
Excursions in Computing Science:

Week 12 Memory and Programming Language: Recursion and

Instantiation

T. H. Merrett∗

McGill University, Montreal, Canada

May 8, 2007

A. Recursion
1. Define “ancestor” in terms of “parent”.

2. Precedence without parentheses

We’d like to parse ab + cd in the conventional way: (ab) + (cd).

We can say ab + cd is an expression made up of terms.
“Made up” means combined by + (or).

Likewise, terms are made up of identifiers (letters), i.e., combined by adjacency, or sometimes •

(and).

Grammar

<expression>::= <term> | <term> + <expression>
<term>::= <letter> | <letter><term>

These recursive definitions allow us to have indefinite numbers of terms with indefinite numbers of
letters.

E.g., a + bc + def + gh

Let’s see if we can use these recursive guidelines to write a program to recognize such an expression
and put parentheses around the terms.

parsexp(’ab+cd’)

ans =

((ab)+(cd))

1. parsexp puts out a ‘(’, calls expression, and puts out a ‘)’.
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2. expression puts out a ‘(’, calls term, puts out a ‘)’, calls plussign and, if plussign found
a plus in the input, calls itself recursively to get the next expression.

3. plussign puts out ‘+’ and reports success if ‘+’ is indeed the next character of the input;
otherwise it reports failure.

4. term calls letter and, if letter found a letter in the input, calls itself recursively to get the
next term.

5. letter puts out the letter and reports success if the next character of the input is indeed a
letter; otherwise it reports failure.

Here is parsexp. Note that MATLAB obliges us to keep explicit account of the input (code), our
current input position (inpos), and the output (parsed) and our current output position (outpos).

% function parsed = parsexp(code)
% THM 060829
% uses expression.m
function parsed = parsexp(code)
parsed(1) = ’(’;
[parsed,inpos,outpos] = expression(code,parsed,1,2);
parsed(outpos) = ’)’;

Here is expression. I’ll leave plussign, term and letter as exercises.

% function [parsed,inpos,outpos] = expression(code,parsed,inpos,outpos)
% THM 060829
% used by parsexp.m; uses term.m, plussign.m; term.m uses letter.m
function [parsed,inpos,outpos] = expression(code,parsed,inpos,outpos)
parsed(outpos) = ’(’; outpos = outpos + 1;
[parsed,inpos,outpos] = term(code,parsed,inpos,outpos);
parsed(outpos) = ’)’; outpos = outpos + 1;
[succ,parsed,inpos,outpos] = plussign(code,parsed,inpos,outpos);
if succ
[parsed,inpos,outpos] = expression(code,parsed,inpos,outpos);

end

We can see that recursive thinking makes the process very much easier than without recursion.

3. Fractals

A significant benefit of recursion is in computing an exponential number of things.

Expression and term only called themselves once, but if a function calls itself twice and does this
recursively to depth n then we can get 2n invocations of the function.

We don’t often want an exponential number of invocations because it is very expensive (see the
Excursion this week about the chessboard), but one attractive application is drawing self-similar
figures (fractals).

Here is the “Peano curve”, named after the French mathematician who published it in 1880 [Pea90].
I have run the program to depths 1–6.
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1. peano(n) sets up the arrays that MATLAB needs to represent the final drawing, calls
peanoStep(n), and then uses MATLAB’s quiver() and axis() functions to produce the
drawing.

2. peanoStep(n) calls peanoStep(n−1) four times and also draws three lines, one in between
each invocation: first vertically up then diagonally down and rightwards then vertically up
again; the length of the lines depends on the current level, n.

Here is peanoStep(). Remember again that MATLAB obliges us to do all the housekeeping
explicitly, including keeping track of the “screen” represented by the arrays X,Y,U and V .

