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1. Let’s take a look at a strange new algebra. We’ll give it first in terms of the formal rules, or
axioms, it obeys.

• operators +, . are

(a) commutative

(b) associative

• ! (c) identities: 0 for +; 1 for .; and

X + 1 = 1

X.0 = 0

• ! (d) mutually distributive:

X.(Y + Z) = X.Y + X.Z

X + Y.Z = (X + Y ).(X + Z)

• ! (e) absorptive:

X + X.Y = X

X.(X + Y ) = X

• ! (f) unary operator ′ (“complement”)

X + X ′ = 1

X.X ′ = 0

From this (treating the rules formally as if for a game such as chess)
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(1)

X + 0 = X + X.X ′ = X

X.1 = X.(X + X ′) = X

(2) if X + Y = 1 and X.Y = 0 then Y = X ′:

Y = Y.1 = Y.(X + X ′) = Y.X + Y.X ′

= 0 + Y.X ′ = X.X ′ + Y.X ′

= (X + Y ).X ′ = X ′

(2a) Y = Y ′′:
combine (2) and (f) (set X = Y ′).

(2b)

(X + Y )′ = X ′.Y ′

(X.Y )′ = X ′ + Y ′

De Morgan’s laws. These follow from (2), since:

(X + Y ) + X ′.Y ′
(d)
= ((X + Y ) + X ′).((X + Y ) + Y ′)

(b)
= (Y + X + X ′).(X + Y + Y ′)

(f)
= (Y + 1).(X + 1)

(c)
= 1.1

= 1

and

(X + Y ).(X ′.Y ′)
(d)
= X.X ′.Y ′ + Y.X ′.Y ′

(f),(c)
= 0 + 0

= 0

2. The algebra obeying these rules is “boolean algebra” [Boo54].

The simplest example has only two elements, 0 and 1.

1 1 1
0 0 1
+ 0 1

1 0 1
0 0 0
. 0 1

1 0
0 1
′

(The existence of this particular interpretation (mathematicians call it a “model”) of boolean
algebra proves that the axioms (a)..(f) are consistent. It does not show that the axioms are complete
or independent, which we do not attempt here.)

From now on, I’m going to stop using ‘.’ as an operator and just write the operands adjacent to
each other, as we normally do with multiplication in algebra. Thus X.Y will henceforth be XY .

For this particular, two-valued model, we can use “truth tables” to check that the axioms apply.
For instance, the second distributive law:
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X Y Z X + Y Z (X + Y )(X + Z)
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1
1 0 0 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1

We will now interpret +, ., and ’, respectively as or, and and not, and we will interpret 0 and 1
as false and true, respectively.

Boolean algebra now formalizes propositional logic (hence Boole’s motivation for titling his book
The Laws of Thought).

Here are some example propositions, each abbreviated by a suitable letter.

L “lightspeed is the same for all observers”

R “ontogeny recapitulates phylogeny”

W “water is composed of oxygen and hydrogen”

Here are the values of each of these.

L = 1 true

R = 0 false “Haeckel′s Lie”

W = 1 true

Here are some combinations.

L or R = L + R : true

L and R = LR : false

L and W = LW : true

not R = R′ : true

3. A useful but misunderstood logical operator is implication.

1 0 1
0 1 1
→ 0 1

1 0 1
0 1 1
≤ 0 1

Note that false implies anything.

Using two of the above propositions,

if R then L = R→ L : true

if L then R = L→ R : false

→ is not commutative. (It is transitive:

X → Y and Y → Z gives X → Z)

For example,
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N “x is a minimum of f()”

S “the slope of f() at x is zero”

if N then S = N → S : true

if S then N = S → N : false

(x might be the maximum)

X “x is a maximum of f()”

if X then S = X → S : true

if S then (S or N) = X → (S + N) : false

Can we get → from +, ., ’ (or, and, not)?

