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I. Prefatory Notes
1. Overview.

1. Frequency and wavenumber transform the same way as time and space.

2. Energy and momentum are proportional to frequency and wavenumber.

3. Energentum components (energy and momentum components) are conserved in physical pro-
cesses.

2. (1) As a particle, e−iωt, travels, what does its phase do?
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ω: angular frequency (radians/sec); ω/(2π) = f cycles/sec = 1/T , period T sec.

k: (angular) wavenumber; k/(2π) = ν waves/light-sec = 1/λ, wavelength λ light-sec.

3. Phase should be independent of any observer: ωt − kx = ω′t′ − k′x′

Since
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,

ωt − kx = γω(t′ + vx′) − γk(vt′ + x′)

= γ(ω − kv)t′ − γ(k − ωv)x′

So
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.

QED frequency and wavenumber transform the same way as time and space.

“timespace”, “freqnum”

NB ω2 − k2 = ω′2 − k′2

4. (2) Energy and momentum are proportional to frequency and wavenumber.

E
def
= h̄ω = hf ;

p
def
= h̄k = hν
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h̄ is Planck’s constant (h̄
def
= h/2π). (Note that the 2π comes in because we measure angles in

radians (Week 1). The versions using f and ν measure angles in cycles.)

This is observed—we can’t prove it mathematically.

Einstein proposed it in 1905 to explain photoelectricity.

Now we have “energentum”

NB E2 − p2 = E′2 − p′2

5. Anti-Pythagoras: review
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t′2 − x′2 = γ2((t − vx)2 − (x − vt)2)
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−γ2(v2t2 − 2vtx + x2)
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Similarly ω′2 − k′2 = ω2 − k2

and E′2 − p′2 = E2 − p2

These differences are “invariants” of timespace axis transformations (the Lorentz transformation).
We can give them meanings, but first we compare with length, which is invariant under ordinary
space transformations such as rotation.

It’s a new kind of “length”:

(

x′

y′

)

=

(

c s
−s c

) (

x
y

)

x′2 + y′2 = (cx + sy)2 + (−sx + cy)2

= c2x2 + 2csxy + s2y2

s2x2 − 2csxy + c2y2

= x2 + y2

x

yx +
 y2    
  2

6. The length x2 + y2 is invariant under axis transformations such as rotation.

t2−x2 is the interval, invariant under axis transformations such as Lorentz: it is the “proper time”,

τ , which is the time experienced by the traveller (x′ = 0 :

(

t
x

)

= γ

(

1 v
v 1

) (

τ
0

)

, so for the

nontraveller t = γτ and x = γvτ).

E2 − p2 is—what? It is another invariant, the mass, m of the particle. (We’ll only mean the “rest
mass” when we use the word “mass”, so this is indeed invariant under axis transformations. It is
the mass observed by somebody travelling with the particle.) E2 − p2 = m2.
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7. Dimensional analysis and pre-timespace limits.

(“Pre-timespace limit” is usually called “classical limit” but there are two “classical” limits and we
will distinguish pre-timespace from pre-quantum limits.)

quantity t x ω k
“dimensions” T L T−1 L−1 T time, L length

Objective of Notes 7, 8, 9: putting c (lightspeed) back into the equations.

So timespace
(

t′

x′

)

= γ

(

1 −v
−v 1

) (

t
x

)

1. x′ = γ(x − vt)
x: L, t: T, thus v: L/T, e.g., m/sec, light-sec/sec. OK

2. t′ = γ(t − vx)
t: T, x: L, thus v: T/L? No, must fix.

Try v/c2: (L/T)/(L2/T2) = T/L

So it really is x′ = γ(x − vt/c2)

3. 1/γ2 = 1 − v2

Is v dimensionless? No, must fix.
Try v/c: (L/T)/(L/T)

Finally

(

t′

x′

)

= 1√
1−(v/c)2
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1 −v/c2

−v 1

) (

t
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)

The pre-timespace limit is c → ∞
(

t′

x′

)

=

(

1 0
−v 1

) (

t
x

)

This is the Galilean transformation. It also gives Newton’s absolute time.