% function [X,Y,U,V,j,k] = peanoStep(n,X,Y,U,V,j,k)
% THM 060829
% called from peano(n); uses draw.m
function [X,Y,U,V,j,k] = peanoStep(n,X,Y,U,V,j,k)
if n>0
[X,Y,U,V,j,k] = peanoStep(n-1,X,Y,U,V,j,k);
x =1-2^(n-1); y = 1; draw
[X,Y,U,V,j,k] = peanoStep(n-1,X,Y,U,V,j,k);
x = 1; y =1-2^n; draw
[X,Y,U,V,j,k] = peanoStep(n-1,X,Y,U,V,j,k);
x =1-2^(n-1); y = 1; draw
[X,Y,U,V,j,k] = peanoStep(n-1,X,Y,U,V,j,k);

end

(A nice thing about recursive programming is that as you improve your code it gets smaller. My
original version of peanoStep() had a stopping condition for n = 1. Why is this neither needed
nor very good?)

(When the Peano curve is drawn in any number of dimensions (including 2-D as a special case),
it is called “Z-order”. It can actually be drawn, to fixed depth, without recursion by interleaving
(or “shuffling”) the bits that represent the coordinates of the grid points being connected by the
Z-order.)

4. Mathematical induction.

A good way to think about recursion is as a form of proof by mathematical induction. This
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requires an induction step, which is the recursive call, and a starting step, which becomes the
stopping condition in a recursive program.

Typically, mathematical induction is used to prove something is true for all integers, n, by showing

1. the “something” is true for n = 1;

2. if the “something” is true for n − 1, then it is true for n.

This is related to linear (non-exponential) recursion.

Another linear recursion is used to find the greatest common divisor of two integers (and the
corresponding mathematical induction is proof that the recursion is correct):

function g = gcd(x,y)
if y==0, g=x; %stopping condition
else g = gcd(y,rem(x,y)); %recursion/induction step

Try this on x = 38, y = 14. Try it with paper and pencil: the sequence of calls is

step 0 1 2 3 4
x 38 14 10 4 2
y 14 10 4 2 0

We saw in week 10 that x and y have the same greatest common divisor (gcd) as y and x mod y.
This is the induction step in a mathematical proof that the gcd function is correct, and it is the
recusive step in the function. (The MATLAB function rem(x,y) and x mod y do the same thing.
They give the remainder when integer x is divided by integer y.)

Furthermore, the recursion reduces the sizes of the parameters so they get smaller and smaller.
Persuade yourself that y must eventually be 0, so that the x that made it so is an exact divisor of
both the preceding x and y ... and so of the original x and y.

This was an inductive argument showing that the gcd program works. It is called Euclid’s algorithm.

5. MATLAB syntax is not particularly elegant for recursion, and we can do better in other lan-
guages.

function gcd(x,y) is
if y==0 then x
else gcd(y,x mod y)

A programming language which supports only expressions, without needing assignment statements,
is an example of functional programming. LISP was the first thorough example of this.

6. L-systems

Botany provides many illustrations of recursion: a branch produces sub-branches which produce
sub-sub-branches, and so on.
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Such botanical structures are also self-similar. How many times is the second “tree” drawn above
found in the third? How does each of these correspond to a straight line in the second? Can you
see what will happen next?

The basic pattern can be captured symbolically.
B[+B]B[−B]B

where
B: draw a line of given length
+: turn left by a given angle
−: turn right by a given angle
[: store current position and heading
]: retrieve stored position and heading

([ and ] are stack operations, so several (position,heading) states may be stored, to be retrieved in
the inverse order.)

Now for the recursion. To make a self-similar version to the next degree of resolution, turn the
symbolic string into a rewriting rule

B → B[+B]B[−B]B

This has the effect of replacing each B in the string by the string itself.

Applied an indefinite number of times, the rewriting rule “grows” a structure of arbitrary complex-
ity.

Here are the next two steps following the three shown above.
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MATLAB can implement this, although in a limited way. Using quiver to draw the final picture,
we can build up the picture recursively in a way which follows the symbolic string.

