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I. Prefatory Notes

1. A polarizing filter does someting to light.

We should think of filtering as an operation and the filter as an operator.

Unpolarized light ⇒ Polarized light
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2. We’ll call a light beam a vector
(

κ
σ

)

(using κ, the Greek k, for cos(α), and σ, the Greek s, for sin(α)).

γ

σ

κ

σ

(0,0)

(κ,σ)

α

3. A horizontal polarizing filter extracts the κ component.
(Let’s work with amplitudes: we can always square them at the end to get intensities.)

For a vector (~u for “unpolarized”),

~u =

(

κ
σ

)

what operator finds the κ component?

Easy. Just set σ → 0.
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4. What if the polarizing filter is at angle θ?

Describe the filter as c, s: c = cos θ, s = sin θ.

So the result will be along the vector (~p for “polarized”)

~p =

(

c
s

)

γ

σ

(0,0)

(κ,σ)

α

(c,s)

δ
θ

u

p

κ = cosα

σ = sinα

c = cos θ

s = sin θ

δ = θ − α
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5. Now some new math. Two kinds of “vector multiplication”:

i) “inner product” (or “dot product”), ~p T~u , (1 by n) × (n by 1):

(

c
s

)

(c, s)

(

κ
σ

)

=

(

c
s

)

(cκ+ sσ) (1 by 2) × (2 by 1) → (1 by 1)

ii) “outer product” (or “tensor product”), ~p~p T , (n by 1) × (1 by n):

(

c
s

)

(c, s)

(

κ
σ

)

=

(

c2 cs
sc s2

) (

κ
σ

)

(2 by 1) × (1 by 2) → (2 by 2)

iii) There is also a “scalar product”, (m by n) × “1 by 1” or “1 by 1” × (m by n):

(

c
s

)

(cκ+ sσ) =

(

c2κ+ csσ
scκ+ s2σ

)

(2 by 1) × (1 by 1) → (2 by 1)

= (cκ+ sσ)

(

c
s

)

(1 by 1) × (2 by 1) → (2 by 1)

iv) And the general “matrix product”, (k by m) × (m by n):

(

c2 cs
sc s2

) (

κ
σ

)

=

(

c2κ+ csσ
scκ+ s2σ

)

(2 by 2) × (2 by 1) → (2 by 1)

In MATLAB:

alpha = pi/6;
kappa = cos(alpha);
sigma = sin(alpha);
u = [kappa;sigma]

u =

0.8660
0.5000

theta = pi/5;
c = cos(theta);
s = sin(theta);
p = [c;s]

p =

0.8090
0.5878

p’

ans =

0.8090 0.5878

pu = p’ * u

pu =

0.9945

pp = p * p’

pp =

0.6545 0.4755
0.4755 0.3455

p * pu

ans =

0.8046
0.5846

pu * p

ans =

0.8046
0.5846

pp * u

ans =

0.8046
0.5846
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6. So the polarizing filter is the operator

(

c2 cs
sc s2

)

Let’s try this for the bottom, middle, and top filters, b, m, t.

b: θ = 0

(

1 0
0 0

)

b

m: θ = any angle

(

c2 cs
sc s2

)

m
θ

t: θ = π/2

(

0 0
0 1

)

t

7. We filter
(

κ
σ

)

by b then m then t:

(

0 0
0 1

) (

c2 cs
sc s2

) (

1 0
0 0

) (

κ
σ

)

=

(

0 0
0 1

) (

c2 0
sc 0

) (

κ
σ

)

=

(

0 0
sc 0

) (

κ
σ

)

=

(

0
scκ

)

where sc is sin θ cos θ as before.

t

⇐

m
θ

⇐ b ⇐
u

α

5



8. We keep seeing c2, cs, s2, i.e., cos2(), cos() sin(), sin2(), and even cκ+ sσ.

What do these combinations of trig. functions mean?

Let’s try MATLAB

alpha = 0:pi/20:2*pi;
theta = 0:pi/20:2*pi;
mesh(theta’,alpha,cos(theta’)*cos(alpha) + sin(theta’)*sin(alpha))
xlabel(’\alpha’),ylabel(’\theta’),zlabel(’coscos+sinsin’)
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Look carefully! This goes through two cycles as α and θ each go through one.

We can get at this by looking at another operator, rotate.

Rotate: (x, y) → (x′, y′)

So let’s consider rotation to be an operator, say

R =

(

p u
q v

)

φ

where φ is the angle of rotation.