X Y X → Y
0 0 1
0 1 1
1 0 0
1 1 1

We can: for each row containing a 1 under X → Y , write down the following
(if X = 1 then X else X ′)(if Y = 1 then Y else Y ′)

then take the (boolean) sum of all of these for which there was a 1 under X → Y .

This gives X → Y is X ′Y ′ + X ′Y + XY .

We can simplify this using the axioms of boolean algebra.

X ′Y ′ + X ′Y + XY = X ′Y ′ + X ′Y + X ′Y + XY

= X ′(Y ′ + Y ) + (X ′ + X)Y

= X ′ + Y

We can also simplify it visually, using a “2-cube” (a two-dimensional cube, i.e., a square).

X’ + Y

X

Y

1 1

10

1

10
X’

Y

X Y X → Y X ′ + Y
0 0 1 1
0 1 1 1
1 0 0 0
1 1 1 1

4. What is beyond →? We can find a grand total of sixteen binary operators.
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false
0 0
0 0

and
0 1
0 0

←/ ≥/ 1 0
0 0

right
1 1
0 0

→/ ≤/ 0 0
0 1

left
0 1
0 1

xor, ×, 6= 1 0
0 1

or, +
1 1
0 1

nor
0 0
1 0

nxor, =
0 1
1 0

nleft
1 0
1 0

→, ≤ 1 1
1 0

nright
0 0
1 1

←, ≥ 0 1
1 1

nand
1 0
1 1

true
1 1
1 1

although six of them are not strictly binary, and only ≤, xor, nand and nor are logically interesting
besides and and or. (Interpretation: e.g., X right Y = Y .

1 1 1
0 0 0

0 1)

Let’s show that we don’t need both and and or as basic operators, by getting and from or and not.

1
X

Y

0

0 1

1

X

Y

0

0 1

1

X

Y

0

0 1

1

X

Y

0

0 1

11 1

10

+

1 1 1

0 0 000

00

1

1

X + Y X’ + Y X’ + Y’ (X’ + Y’)’

1

Of course, it’s just de Morgan’s law, but seen in a new way.

We can get unary operators from these binary ones in several ways:

fix X = 0 (i.e., use left column)
fix X = 1 (i.e., use right column)
fix Y = 0 (i.e., use bottom row)
fix Y = 1 (i.e., use top row)
fix X = Y (i.e., use diagonal, bottom left to top right)

Thus X nand X = not X.

5. The two-element boolean algebra also describes switching circuts.

These are built from primitive elements such as not, and, or—or not, or—or just nand.
Let’s build an adder out of not, and, or.
“Half adder”, h, for the least significant bit; “full adder”, f, for the other bits.
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fffh
1011

+ 101
10000

X Y carry sumh

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

01
X

Y

0

0 1

1

X

Y

0

0 1

1 1

10

2

+CS

00

01 10

This is easy:

carry = XY

sumh = X xor Y = XY ′ + X ′Y

Half adder

’ ’

��

��

+
��

��

�	


�

�Y
X

sumh

carry

This will do to add the first bit of each two multi-bit numbers.

Here it is in MATLAB.

% function [carry,sumh] = halfadder(x,y)
% THM 060828
function [carry,sumh] = halfadder(x,y)
carry = and(x,y);
sumh = xor(x,y);

To add subsequent bits requires a bunch of full adders

C X Y carry sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

(Note: carry = ≥ 2 bits are on;
sum = odd # bits are on.)