8. The pre-timespace limit for freqnum.

Some more dimensional analysis.
quantity t x ω k m h̄ (“action”) E p
“dimensions” T L T−1 L−1 M ML2T−3 ML2T−2 MLT−1 M mass

(

ω′

k′

)

= γ

(

1 −v
−v 1

) (

ω
k

)

As before, ω′ = ω − vt: T−1− (L/T)L−1 OK

But k′ = k − vω: L−1− (L/T)T−1. No,must fix

Try (v/c)2

(

ω′

k′

)

= γ

(

1 −v
−v/c2 1

) (

ω
k

)

→
(

1 −v
0 1

)
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Thus, in pre-timespace terms, k′ = k and ω′ = ω − vk.

9. Similarly

(

E′

p′

)

= γ

(

1 −v
−v/c2 1

) (

E
p

)

But there is no pre-timespace limit this way because the pre-timespace limit of quantum theory
requires h̄ → 0.

But the “dimensional” approach gives the explicit form of E2 − p2 = m2:

E2 − c2p2 = m2c4

(and when the particle is stationary, p = 0 and E = mc2).

A form of energentum which can be taken to the pre-timespace limit is

p = m
∆x

∆τ

E = m
∆t

∆τ

(This does not follow from the arguments we’ve seen this week, and I won’t prove it.)

Let’s see what energy looks like in pre-timespace terms

E = mc2γ =
mc2

√

1 − (v/c)2
= mc2(1 +

1

2
(v/c)2 +

3

8
(v/c)4 + ..)

by an expansion which I also will not prove. We see it gives mc2 for the “rest energy” and 1
2mv2

for the kinetic energy if v ≪ c.

Because E and p transform the same way as t and x, respectively, and because v = x/t, so v = p/E,
or, fixing this up dimensionally,

v =
pc2

E
=

pc2

mc2
=

p

m

Since in the second step we have replaced E by the rest energy only, mc2, this gives the pre-
timespace limit for momentum, p = mv.

10. (3) Energentum is conserved.

In any coordinate system, each component of energentum is the same before and after a physical
process.

Ea = Eb

pa = pb

(The latter equation is true for each component, px, py and pz, of the momentum if we were working
in three dimensional space.)

This is also an observation and so can only be accepted—carefully.

Conservation of E and p and invariance of E2 − p2 together make it easy to analyze many physical
processes.

(Note the difference between conservation (same before and after any physical process) and in-
variance (unchanged by axis transformations). The second is a property of the transformation:
all linear transformations have invariants, so this is a mathematical result—except that it is the
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physics which tells us which transformation to use and so which invariant to expect. The first is a
directly physical property.)

We can now calculate the consequences of collisions, nuclear fusion and nuclear fission.

11. Inelastic collisions (the bodies stick.)

Here we see that energentum is conserved but mass is not.

v = 3/5

p

E

p

E

p=15

m=8

m
=8

m=20

E=17 E=25

p=15

E=8
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1 2
v  = 15/17 v  = 01 2

E = E1 + E2

p = p1 + p2

}
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m2
1 = E2

1 − p2
1

m2
2 = E2

2 − p2
2

m2 = E2 − p2







invariance

12. Or, to stop the final object, choose reference frame moving at u = 3/5.

So if the old v1, which we’ll now call v, is 15/17, then the new v1 is

v1 =
v − u

1 − uv
=

3

5

and the new v2 = −3/5 (Why?)

2
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This could be nuclear fusion; the inverse could be nuclear fission.

13. Fusion
2
1

D +
2
1

D → 4
2

He

mD = 2.0141

mHe = 4.0026

2mD − mHe = 0.0256

= 0.00636 × (2mD)

Because the helium energy is less than the sum of the deuterium energies, we can get energy out
of this fusion.

−v
D D

v = __
E

E   = m   + K

p
m

D

D p

v

The two deuterons have been fired at each other at velocities v and −v (in the centre-of-mass
reference frame). It costs energy to give them these velocities. So if we are to get net energy out
of the fusion process, we must limit v. What is the maximum v so we still gain energy?

Kinetic energy K = E − m, and this must be less than 0.00636mD for each deuteron.

p2 = E2 − m2
D

= (mD + K)2 − m2
D

= K(K + 2mD)

= 0.00636mD(0.00636mD + 2mD)

= 0.01276m2
D

p = 0.11296mD

E = 1.00636mD

So v ≤ 0.113

0.113 lights is 34 megameters/sec.