1. branchOL1(max,n) initializes the size of the picture, given by max, initializes arrays needed
by the stack, and then calls branchOL1Step(n,..).

2. branchOL1Step(n,..) calls branchOL1Step(n−1,..) five times, corresponding to the five
occurences of B in the rewriting rule, or, if n = 0, directly calls forward() to draw the
straight line represented by the lowest level of B. branchOL1Step() uses pushBOLstate()
and popBOLstate() to do the stack operations where indicated by [ and ], respectively.

Here is branchOL1Step(). (It must explicitly pass as parameters and return as results all the global
variables needed for the current position and heading, and for the stacked positions and headings.)

% function [x,y,h,sX,sY,sH,sNext] =
branchOL1Step(n,step,delta,x,y,h,sX,sY,sH,sNext)

% THM 061023 in file: branchOL1Step.m
% called by branchOL1.m; uses forward.m popBOLstate.m, pushBOLstate.m
function [x,y,h,sX,sY,sH,sNext] =

branchOL1Step(n,step,delta,x,y,h,sX,sY,sH,sNext)
if n==0, [U,V,x,y] = forward(step,U,V,x,y,h); else
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[x,y,h,sX,sY,sH,sNext] = branchOL1Step(n-1,step,delta,x,y,h,sX,sY,sH,sNext);%B
[sX,sY,sH,sNext] = pushBOLstate(x,y,h,sX,sY,sH,sNext); %[ PUSH
h = h + delta; %+ left(delta)
[x,y,h,sX,sY,sH,sNext] = branchOL1Step(n-1,step,delta,x,y,h,sX,sY,sH,sNext);%B
[x,y,h,sX,sY,sH,sNext] = popBOLstate(sX,sY,sH,sNext); %] POP
[x,y,h,sX,sY,sH,sNext] = branchOL1Step(n-1,step,delta,x,y,h,sX,sY,sH,sNext);%B
[sX,sY,sH,sNext] = pushBOLstate(x,y,h,sX,sY,sH,sNext); %[ PUSH
h = h - delta; %- left(-delta)
[x,y,h,sX,sY,sH,sNext] = branchOL1Step(n-1,step,delta,x,y,h,sX,sY,sH,sNext);%B
[x,y,h,sX,sY,sH,sNext] = popBOLstate(sX,sY,sH,sNext); %] POP
[x,y,h,sX,sY,sH,sNext] = branchOL1Step(n-1,step,delta,x,y,h,sX,sY,sH,sNext);%B

end

B. Instantiation

Comparing recursive with nonrecursive code, we see that the parameters of the recursive function
provide a kind of workspace.

Recursive

function gcd(x,y) is
if y==0 then x
else gcd(y,x mod y)

Iterative

function gcd(x,y)
while(y>0)
{ y’ = x mod y;
x = y;
y = y’;

}
return x;

(This is not MATLAB code.)

Notice that the iterative (nonfunctional) code, which assigns values to variables y’, x and y, must
have an additional “workspace”, y’. The recursive code just uses the parameters to serve as this
workspace.

But there is a kind of workspace which functional parameters cannot capture.

This is any variable whose value must be kept between invocations of a function.

This is the case for most of the variables in the functions in this week’s notes, and we see what
a pain MATLAB gives us over them. But all of the examples so far this week need to make the
values of these variables available outside the functions as well as inside them.

The flipflop program of Week 11 is different. The “state” of the flipflop needs to be known only by
the flipflop. The functions that call the flipflop, such as flipflopRead() and flipflopWrite(),
do not need to know the state, say y, as we said in Note 1 of Week 11. MATLAB obliged us to
write

function y = flipflopWrite(data,y)
when it should only be necessary to write

flipflopWrite(data)

We can do this better (but not in MATLAB) by maintaining y as a state which is held over between
invocations—but not available to any code outside of the function for which it is intended.

If we had such a capability, here is how we might wrap up the flipflop function we already wrote
in Week 11.

statefunction flipflopstateWrite(data)
state y;
y = flipflopWrite(data,y)
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end flipflopstateWrite

(This is not MATLAB code.)