=

C

Y

X

C

Y

X

C

Y

X

cs carry sum

1001
10 11

00 01
01 10

0 1
1 1

0 0
0 1

1 0
0 1

0 1
1 0

1
1

0

1 1

0
1

1

1

1
0

10

0

0

0

0

0
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Carry is made up of three 1-dimensional pairs, each requiring only 3− 1 = 2 variables:

carry = CX + CY + XY

Sum is made up of four 0-dimensional pieces, so it cannot be simplified: each requires 3 − 0 = 3
variables:

sum = CX ′Y ′ + C ′XY ′ + C ′X ′Y + CXY

Since some of us are straining at these three-dimensional representations, and since four or more
input variables would require four or more dimensions, where we would all have difficulty, let’s look
at a 2-D encoding of 3, 4, 5, .. dimensions: the Karnaugh map.

sum

0

0 0 0 0 0

01 1 111

1 1 1

1 1 0

00 0

0 000
0 0

1 1

1 111
1 1

X X

Y Y

C C
carry

Once we have both halfadder and fulladder, we can add any number of bits.

2

Y    XY    XY    XY    X

SSSSC

Fulladder Fulladder Fulladder Halfadder.....

n

n

n 3 123

3

C C C

12

1

6. Reversibility

None of our binary operators is reversible: given the output we cannot reconstruct the inputs.
Charles Bennett showed in 1973 that a reversible calculation can be done, in principle, consuming
no energy, so reversibility is significant.

Which of our boolean operations is reversible?

• not: X ′′ = X

This is a unary operator: 1 input → 1 output.

Binary operators give only 1 output for 2 inputs, so they cannot be reversible.

What if we combine them?

X     Y   X+Y  XY
0  0  0  0
0  1  1  0
1  0  1  0
1  1  1  1

1  1
0  1

0  1
0  0

+

� ��
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In the rectangle in the truth table (and the ellipses in the operator tables), X + Y and XY stay
the same, but give different results for X and Y : thus or (+) and and (.) cannot be combined in
any way to give back X and Y .

We could invent a binary operator with two outputs which is reversible, such as exchange.

 x

X

Y X Y

YX x

11

00 01

101

1
0

0
X

Y

exchange

X Y X ×−Y X −×Y
0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 1

but this does not at first seem interesting: we certainly cannot get and, or or not out of this, or
any of the operators that generate a boolean algebra.

Similarly apparently trivial is

11

1

1
0

0
X

Y
X

Y

X left Y

X right Y’

00 10

01

But what about a “controlled not” (CN)?

11

1

1
0

0
X

Y
X

Y

X left Y

X’Y+XY’

01 10

00

Now we’re getting an xor: that does not generate a boolean algebra but it is at least less trivial.

How about 3 inputs and 3 outputs?

A “controlled exchange” (CX) operator.

123

1
1

0

1

0

0

1
1

0

1

0

0

001 011
110 111

000 010
100 101

1 1
0 1

0 0
0 1

X

Y

Z X’ Z+XY

X

Y

Z

X

Y

Z

X1

2

3

Fredkin (controlled exchange) output 3

X’ Y+XZ

CX
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I’ve pulled out output 3 so that we can look at it from various points of view, which give different
binary operators.

X=Y

1

1
0

0
X

Y

1

1
0

0
X

Y

1

1
0

0
X

Z

� ��= 1 = 0ZZ >
not

1

1
0

0
X

Z

1

1
0

0
Y

Z

1

1
0

0
X

Z

1

1
0

0
Y

Z

1

1
0

0
Y

Z

1

1
0

0
X

Z

1   0

1   1 0   1

0   0

1   0

1   1

0   0

1   1

0   00   1

1   1

0   1

0   1

0   1

1   1

0   1

0   0

0   0

and

X

or
+

left right

or right

and

Y Y= 1 = 0

X X= 1 = 0

Y=Z

X=Z

This third output can give us or, and and even not if we consider the 1-dimensional result for
Y = 0 and Z = 1. It also gives implication and other operators.

Thus, the CX operator is reversible and contains all of boolean algebra. It is a reversible and
universal operator.

Another reversible operator is “controlled controlled not” (CCN or Toffoli).
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111
1

1
0

1

0

0

100

X

Y

Z (XY)’ Z+XYZ’

X

Y

Z

X1

2

3

CCN

Y

controlled controlled not

101 110
011001

000 010

CCN and CN give a reversible half-adder.