14. Fission
1
0

n +
235
92

U → 236
92

U → 45
37

Rb +
141
55

Cs

mU = 236.0455680

mRb = 94.929303

mCs = 140.920046

∆ = 0.1962 = 0.00083mU

(This energy yield is about 8 times smaller proportionately than the fusion ∆.)

If the
236
92

U is initially at rest, what velocities do the Rb and Cs get?
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RbE

p

Rb Cs

AFTER

Cs Rbmm

BEFORE

U

mU

ECs

pCs + pRb = 0 so p
def
= pCs = −pRb

ECs + ERb = mU

E2
Cs = p2 + m2

Cs

(mU − ECs)
2 = E2

Rb = p2 + m2
Rb

ECs =
1

2
(mU +

m2
Cs − m2

Rb

mU
)

= 140.999

ERb = 95.0466

p2
Rb = p2

Cs = E2
Cs − m2

Cs = (4.72)2

vCs =
pCs

ECs
= 0.033

vRb =
pRb

ERb
= −0.050

which means that the cesium flies off rightwards at 10 megameters/sec, and the rubidium moves
leftwards at 15 megameters/sec.

15. Elastic collision (the bodies bounce.)

2
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E  = 20

p  = 15

v  = −5/13v  = 15/17 v  = 16/20v  = −6/10
1 2 1 2
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1
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1

System E = E1 + E2 = 30

p = p1 + p2 = 10
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AFTER E = E′

1 + E′

2

p = p′1 + p′2
Show : E′

1 = 12 + p′1/3

This last line gives the required relationship between E′

1 and p′1.
Subject to this we can pick any value for E′

1.

In the diagram, I picked E′

1 = 10, from which p′1 must be −6.

16. Equations of relativistic quantum mechanics (A sketch)

Quantum mechanics considers measurement to be operators (see Week 2).

For quantities such as energy and momentum the discrete math is approximated by continuous
mathematics, i.e. differentials. We haven’t done the background in this course, so this sketch is a
lookahead. (See Notes 34 and 38 of Week 8c part IV. ∂

∂x , etc., has the same meaning as slopex(),
etc., in Note 10 of Week 8.)

E → ih̄
∂

∂t
p → −ih̄∇

∇ = (
∂

∂x
,

∂

∂y
,

∂

∂z
)

With this, the relativistic relationship E2 = p2c2 − m2c4 gives the Klein-Gordon equation

1

c2

∂2Ψ

∂t2
= ∇2Ψ − m2c4

h̄2 Ψ

where Ψ is the ”wave function” giving the amplitude, varying in timespace, for the particle.

(Before Klein and Gordon, Schrödinger used the pre-timespace kinetic energy, E = p2/2m to get

∂Ψ

∂t
=

1

2m
∇2Ψ

Heisenberg independently derived an equivalent, discrete-math, formulation, “matrix mechanics”—
with infinite-dimensional matrices.)

Dirac wanted to reduce the Klein-Gordon equation to a first-order differential equation, and found
that he needed the Pauli matrices, σx, σy, and σz:

EΨ = (~α.~p + βm)Ψ

~α =

(

~σ
~σ

)

β =

(

I
−I

)

Note that the four matrices ~α and β each have four components, which turn out to describe spin up
and spin down, each with either positive or negative energy. The negative energies were eventually
associated with antimatter.

17. Summary

(These notes show the trees. Try to see the woods!)

• Frequency and wavenumber transform the same way as time and space.

• Energy and momentum are proportional to frequency and wavenumber.
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• Energentum components (energy and momentum components) are conserved in physical pro-
cesses.