This is incomplete. y is not initialized for one thing. We could just say state y = 1; to do it.

More importantly, the state cannot be shared with another function, say flipflopstateRead().

So we need to encapsulate the state and the functions we need to work with it.

flipflop
state y = 1;
function flipflopstateWrite(data);
% define the code here (as above)
function data = flipflopstateRead();
% define the code here (similarly)

end flipflop

(This is not MATLAB code.)

So we could now invoke the flipflop functions in this way:
flipflopstateWrite(1);
.. = flipflopstateRead(); % gets 1
.. = flipflopstateRead(); % gets 1
: :
flipflopstateWrite(0);
.. = flipflopstateRead(); % gets 0
: :

8. What if we wanted two flipflops?

We’d have to make a copy of the state.

(We don’t have to copy the functions: they are just code. This is for the same reason that we
didn’t have to copy the nand() function when we built the flipflop in the first place. We just used
it, repeatedly.)

We can take our above definition of flipflop as a template for a class of flipflops. If we provide
some new syntax, the programmer can instantiate as many flipflops as hey likes.

f1 = new flipflop;
f1.flipflopstateWrite(1);
.. = f1.flipflopstateRead(); % gets 1
: :
f2.flipflopstateWrite(0);
.. = f1.flipflopstateRead(); % gets 1
.. = f2.flipflopstateRead(); % gets 0
: :

Classes and their instantiation are the heart of (the very badly named) “object-oriented” program-
ming. In fact, although you will hear many opinions about “O-O” programming, only instantiation
fundamentally matters.

This kind of programming violates the goal of functional programming, which is to dispense alto-
gether with state, or any hidden “side effects” caused by assignment and update operations.

But it is an improvement over unrestricted states and side effects. It contains each state within
the module that also contains all the allowed ways of operating on that state. This is called
encapsulation.

MATLAB can’t do any of the coding we’ve just seen. Can we cobble together a state-preserving,
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instantiable flipflop in MATLAB?

Instead of flipflop, for which we have already written a whole lot of code which we’d have to
modify, let’s try the most basic possible class, counter.

counter
state ctr = 0;

function reset
ctr = 0;

end reset

function count
ctr = ctr + 1;
return ctr;

end count
end counter

sheep = new counter;
goats = new counter;
.. = sheep.count;
.. = sheep.count;
.. = goats.count;
sheep.reset;
:

We can do this in MATLAB but it will be much longer: we must manage the names and the states
ourselves. We can do this using arrays to remember the various instances of the state.

9. Summary

(These notes show the trees. Try to see the forest!)

• Recursion

– Grammar: processing and evaluating expressions.

– Fractals: self-similar curves with exponential complexity.

– Mathematical induction.

– L-systems: self-similar branching structures.

• Instantiation

– Workspace vs. state.

– Functional vs object-oriented programming:

∗ functional programming has no side-effects (e.g., assignments), and hence no state;

∗ object-oriented programming has state, and instantiation to copy the state, but it
encapsulates the state to make it safer;

∗ conventional programming (usually called “imperative”) allows assignments and
state anywhere, thus forcing the programmer to remember all the assigned vari-
ables and their values at any given point in the program.

10. Excursions for Friday and beyond.
You’ve seen lots of ideas. Now do something with them!
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1. Combine parsexp with the shuntingYard algorithm and the booleanRevPolEval function of
Week 11 to parse and evaluate expressions such as ab+cd.

2. How must the grammar implemented by parsexp be changed to accommodate parentheses in
the input, such as in a(b+c)d?

3. How many function calls are generated by a function which calls itself thrice and recurses to
depth n (the initial call being at level 1, the next two at level 2, and so on to level n).

4. The inventor of chess is legendarily said to have been invited by his grateful head of state
to name any reward he wished. He asked for one grain of wheat for the first square of the
chessboard, two for the second, double that for the third, double it again for the fourth square,
and so on. How many bushels of wheat did the monarch have to produce?

