 1. Then convince yourself that the scaling factor 1/

√
c+ = 1.13 increases the distance

between the unit marks along the transformed axes in the diagram.
k) The vector product bjx

j is not the only invariant. A constant, c, is always invariant, of

course. And so is the 2nd-order product gjkx
jxk above, as is, for any ajk, ajkx

jxk.
These can be combined in a generalization of the quadratic equation for scalars ax2 + bx + c
to the general quadric

ajkx
jxk + bjx

j + c

What are the interpretations that can be made of the general quadric, in the sense that the
quadratic can be interpreted as a parabola or, in special cases, a straight line? (Classify
all the possibilities in 2D. Look into 3D: what are planes? What are lines? Show that any
matrix is the sum of a symmetric and an antisymmetric matrix: what contribution to ajkx

jxk

is made by the antisymmetric part of a?)
l) Look up [McC57]: this Excursion prepares you for Parts I and II, where you can learn about
classical geometry as an application of tensors. This is an older book but application-directed
once you are over the initial hurdles—and you should now be prepared for these.
m) Without the normalizing factor 1/

√
c+ in the transformation, show that g12 = g21 = s+

where s+ is sin(α+β) = cos(π/2−(α+β)), the cosine of the angle between the nonorthogonal
axes.

23

32. Tensor Calculator I. Matrix representation. One- and two-index tensors can be repre-
sented readily as vectors and matrices and the Einstein convention that repeated indices are
summed over translates into regular matrix multiplication. Indices are either subscript (co-
variant) or superscript (contravariant: see previous Excursion) and raising or lowering them
means (matrix) multiplication by the metric tensor or its inverse: since the metric tensor has
two indices, either both down or both up, it can be included in the matrix representation
employed in this Excursion. We build a MATLAB program to raise and lower indices and to
multiply the matrices and vectors representing tensors.
We need a convention for the names of the matrices which distinguishes the positions of the
indices, since, for instance the tensor gα,β is different from gα,β—indeed, if it is the metric
tensor, as its name implies in this example, one is the inverse of the other.
So we combine the name of the tensor with the position(s) of its index(es): gα,β, for example,

is called g dd because of the two “down” indices, and gα,β is called g uu.
We work with examples from [Har03, pp.423, 428]. For instance,

g dd =

(

2 1
1 0

)

a) Show that

g uu =

(

0 1
1 −2

)

b) Because we must multiply a tensor by the appropriate metric tensor to raise or lower its
indices,

tαβ = gαγtγβ or t ud = g uu t dd

and
tβα = tαγgγβ or t du = t dd g uu

show that
g ud = g uu g dd = I

and
g du = g dd g dd = I

where I is the identity matrix.
c) Given, in addition to g dd above, the single-index tensors

a d =

(

1
0

)

b d =

(

0
1

)

c u =

(

1
0

)

d u =

(

0
1

)

show that

a u =

(

0
1

)

b u =

(

1
−2

)

c d =

(

2
1

)

d d =

(

1
0

)

24

d) Given, also in addition to g dd above, the double-index tensor

t dd =

(

3 1
−1 0

)

show that

t dd =

(−1 0
5 1

)

t ud =

(

1 1
0 −1

)

t du =

(

0 −1
1 3

)

We must build a table to associate each tensor name with its corresponding matrix (or vec-
tor). We can use a cell array:
table = {’g dd’,[2,1;1,0];’a d’,[1;0];’b d’,[0;1]; ’c u’,[1;0];’d u’,[0;1];...