• These physical processes include

– inelastic collision

– nuclear fusion

– nuclear fission

– elastic collision

– Compton effect (see Excursions)

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. Visualizing waves a) The plots of ei(ωt−kx) and ei(ωt+kx) in Note 2 show lines of constant
phase, ωt − kx or ωt + kx. Thus the lines labelled 1 have phase 0 radians, the lines labelled
i have phase π/2 radians, and so on. Since the plots are timespace diagrams, they show
phases moving through space as time increases. To figure out what velocity the phase, say,
φ = ωt− kx moves at, let’s look at a small change, ∆x, in x and at the related small change,
∆t, in t. The change in value of the phase will be

ω(t + δt) − k(x + ∆x) − (ωt − kx) = ω∆t − k∆x

But since we are tracking constant phase, this difference equals φ − φ = 0.
Using ω∆t − k∆x = 0, find the velocity of this phase.
Note that this velocity depends on the observer, unless it is lightspeed, because the measure-
ments of x, δx, t and ∆t depend on the observer.
b) The plots of ei(ωt−kx) and ei(ωt+kx) in Note 2 show example axes for t if ω = 1/2 and
for x if k = 2. Why can these two examples not hold simultaneously if the mathematics is
describing photons? If k = 2 what must ω be for a photon?
c) How do the plots of ei(ωt−kx) and ei(ωt+kx) in Note 2 change if i is changed to −i, i.e., the
phase, the direction of rotation of the arrow (week 5 Note 2), is reversed? What do the sums,

ei(ωt−kx) + e−i(ωt−kx)

and
ei(ωt+kx) + e−i(ωt+kx)

look like? Redraw the plots with the sums as labels and draw matching cosine waves on top
of your plots: horizontally, vertically, and in a couple of other directions. What does the
horizontal cosine wave mean? The vertical wave?
d) Draw the plot showing

ei(ωt−kx) + ei(ωt+kx)

the sum of two waves moving in opposite directions. Instead of lines labelled by 2-numbers,
you will now get a lattice whose nodes are labelled by 2-numbers. Note that there are locations
in space where the amplitude is zero at all times: this is called a “standing wave”. Draw a
representative cosine wave of this result plus its 2-number conjugate (“complex conjugate”).
e) How would you get a “synchronous wave”, with locations in time where the amplitude is
simultaneously zero everywhere in space (think of marching in step)?

2. Give the dimensional argument showing that p must be multiplied by c and m by c2 in the
invariance relationship E2 − p2 = m2.
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3. If τ is the time experienced by a traveller, show that (t, x) for the observer hey travels past
at speed v is (γτ, γvτ) and so that (t2 − t1)/(τ2 − τ1) = γ and (x2 − x1)/(τ2 − τ1) = γv

4. Look up isotopic masses of a range of elements, from the lightest to the heaviest in the
periodic table, and use MATLAB to plot the mass per nucleon against (a) the numbers of
protons (atomic numbers) and (b) the numbers of nucleons (atomic weights). Show that iron
(56 protons) has the least mass per nucleon: this makes it the most stable element. What
does the shape of the curve tell us about elements worth considering for fusion? For fission?
Be sure you look up isotopic masses, since atomic masses (on the other hand) are weighted
averages over all isotopes with the same atomic number.

5. Look up a few different isotopes of some element having at least three isotopes; look up
relative abundances of each isotope; and calculate the mean atomic weight of the element.
Look up the atomic weight of that element as a check.
Find an element with only two isotopes and, from its given atomic weight, calculate the
relative abundances of the two isotopes. (An element with an extremely rare third isotope is
an alternative possibility to investigate.)

6. For the elastic collision of m1 = 8 units and v1 = 15/17 with m2 = 12 units and v2 = −5/13,
show that, afterwards, E1 = 12 + p1/3.

7. Planck’s constant, h = 4.136 peV-sec (peV = pico eV = 10−12 eV); electron mass = 0.5 MeV
(MeV = mega eV); nucleon mass (proton, neutron) = 1 GeV (GeV = giga eV = 109 eV).
a) Show that the energy of a green photon, with wavelength 500 nm (nm = nanometers =
10−9 meters) and frequency 600 THz (THz = tera Hertz = 1012 Hertz = 1012 cycles/sec),
has energy 2.5KeV (KeV = kilo eV).
b) Show that a photon with energy equal to the electron mass is an ultraviolet photon and
give its frequency and wavelength. [www.usbyte.com/common/approximate wavelength.htm]

8. A photon of energy 3/8 MeV (ultraviolet) collides elastically head-on with an electron moving
towards it at 3/5 lightspeed. Show that either the two pass through each other, unaffected,
or each reverses direction. Show the energies, momenta and mass or frequency before and
after.
The collision of photons with electrons is called Compton scattering and captures the essence
of relativistic quantum mechanics. Look up Arthur Holly Compton, 1892-1962. (Compton
used X-rays and scattering in two space dimensions.) [TW92, p.267]

9. An infrared photon of energy 0.45 eV is absorbed by a stationary water vapour molecule (a
greenhouse gas) in the atmosphere. Find the mass of the molecule in Daltons and find its
conversion to eV. Draw an energentum diagram and estimate the subsequent motion of the
molecule.