X

Z

sumh

carry

X

Y

7. The operator tables look like matrices in 0,1 but they’re not.

Can we describe logic/switching operators as matrices?

How about

(

0 1
1 0

) (

f
t

)

=

(

t
f

)

for not?

not not =

(

0 1
1 0

) (

0 1
1 0

)

=

(

1 0
0 1

)

Seems right.

So maybe and is

)f

ff   ft   tf   tt

1 1 01
0 0 0 1t(

No: 1) it does funny things:

and









ff
ft
tf
tt









=

(

f + f + f
t

)

2) the matrix is not square.

Let’s focus on operators with the same number of outputs as inputs.

Then the matrices could describe a change of state from input state to output state.

CN

ft
tf
tt

ff
ft
tf
tt

X  YX  Y0 0 1 1ff   ft   tf   tt

1
1

1
1

ff
ft
tt
tf

=

ff
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Let’s look at this as a tensor product of matrices for X and Y .

(

1
0

)

X

(

1
1

)

Y

+

(

0
1

)

X

(

1
1

)

Y

=

ifnotX 1Y + ifX notY

(Compare X ′Y + XY ′

but that gives only one of the outputs.)

Feynman [Fey99, Chap. 6] uses this as the basis for analyzing reversible operators in a quantum
computer: quantum states can be superpositions of classically mutually exclusive states.

8. Summary

(These notes show the trees. Try to see the forest!)

• boolean algebra

– logic: and, or, not

– logic: if .. then ..
16 binary operators

• circuits: adders, boolean simplification

– Extracting boolean expression from truth table (expression = term + term + .. + term;
term = component.component. .. .component; component = variable or variable′)

1. Ignore output entries of 0. Each output entry of 1 contributes a term to the expres-
sion.

2. Each input entry of 1 contributes that variable to the term. Each input entry of 0
contributes the negation of that variable to the term.

– Simplifying the boolean expression (arrange the truth table as a hypercube or as a
Karnaugh map, and apply the previous rules)

1. Look for patterns of output 1s: if any input variable contributes both 0 and 1 to
output 1s, that variable may be dropped from the corresponding terms and the
terms combined into a single term. (Patterns include lines parallel to axes, squares,
..)

• reversible operators and universal operators

• matrix formulation

9. Appendix: Binary Arithmetic
We count on 10 fingers. Computers count on 2 electrical states.

Binary 0 1 10 11 100 101 110 111 ...
Decimal 0 1 2 3 4 5 6 7 ...

1 1 10 11
0 0 1 10
+ 0 1 10
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Decimal

825
+ 9346
-----

carry 1101
sum 10171

1 10^0
70 10^1

100 10^2
0000 10^3

10000 10^4

Binary

101 (5)
+ 1101 (13)
-----

carry 1101
sum 10010 (18)

0 2^0
2 2^1
0*4 2^2

0*8 2^3
1*16 2^4

Adding least significant bits (digits) requires 2 inputs: halfadder(x,y).
Adding any other pairs of bits (digits) requires 3 inputs: fulladder(c,x,y).

10. Excursions for Friday and beyond.
You’ve seen lots of ideas. Now do something with them!

1. Derive X + X = X and XX = X from axioms (e.)

2. Run the MATLAB function

% function OT= OperatorTableOr()
% THM 060828
function OT = OperatorTableOr()
for x = 0:1
for y = 0:1
OT(y+1,x+1) = or(x,not(y));

end
end

and write corresponding ones for and and not.

3. For a two-element boolean algebra, verify all the axioms of boolean algebra by using the truth
tables for +, ., and ’.