’t dd’,[3,1;-1,0]};
and write code which will extend this table each time we calculate a new tensor.
e) Start with a lookup function

function [name,array,d2u,u2d] = lookup(strg,table)
which uses table passively to find in the first column of table the strg and return in name
the closest entry and in array the corresponding matrix. It should furthermore return in d2u
the positions of the indices which must be raised to convert the found name to the sought
strg, and in u2d the positions of the indices which must be lowered. Thus, with the above
table

[name,array,d2u,u2d] = lookup3(’t dd’,table)
should return the exact match

name = t dd
array =

3 1
−1 0

d2u = []
u2d = []

while
[name,array,d2u,u2d] = lookup3(’t ud’,table)

should return the nearest match (exact on “t” and closest on the sequence of “u”s and “d”s.
name = t dd
array =

3 1
−1 0

d2u = [1]
u2d = []

and
[name,array,d2u,u2d] = lookup3(’t uu’,table)

will return the same except
d2u = [1 2]

and finally
[name,array,d2u,u2d] = lookup3(’x dd’,table)

reports that no tensor starting “x” is in table
name = ’’
array = Inf
d2u = []

25

u2d = []
f) Now build the tensor calculator itself

function [answer,newTable] = tensorCalc(query,table)
which applies lookup(query,table) to give the suitably modified matrix as answer and also
enters the new name and matrix into newTable. (You can go one further and let query be a
sequence of strgs for lookup(), and, if the resulting matrices have suitably matching sizes,
add at the end of answer the matrix product of the whole lot.) Thus,

[answer,newTable] = tensorCalc3(’t uu’,’c d’,table)
answer = [2x2 double] [2x1 double] [2x1 double]
newTable =
’g dd’ [2x2 double]
’a d’ [2x1 double]
’b d’ [2x1 double]
’c u’ [2x1 double]
’d u’ [2x1 double]
’t dd’ [2x2 double]
’g uu’ [2x2 double]
’t uu’ [2x2 double]
’c d’ [2x1 double]
answer:
ans =

0 -1
1 3

ans =
2
1

ans =
-1
5

Tensor notation is more general than matrices, so a matrix representation will not capture
the full capabilities of tensors. For example, the above does not support dot product of two
vectors, since vectors are all represented as columns (this could be patched, of course). It does
not support contraction since that is expressed by repeated indices, which our representation
is not capable of. And tensors of three or more indices will of course be awkward to express
as conventional matrix multiplication.

33. Tensor Calculator II. Relational representation. A suitable generalization of matrices
which can represent general tensors are relations, a computer data structure proposed by E.
F. Codd in 1970 to rationalize databases on secondary storage but applicable much more
generally and to matrices in particular. We must switch from MATLAB to the language
Aldat [Mer07].
A relation is a set of “n-tuples”. It is a set in the mathematical sense, that it has no du-
plicate elements and that the order of the elements does not matter. For example, {a, b, b}
is not a set; {a, b, c} is the same set as {a, c, b} or as any permutation of these three letters.
The order-independence of sets is a powerful abstraction which reduces the 3! (3-factorial)
possible permutations of this example to a single entity.
An n-tuple is a collection of n items for which order does matter, either absolutely, or relative
to some pre-ordered list of names called attributes.
Examples of relations representing vectors and matrices are

26

ad =

(

1
0

)

a d(i v)
1 1

guu =

(

0 1
1 −2

)

g uu(i j v)
1 2 1
2 1 1
2 2 −2

tdd =

(−1 0
5 1

)

t dd(i j v)
1 1 3
1 2 1
2 1 −1

The indices are stored explicitly, as attributes named i, j, etc., and the value of each ele-
ment has its own attribute named v. The relations each have a name, before the parentheses
naming the attributes. Relation a d is a “binary” relation: its elements being 2-tuples (or
duples or pairs). Relations g uu and t dd are “ternary” relations, with 3-tuples (or triples) as
elements, The data follows in columns below the names in each heading line. (This particular
way of showing relations is called the “tabular representation”.)
Here is a 3-index tensor, the “alternating tensor”. Its elements are 4-tuples or quadruples.