Rotating the x-axis, R

(

1
0

)

, should give the line oriented at angle φ:

R

(

1
0

)

=

(

c
s

)

φ

This means p = c and q = s. (Why?)
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(1,0)

(0,1)
(−s,c)

(c,s)

φ

φ

Similarly, rotating the y-axis, R

(

0
1

)

, should give the line oriented at angle φ to the y axis:

R

(

0
1

)

=

(

−s
c

)

φ

This means u = −s and v = c. (Why?)

(

x′

y′

)

=

(

c −s
s c

)

φ

(

x
y

)

i.e.,

x′ = x cosφ− y sinφ

y′ = x sinφ+ y cosφ
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9. What is the operator for two rotations?

φ then ψ is φ+ ψ
(

c′ −s′

s′ c′

)

ψ

(

c −s
s c

)

φ

→
(

C −S
S C

)

φ+ψ

7



C = c′c− s′s

(cos(φ+ ψ) = cosψ cosφ− sinψ sinφ)

S = s′c+ c′s

(sin(φ+ ψ) = sinψ cosφ+ cosψ sinφ)

Try ψ = φ

cos(2φ) = cos2 φ− sin2 φ

sin(2φ) = 2 sin φ cosφ

Try ψ = −φ

0 = sin(0) = − sinφ cosφ+ cosφ sinφ

1 = cos(0) = cos2 φ+ sin2 φ

NB cos() is even, sin() is odd.

Pythagoras!

b a

h

h2 = (a− b)2 + 2ab

Again, try ψ = −φ

(

c′ −s′

s′ c′

)

ψ

(

c −s
s c

)

φ

=

(

c′ s′

−s′ c′

)

ψ

(

c −s
s c

)

φ

=

(

1 0
0 1

)

The Identity operator.

10. Note that R(ψ)R(φ) = R(ψ + φ) for rotations R()

What other kind of function, multiplied by itself, gives itself on the sum of its arguments?

11. Summary

(These notes show the trees. Try to see the forest!)

• Vector and matrix products: inner, outer, scalar.
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• Projection operator, ~u on ~p

γ

σ

(0,0)

(κ,σ)

α

(c,s)

δ
θ

u

p

(

c2 cs
sc s2

)

θ

(

κ
σ

)

• Polarizing filter is a projection.

• Rotation operator by φ

y|y’

x|x’

(x,y)

(x’,y’)

θ

φ

(

x′

y′

)

=

(

c s
−s c

)

φ

(

x
y

)

• Identity operator.

• Multiplying cos and sin by each other adds angles.

II. The Excursions
You’ve seen lots of ideas. Now do something with them!

1. Show that cos2(θ) = (1 + cos(2θ))/2 and that sin2(θ) = (1 − cos(2θ))/2. “Squaring is dou-
bling”: discuss!

2. Use Pythagoras and the formula for adding angles to derive the following values for cos() (c)
and sin() (s). What is another relationship between the 15-degree and 75-degree functions?
How does the table extend beyond 90 degrees to 360 degrees?

deg 0 15 30 45 60 75 90

c 1
√

(2 +
√

3)/2
√

3/2 1/
√

2 1/2 (
√

3 − 1)/2
√

2 0

s 0 1/(4c) 1/2 1/
√

2
√

3/2 (
√

3 + 1)/2
√

2 1

3. What does MATLAB give for

u = 0:2
v = (0:2)’
uv
vu
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4. A “normalized” vector has length 1, and so (in two dimensions) can be written as (cos(θ),sin(θ)),
where (θ is its angle with the x-axis. Show that the scalar product of two such vectors

(c, s)

(

C
S

)

= (C,S)

(

c
s

)

= cos(θ1 − θ2)

where c = cos(θ1), s = sin(θ1), C = cos(θ2), S = sin(θ2) and θ1 − θ2 is the angle between the
two vectors.

Show that the vector can also be written as (cos(θ),cos(θ′)) where (θ is its angle with the
x-axis, as before, and θ′ is its angle with the y-axis.

Using the scalar product, above, show that cos θ1 cos θ2 + cos θ′1 cos θ′2 = cos(θ1 − θ2) where
θ′1 = π/2 − θ1 and θ′2 = π/2 − θ2.

Show that a three-dimensional normalized vector has components (cos(α),cos(β),cos(γ)),
where α is its angle with the x-axis, β its angle with the y-axis, and γ its angle with the
z-axis. What does this say about cos2 α + cos2 β + cos2 γ? What expression do you think
gives the cosine of the angle between two 3-D unit vectors?