4. How do the boolean axioms change if we swap 0 ↔ 1 and + ↔ .?

5. Show that if not Q then not P is equivalent to if P then Q, for any propositions P and Q.

6. Since not not X is X, boolean logic imposes the “law of the excluded middle”.
This allows us to make proofs by contradiction: suppose what you want to prove is untrue,
then derive an impossibility from this supposition. This is used, for instance in automated
reasoning (J. A. Robinson’s “resolution principle”).
We’ll do something simpler, which we’ll need in Week 12.
Use contradiction to show that the greatest common divisor of integers x and y,

gcd(x, y) = gcd(y, x mod y),
where x mod y is the remainder after x is divided by y. Note that x = (x ÷ y)y + x mod y,
where x÷ y is the integer quotient of dividing x by y, and that if gcd(x, y) = g then x = gp
and y = gq for some integers p and q such that gcd(p, q) = 1.

7. More than one kind of infinity a) Use contradiction to prove that there are numbers beyond

the “rational” numbers, which are ratios, p/q, of integers p and q: suppose that
√

2 = p/q,
with p and q in lowest terms (i.e., p mod q = 1). Hint: show that if p is odd then p2 must
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be odd (for any integer, p). (This discovery so upset Pythagoras’ belief in the supremacy of
integers that he reputedly had Hippasus, who made it, drowned: South Italy, 550BC.)
b) Show that the collection of all rational numbers is countable, i.e., ways can be found to
order each rational number, p/q, in a sequence so that each number can be paired with a
non-negative integer in the sequence 0, 1, 2, .. Hint: make a two-dimensional grid for p and
q and find a way to draw a connected line through all the grid points.
c) Check that each rational number, p/q, can be converted to decimal form using a procedure
such as the following for 1/7: for digits a, b, c, d, e, .. (which can only take on the values 0, 1,
2, 3, 4, 5, 6, 7, 8 or 9)

1/7 = a/10 + b/102 + c/103 + d/104 + e/105 + ..

=
1

10
(a +

1

10
(b +

1

10
(c +

1

10
(d +

1

10
(e..)))))

10

7
= a +

1

10
(b +

1

10
(c +

1

10
(d +

1

10
(e + ..))))

So a = 1.

10

7
− 1 =

3

7
=

1

10
(b +

1

10
(c + ..))

30

7
= b +

1

10
(c +

1

10
(d +

1

10
(e + ..)))

So b = 4.

30

7
− 4 =

2

7
=

1

10
(c + ..)

20

7
= c +

1

10
(d +

1

10
(e + ..))

So c = 2. At this point, let’s stop and look ahead. How many different remainders can there
be, at most? How soon, at most, will we see any given remainder again in this process? What
does this mean for the digits in the decimal form of 1/7?
Now carry on with 1/7 by finding digits d, e, f, .. and see if you were right. Try it for some
other fractions. Persuade yourself that the sequence of digits always repeats after a certain
point. (The repetition may be of only a single digit, and this digit may even be 0: include
some fractions that give these special cases in your experimenting.)
You can also use this procedure to find the “decimal” representation of a fraction in any base
b: just replace all the 10s, above, by b. Here is the start for 1/7 in binary.

1/7 = a/2 + b/22 + c/23 + d/24 + e/25 + ..

=
1

2
(a +

1

2
(b +

1

2
(c +

1

2
(d +

1

2
(e + ..)))))

2

7
= a +

1

2
(b +

1

2
(c +

1

2
(d +

1

2
(e + ..))))

where bits a, b, c, d, e, .. can only take on the values 0 or 1.
d) How many numbers are there whose decimal representations contain no repetitions? Here
is Cantor’s argument that there are more than can even be counted. It is another argument
by contradiction, the “diagonal” argument. It is sufficient to consider only fractions between
0 and 1, and to represent them in binary. Suppose we have found a sequence which includes
all the infinitely-long fractions, and replace the diagonal elements by their opposites (shown
in bold in the second column).
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00000000... 10000000...
10000000... 11000000...
11111111... 11011111...
01010101... 01000101...
10101010... 10100010...
11010110... 11010010...
00110110... 00110100...
10001000... 10001001...