alt uuu(i j k v)
1 2 3 1
1 3 2 −1
2 3 1 1
2 1 3 −1
3 1 2 1
3 2 1 −1

Note that zero entries are conveniently omitted: the relational representation of ordinary
matrices is especially attractive when the matrices are “sparse”, i.e., have a large proportion
of zeros. The alternating tensor in particular, although a three-index array, not an ordinary
matrix, is sparse: it has three 1s, three −1s and 3 × 3 × 3 − 6 = twenty-one 0s.
Relations are manipulated by accompanying operations of the relational algebra and of the
attribute algebra. The former creates new relations from existing relations. The latter creates
new attributes from existing attributes.
The relational algebra supports a renaming assignment, a natural join (a “binary” operation
on two relations), and a T-selector (a “unary” operation on one relation).
Here are assignments to rename attributes in t dd and g uu.

g uu’[i,joinon,vg <- i,j,v]g uu;
t dd’[joinon,j,vv <- i,j,v]t dd;

The results are
g uu’(i joinon vg)

1 2 1
2 1 1
2 2 −2

t dd’(joinon j vv)
1 1 3
1 2 1
2 1 −1

The data are the same, but the attributes have been renamed. (For a subtle reason, this
operation is considered part of the relational algebra, not of the attribute algebra.) Note
that the prime character, ’, is just part of the relation name in Aldat, not an operator as in
MATLAB.
The natural join combines two relations on their common attribute(s) by merging all tuples
from the first relation with all tuples from the second relation that match on values of that
(those) shared attribute(s). Here is the result of joining the two relations we’ve just renamed
so that they have a common attribute, joinon.

27

g uu’ natjoin t dd’
(i joinon j vg vv) vgv v
2 1 1 1 3 3 5
2 1 2 1 1 1 1
1 2 1 1 −1 −1 −1
2 2 1 −2 −1 2 5

(Ignore for the moment the “virtual attributes” vgv and v, which will be defined when we
reach the attribute algebra, below.)
Examine carefully how the (2, 1, 1) tuple from g uu’ is duplicated because two tuples from
t dd’ share its joinon value of 1, and how the (2, 1, −1) tuple from t dd’ is duplicated
because two tuples from g uu’ share its joinon value of 2. The above joined relation is
displayed with the values of the common attribute, joinon, grouped to reveal this merge.
a) Show that 33 tuples result from the natural join of relation R(A,B), which has 4 tuples
with B = 1, 5 tuples with B = 2, and 3 tuples with B = 3, with relation S(B,C), which has
3 tuples with B = 2, 6 tuples with B = 3 and 2 tuples with B = 4.
The T-selector combines selecting certain tuples from a relation according to some condition
on the values of its attributes, with projecting specified attributes from the result. Here is
an example which selects the value 1 from joinon and then projects on the attributes other
than joinon.

[i,j,vg,vv] where joinon=1 in (g uu’ natjoin t dd’)
(i j vg vv)
2 1 1 3
2 2 1 1

(The projection component must remove duplicates if any result from the disappearance of
attribute(s).)
b) Show that only one tuple results from: [i] where joinon/abs(vg)=1 in g uu’

The attribute algebra creates new attributes from old, independently of any relational con-
text. So the results are virtual attributes, potentially available to any relation which has all
the antecedent attributes. Thus

let vgv be vg*vv
defines the product of two attributes. Since these attributes are both in the relation which is
the natural join above, g uu’ natjoin t dd’, the result, vgv, is meaningful in the context
of this join and so can be shown in connection with it, as we did above. It is, however, not an
attribute of this join, although it could be actualized in a new relation which is a projection
of it.

gt <- [i,joinon,j,vg,vv,vgv] in (g uu’ natjoin t dd’)

gt(i joinon j vg vv vgv) v
1 2 1 1 −1 −1 −1
2 1 1 1 3 3 5
2 2 1 −2 −1 2 5
2 1 2 1 1 1 1

Again, ignore for the moment the virtual attribute v.
(Two small syntactical comments: <- is the assignment operator of the relational algebra
which, without renaming attributes, creates a new named relation; omitting the where syn-
tax gives pure projection, and a similar omission gives pure selection, as special cases of the