5. Use MATLAB to calculate the interest growth formula, v = v0(1 + i)p, for the value, v, of a
quantity which has grown at interest i × 100% per period over p periods. For small interest
rates of 1%, 2%, 5%, .., compare this with eip. Given that e0.72

' 2, what is a quick way to
find out how many years it takes for your money to double if invested at small interest rates?

6. The following table gives the gross domestic product (GDP) per capita in 1820 for various
regions of the world, and the annual percentage growth rate for each of these regions. (I have
interpolated this data from [Sac05, Chap. 2], who cites his sources.)

Region Western Eastern Former US, Canada Latin Japan Asia Africa
Europe Europe USSR Oceania America (not Japan)

1820 GDP/cap. 1500 800 800 1200 800 800 800 800
% growth/ann. 1.5 1.2 1.0 1.7 1.2 1.9 0.9 0.7

Use MATLAB to calculate the GDP per capita in 2000, 180 years later, and discuss the
poverty gaps.

7. Rewrite peanoStep with a stopping condition for n == 1. Why is this not as good?

8. Write a three-dimensional Peano curve drawing program. Here is the basic unit.
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9. Write a two-dimensional Z-order program to draw the Peano curve not using recursion but
by interleaving bits of the coordinates.

10. Look up the “Hilbert curve” and write a MATLAB program to draw it to any depth of
self-similarity.

11. Hexagonal numbers, 1, 7, 19, 37, 61, 91, 127, .., are the numbers of dots that can be used to
show filled hexagons of sides 1, 2, 3, ..

19

1 2

71

3

a) Show by mathematical induction that the sums of hexagonal numbers up to any point,
starting at 1, are always perfect cubes (1, 8, 27, 64, ..).
b) Show the same, but this time by visualizing each hexagon as the front three faces of a
cube, whose interior can be seen to be filled by all the preceding hexagons.

19

1 2

71

3

c) Penrose [Pen94, pp.66–77] argues that proofs such as the above visualization cannot be cap-
tured by computational rules such as induction—a visualization can always be found which
transcends any currently complete computational system—and hence that mind cannot be
programmed. (See the Excursion in Week 11 on non-stopping computations.) Don’t take my
word for it: read the whole book!
Penrose’s argument could explain AI’s apparent lack of significant progress, over half a cen-
tury, towards its main goal, the construction of an intelligent program. AI has, however,
provided significant benefits to computer science, in the LISP and Prolog programming lan-
guages, the idea of expert systems, techniques used in data mining, and many other paradigms.
Penrose does believe that an intelligent machine can be constructed—it just cannot be a pro-
gram based on current computers.

12. Our program for gcd is not totally safe. It needs to be protected against x < y and against
negative inputs. Using only if statements and further calls to gcd itself, add these protections
to the code.

13. Express factorial as a recursive function. What are the starting and inductive steps needed
to prove that your approach is correct?

14. Look up the legend of the “Towers of Hanoi” and write a recursive program to end the
Universe.

15. Look up John McCarthy (1927–) and the functional programming language LISP. How can
the syntax of a language be identical to the syntax of the data it processes? Write a LISP
function to reverse the elements of a list.

16. Rewrite the branch-drawing program of Note 6 using gplot() in MATLAB.
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17. Look up Prusinkiewicz and Lindenmayer’s The Algorithmic Beauty of Plants [PL90] and write
MATLAB programs for some of the other branching structures on p.25.

18. Write a translator to convert the symbolic strings, that give rewriting rules, into programs
to draw the recursive pictures. (Advanced skills and a better language than MATLAB are
required.)

19. Write a set of MATLAB functions to mimic the object-oriented Counter class without using
arrays as storage. Explain why not using the arrays is a little misleading in a general discussion
of the advantages of automatic instantiation.

20. Any part of the lecture that needs working through.
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