10. (This excursion elaborates on the “world line” excursion of Week 3. The first three parts are
mathematically identical in both excursions but physically describe different aspects.)
a) Plot (by hand or somehow by computer) the following points on an energentum diagram.

a b c d e f g h
(

E
p

)

=

(

−5
4

) (

0
0

) (

4
5

) (

9
1

) (

−4
−4

) (

5
−5

) (

−1
10

) (

8
9

)

b) On your plot, connect the dots as follows to show the “world lines” of three particles: a-
b-c-d, e-b-f and g-c-h. Describe what is happening, including any special or strange aspects.
c) Calculate the new positions of these points under the Lorentz transformation of an observer
travelling at 0.9 lights, plot them and the transformed world lines, and again describe all
aspects of your result.
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d) Confirm that masses are invariant under the Lorentz transformation.
e) Confirm that the energy and momentum components are each conserved before and after
each collision. Note that you must always move forward in time, so some quantity(ies)
will appear on one side of the equals sign in the original plot and on the other side after the
Lorentz transformation. (Note that these energentum components are the differences between
the (E, p) vectors at each end of the straight line segments.)
f) Supposing that one of the world lines in the original plot describes a charged particle, say
an electron, what happens to the particle, and the charge, in the Lorentz transformed plot?
g) Use the two plots to make an argument showing that what one observer sees as a particle
turning through 360 degrees, another observer sees as swapping two different but identical
particles. (To get the 360 degree turning you might want to add a second space dimension
to your plot (well, to the timespace plot from Week 3) and imagine the two collisions, each
reversing the motion of the particle, replaced by a more gradual process of forcing the particle
around a circle—or at least a polygon—in the two spatial dimensions.) This approach is based
on [Bae06], which in turn cites Feynman’s lecture in [FW87]. The gap in the argument is
that so far it supposes “tachyons” are possible: see Week 9.
h) Since turning an electron through 360 degrees changes the sign of its amplitude, you now
know that swapping two electrons also changes the sign of the amplitude describing the pair.
Show that this means two electrons cannot be in the same state.
i) Photons, on the other hand, can rotate 360 degrees without changing sign. Look up
Feynman’s argument [FLS64b, Sects. 4-2,4-3] that photons and bosons in general not only
are permitted to share a state but prefer it. (Bosons are particles with whole-integer spins.)

11. Look up Wolfgang Pauli, 1900–1958, again. How long after originally formulating the exclu-
sion principle for electrons did he derive it from relativistic quantum mechanics for fermions
in general? (This is called the “spin-statistics theorem”. Fermions are particles with half-
integer spins.) The mutual exclusion of electrons is the basis for all normal matter and in
particular for atomic structure and chemistry (see Week 6).

12. Look up Albert Einstein, 1879–1955, again, and Satyendra Nath Bose, 1894–1974, and the
consequences of their work showing that bosons attract each other into the same state: lasers,
superconductivity, superfluidity and the recently explored fifth state of matter, “Bose-Einstein
condensates”. Bosons mediate all forces: for instance, the electromagnetic force is conveyed
by photons. (How can exchanging a particle attract two particles? See [FLS64b, Sect. 10-1]
for a related discussion.)

13. A photon emitted from a light source with frequency f appears to have frequency f
√

(1 − v)/(1 + v)
to a traveller moving away from the source with velocity v. Show this, using the fact that
photons have zero mass. What is the apparent frequency for a traveller moving at v towards
the source? This is the relativistic Doppler shift [TW92, p.263].