28

T-selector.)
Projection, and relational algebra expressions in general, may be used to actualize virtual
attributes created by the attribute algebra.
c) Show that vgv is as shown in relation gt above.
The second operator of the attribute algebra that we must discuss is aggregation. This aggre-
gates values within an attribute, creating a new attribute which is also virtual until actualized.
For example, the virtual attribute v shown above beside vgv associated with the natural join
g uu’ natjoin t dd’, is the aggregate sum over tuples sharing common values of attributes
iand j.

let v be equiv + of vv*vg by i,j
This groups tuples according to common values of i and j and sums the values of vg*vv
within these groupings. The tuples in gt above are ordered to reveal these groups. Note
that vg*vv is an unnamed virtual attribute. We could instead have used the name, vgv, we
created above.
(We could invent syntax specialized for tensor index sums

let v be agg + of vg*vv on joinon
where the attributes i and j are the complements in, say, relation gt, of vg, vv and the on
attribute joinon. But the syntax referring to equivalence classes of tuples is clearer to work
with in the relational representation.)
If the Aldat programmer is careful in actualizing the virtual attribute v there will be no
conflict with the attribute v which already actually appears in relations g uu and t dd. In a
projection, or any relational algebra operation, virtual attribute definitions in the attribute
algebra are ignored if an attribute of that name is already actual in any relation in that
relational algebra expression.
d) Confirm that the three different values of v above are those that appear in the matrix
product guu × tdd.
This choice of relational and attribute algebra operations permits us to multiply ordinary ma-
trices. Here is the full code, starting with the original relational representations g uu(i,j,v)
and t dd(i,j,v).

t dd’[joinon,j,vv <- i,j,v]t dd;
g uu’[joinon,i,vg <- i,j,v]g uu;
let v be equiv + of vv*vg by i,j;
t ud <- [i,j,v] in (t dd’ natjoin g uu’);

(Note that guu is symmetrical, so we may swap the first two attributes of its relational rep-
resentation.)
e) Show that t ud obtained above is the relational representation for the matrix tud.
f) Write Aldat code, analogous to the above, to calculate t du and t uu. Show that the latter
can be derived in two different ways.
g) Represent a d, b d, c u, d u and g dd from the previous Excursion as relations and
write code to find a u, b u, c d, d d. (Calculating g dd as the inverse of g uu using, say,
Gaussian elimination, can be done in Aldat, but there is no builtin operator to do this.)
The dot product, a.b, can also be coded relationally.

a u’[joinon,vv <- i,v]a u;
b d’[joinon,vw <- i,v]b d;
let v be red + of vv*vw;
ab <- [v] in (a u’ natjoin b d’);

The new attribute algebra operator, red, can be thought of as equiv followed by an empty
by-list: there are no groupings and the sum is over the whole relation. (The syntax let v
be agg + of vv*vw on joinon would also be valid here.)
h) Use red + to find the trace of, say, t ud.
So far we have not advanced much beyond matrices and MATLAB. Now let’s go to three

29

dimensions, with

g dd =

2 1 0
1 0 0
0 0 −1

(whose determinant g = 1) and the three-index alternating tensor

1√
g
ǫijk

where ǫijk = 1 if (i, j, k) is an even permutation of (1,2,3), ǫijk = −1 if (i, j, k) is an odd
permutation of (1,2,3), and otherwise zero. Here is the alternating tensor explicitly in Aldat

relation alt uuu(i,j,k,v) <-
{(1,2,3,1),(2,1,3,-1),(2,3,1,1),(3,2,1,-1),(3,1,2,1),(1,3,2,-1)};