5. In MATLAB write the operator that projects onto orientation π/4, and try it on half a dozen
vectors at different angles. (At least one of these angles should be a multiple of one of the
others, say twice it.) Describe your experiments in terms of a polarizing filter and light beams.
With more projections, model the 2- and 3-filter polarizers discussed in class.

6. Using the diagram

y

x

(x,y)|(x’,y’)

θ

φ

φ

x’

y’

φ
x sinφ

y cosφ

y sinφx cosφ

derive the rotation operator

(

x′

y′

)

=

(

c −s
s c

)

φ

(

x
y

)

The diagram views the vector at angle θ staying still and the axes rotating through the
negative angle, −φ. Since the rotation operator just changes the coordinates describing the
vector, it is the same thing if the vector rotates one way or if the axes rotate the other way.
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7. In MATLAB write the operator that rotates by angle π/4, and try it on half a dozen vectors
at different angles. (At least one of these angles should be a multiple of one of the others, say
twice it.) Write other rotations by other angles, such as −π/4, π/2, and 0, and try them on
your vectors.

8. Use MATLAB to generate the 25 coordinate pairs

(x, y) = (−2,−2), (−2,−1), .., (0, 0), .., (2, 2)

to rotate all through π/20
(u, v) = R(x, y)

and to display the rotation as arrows from each (x, y) to the corresponding (u, v). (Try help
quiver)

9. Do the same for a projection, say to orientation π/5.

10. What is the inverse of a projection?

11. How does the expression cos2() + sin2() = 1 relate to Pythagoras?

12. Why does the square-within-a-square diagram in lecture 4 prove Pythagoras’ theorem, a2 +
b2 = h2, for h the hypotenuse of a right-triangle with other sides a and b?

13. (Eugene Lehman.) How can you find, by making a single measurement with a meter-stick,
how much gravel you need to fill a circular ring, 10 cm deep, around a circular garden?
a) Given that the area of a circle of radius r is πr2, what is the formula for the area of this
ring (“annulus”) of inner radius r1 and outer radius r2?
b) What is the single measurement you can make to find this annular area?

14. A matrix is an array of numbers laid out in two “dimensions”. The positions of its elements
might be given as the pairs of integers (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), .. Computer
memory is usually organized along only one “dimension”: a sequence of locations numbered
0, 1, 2, ... Give formulas which map the array pairs into memory locations: a) running
through all of row 0, then all of row 1, and so on; b) running through all of column 0, then
all of column 1, and so on. You will need to use w, the width of the array or h, its height.

15. Matrix multiplication is made easy for us by MATLAB: A*B. Under the hood, a computer
program to multiply the l-by-m matrix A by the m-by-n matrix B must evaluate the sum of
products

Σj=1..mAijBjk

for each i = 1..l and k = 1..n, where Aij is the element of A in row i and column j, and Bjk is
the element of B in row j and column k. Do this in MATLAB using the for statement. How
many element multiplications will be done in this whole matrix product?

16. a) An operator, L, is linear if it obeys two rules (called “axioms”):
Axiom 1 L(x+ y) = L(x) + L(y) and
Axiom 2 L(ax) = aL(x).

Show that multiplication by matrix, M , is linear, if x and y, above, are matrices or vectors,
and a, above, is a scalar (an ordinary number).
b) Translation by an amount (tx, ty) has the result of adding (tx, ty) to every vector being
translated. Show that this is not linear. Which axiom is violated? What operation would
violate the other axiom but not this one?
c) Translation can be expressed by matrix multiplication by adding a third dimension, z,
mapping the original two-dimensional space to the plane z = 1, and doing a shear operation
which changes the z axis but not the x or y axes. Figure out how to do this. (Shear operations
are discussed next week.)
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17. a) Show that bisecting an angle involves extracting square roots: work backwards from dou-
bling an angle. When should the positive root be used and when the negative?
b) If you know how to bisect an angle using ruler and compass, use (a) to make a procedure
for finding the square root of any number between 0 and 1 using ruler and compass.
c) If you know how to n-sect (bisect, trisect, ..) a straight line segment using ruler and com-
pass, extend your procedure in (b) to find the square root of any positive number.
d) Use Pythagoras to find the square root of any positive integer by ruler and compass.
e) Show that trisecting an angle involves extracting cube roots as well as square roots.

18. Look up Arthur Cayley, 1821-1895. How did he come up with matrices?

19. Any part of the lecture that needs working through.
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