14. Given the pre-timespace limit that kinetic energy, T = (1/2)mv2, and that a uniform gravita-
tional field (e.g., close to the Earth’s surface) accelerates all masses at the same rate, g (e.g.,
10 m/sec2), you can work out that, to conserve energy, raising a mass, m, a height, h, gives
it a “potential energy” mgh. (You need to show mgh = (1/2)mv2, where v is the velocity the
mass acquires falling the distance h under g.)
a) If you climb the Eiffel tower (300 m), what is the ratio of your potential energy to your
rest energy, mc2? Does this depend on your mass?
b) If a photon climbs the same height as you did, what is its proportional change in frequency?
This is the gravitational red shift [TW92, p.258].
c) From its spectrum, the Sun was once thought to be made of iron. Look up the spec-
tra of iron and hydrogen and see how much of a red shift separates them. Look up Cecilia
Payne-Gaposchkin, 1900–1979, and her role in changing this perception.
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15. We can use the energy levels of atomic electrons, from Week 6, to understand the immense
range of electrical conductivity in crystalline solids; from insulators to metals, conductivity
changes by a factor of 1024. Since calculating atomic electron energies is beyond what we’ve
done in this course, we’ll have to be nonquantitative in this excursion.
First, because an electron is a particle with mass, its energy varies as its momentum squared,
forming a parabola if we plot E = h̄ω against wavenumber, k: you can show this using the
quantum mechanical relationships between energy and frequency (just given) and between
momentum and wave number, and the pre-timespace relationships between energy, velocity
and momentum (one is E = mv2/2 and the other is p = mv).
Second, quantum mechanically, electron amplitudes have frequency and wavenumber (ampli-
tude ∝ exp(i(ωt−kx))) and these waves get reflected by the regular array of atoms in a crystal
when their wavelength approaches any multiple of the inter-atom spacing (“Bragg reflection”:
see Week 8c part II.). The combination of exp(ikx) and exp(−ikx) when k = 2π/λ and λ = a
(for atoms in a one-dimensional “crystal” spaced a units apart) gives either cos(2πx/a) or
sin(2πx/a), if we consider everything at a fixed time, say t = 0: show how! You can now
show that the probability, associated with these amplitudes, of where the electron is found, is
a cosine wave either with peaks (maximum probability) right on top of the atoms in the first
case (cos), or with troughs (zero probability) right on top of the atoms in the second case
(sin). Since atoms attract electrons, the first case has lower energy than the second case. At
any rate, the smooth parabola showing the relationship between energy and wavenumber for
the free electron now has gaps between the two different energies of the electron in the crystal
when the electron wavelength is near ±a, ±2a, ±3a, etc.
Third, this broken parabola with the energy gaps has two basic relationships with the types
of atom that make up the crystal. If the atom is of an element where the highest energy of the
electrons of that element just reaches the bottom of one of these gaps, the electrons cannot
move, because this would require them to have more energy than their “ground state” just
below the gap, putting them into the gap, which is illegal. Such a crystal is an insulator. On
the other hand, if the atom is of an element, typically a metal, whose ground state energies
do not completely fill an “energy band” up to the gap, the electrons are allowed to move and
this crystal is a conductor. (Semiconductors are insulators with such a narrow gap that it is
possible for electrons to have enough energy to put them into the band above the gap.)
A book that covers all this, and much more, is Peierls’ Quantum Theory of Solids [Pei55].
Like Hertzberg’s book (Week 6), this book is well beyond this course, and will also be an
exercise in skimming what you don’t understand and trying to string together the bits you do
understand, with the help of the discussion in this excursion, into an overall picture. Feyn-
man’s Lectures on Computation [Fey99] uses these ideas at the beginning of his discussion on
semiconductors and VLSI.

16. Look up Feynman’s discussion of relativistic mass in the light of elastic collisions [FLS64a,
Sect. 16-4]. We follow Wheeler [TW92, pp.250,251] and do not consider either that mass
varies with velocity, or the contrasting concept of “rest mass”.

17. Look up Einstein’s derivation of the equivalence of mass and energy [TW92, pp.254ff], and
elsewhere.

18. Look up John Archibald Wheeler, 1911–2008 . Who are three famous people whose Ph.D.
theses he supervised?

19. Look up Ernest Rutherford, 1871–1937. What historical role was played by Rutherford scat-
tering? What did he get his Nobel for?

20. Any part of the lecture that needs working through.
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