(incidentally showing how to declare and how to initialize a relation). This was displayed at
the beginning of this Excursion (with a different ordering of the tuples).
To lower the first index, we need the relational representation of g dd and the Aldat code

alt uuu’[joinon,j,k,va <- i,j,k,v]alt uuu;
g dd’[joinon,i,vg <- i,j,v]g dd;
let v be equiv + of va*vg by i,j,k;
alt duu <- [i,j,k,v] where v!=0 in (alt uuu’ natjoin g dd’);

giving

alt duu(i j k v)
1 1 3 -1
1 2 3 2
1 3 1 1
1 3 2 -2
2 2 3 1
2 3 2 -1
3 1 2 -1
3 2 1 1

i) Calculate the remaining six versions of alt and show (the following uses array, not rela-
tional, notation)

• altudu(i, j, k) = altduu(k, i, j) and altuud(i, j, k) = altduu(j, k, i);

• altdud(i, j, k) = altudd(k, i, j) and altddu(i, j, k) = altudd(j, k, i);

• altduu(i, j, k) = −altduu(i, k, j), altudu(i, j, k) = −altudu(i, k, j) and
altuud(i, j, k) = −altuud(i, k, j);

• altudd(i, j, k) = −altudd(i, k, j), altdud(i, j, k) = −altdud(i, k, j) and
altddu(i, j, k) = −altddu(i, k, j); and

• altddd = altuuu.

How many different ways are there to calculate, say, alt udd from this starting point?
alt ddd?
j) Find a way to write out these alternating tensors as three-dimensional “matrices”. Do this
in a way to show the antisymmetries of each of the eight versions.
To run these programs other than by hand you must install a copy of Aldat on your com-
puter: /citealdat.
Although Aldat is written in Java it is designed to run under UNIX-like operating systems.
It is possible, if convoluted given the lack of polymorphism in nested relations, to write Aldat
code analogous to tensorCalc in the previous Excursion.

30

34. Look up H. S. M. Coxeter’s Regular Polytopes [Cox63] and use the interval algebra to construct
higher-dimensional versions of the tetrahedron, cube and octahedron.

35. How might we use the interval algebra to describe a shear operation?

36. Look up William Kingdon Clifford, 1845–1879, and describe his role in creating the interval
algebra. (It is really called the Clifford algebra, or sometimes the geometric algebra.)

37. Look up Josiah Willard Gibbs, 1839–1903, and his vector analysis.

38. Look up Sir William Rowan Hamilton, 1805–1865, and his “quaternions”. What mental
block stumped him for a long time? How did he misinterpret what he invented, and how do
quaternions relate to 3D interval algebra? (see [Alt92].)

39. How do the Pauli matrices (Week 6) relate to 3D interval algebra?

40. Why is the number of basic elements of d-dimensional interval algebra equal to 2d?

41. Survey the usage of the phrase “real world” and distinguish a legitimate usage from a put-
down of academics.

42. Any part of the Preliminary Notes that needs working through.

References

[Alt92] Simon L. Altmann. Icons and Symmetries. Clarendon Press, Oxford, 1992.

[Cox63] H. S. M. Coxeter. Regular Polytopes. The MacMillan Company, Collier-MacMillan Ltd,
New York, London, 1963. 2nd ed.

[Har03] James B Hartle. Gravity: An Introduction to Einstein’s General Relativity. Addison
Wesley, San Francisco, 2003.

[McC57] A. J. McConnell. Applications of Tensor Analysis. Dover Publictions, Inc., New York,
1957. Originally Applications of the Absolute Differential Calculus, 1931.

[Mer84] T. H. Merrett. Relational Information Systems. Reston Publishing Co., Reston, VA.,
1984.

[Mer99] T. H. Merrett. Relational information systems. (revisions of [Mer84]):
Data structures for secondary storage: http://www.cs.mcgill.ca/∼tim/cs420
Database programming: http://www.cs.mcgill.ca/∼tim/cs612, 1999.

[Mer07] T. H. Merrett. Aldat: a retrospective on a work in progress. Information Systems,
32(4):505–44, March 2007.

31