Convince yourself that the replaced bits themselves form a new infinitely-long fraction

11000001..

which is not in the sequence, contradicting our supposition that the sequence was complete.
(To see that the new infinitely-long fraction does not repeat and so cannot be rational, look
up www.mathpages.com/home/kmath371.htm: if it did, the rationals would be uncountable,
contradicting (b), above.)
e) Cantor also showed that the power set (the set of all subsets) of an infinite set has a higher
infinity of elements than the original set. The argument is also by contradiction and also uses
a form of diagonal. Consider, for example, the (countably infinite) set of integers. Suppose
we have paired off its power set with integers, so that we can count it.

N P(N )
1 {4,5}
2 {1,2,3}
3 {4,5,6}
4 {1,3,5}
: :

In this example, 2 is paired with a subset that contains 2, but 1, 3 and 4 are paired with
subsets that do not contain themselves. Which integer is paired with the subset, {1,3,4,..},
of all integers that are paired with subsets that do not contain themselves? Is it not in this
subset? Then it is paired with a subset that does not contain itself, and so it is in the subset:
contradiction. Conversely, if it is in this subset, then it is not in it: there is no escape.
This is a diagonal argument because it is asking whether, in row ? below, there is a • on the
diagonal, and getting a contradiction for both alternatives.

1 2 3 4 5 6 ..
1 • •
2 • • •
3 • • •
4 • • •
:
? • • • ?

So instead of writing ∞, we need more than one symbol. We could call the kind of infinity
that the integers have ℵ0 and the kind of infinity that the power set of the integers has ℵ1.
What about the power set of the power set? ℵ2? Which of these is the infinity that the real
numbers (rational numbers and irrationals together) have?

8. What are the differences among the following three propositions?

X and Y, X and/or Y, X or Y
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9. Why is it not true that
if (the slope of f() at x is zero) then
(x is a maximum of f() or x is a minimum of f() )?

10. Confirm by truth table that X → Y is X ′Y ′ + X ′Y + XY . Convince yourself that the sum-
of-products rule that gave this equivalence works in general for any boolean combination.

11. Which of the sixteen binary boolean operators on 0 and 1 are commutative? Associative?

12. Show that X xor Y is XY ′ + X ′Y .

13. Show that or can be derived from and and not.

14. Show that or and and can be derived from → and not.

15. Show that X → Y is Y ′ → X ′.

16. What is the relationship between → and ≤ ?

17. Show that X xor Y ′ is X ′ xor Y is (X xor Y ) ′.

18. Find eight ways we can get the not operator, ′, from the sixteen binary operators.

19. Show that or, and and not can all be derived from nand. What other single binary operator
gives or, and and not?

20. From the table for the half adder we can see directly that

carry = C ′XY + C(X + Y )

Show that this is the same as

carry = CX + CY + XY

21. Draw the circuit diagram for the full adder.

22. Write the MATLAB function [carry,sum] = fulladder(c,x,y). Combine it with [carry,sumh]
= halfadder(x,y) from Note 5 to build a function which adds 2-bit numbers. Build a func-
tion which adds eight-bit numbers.

23. Which is the better way to schedule a meeting among several people next week: ask them to
tell you what times they are available; or ask them to tell you when they are not available?
Imagine that each person will fill out a schedule for the coming week in the form

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
Mon
Tue
Wed
Thu
Fri

24. Boolean algebra can also represent sets, with the “product” standing for set intersection, the
“sum” giving set union and “negation” giving the complement. Mother and father form a
set of two members, {M,F}, and this set, together with all its subsets, form a four-element
boolean algebra.
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{}

{M,F}

{M} {F}

Here, {} is the empty set which is given by the intersection of {M} and {F}. The union of
{M} and {F} gives the full set. The complement of {M} is {F}, and vice-versa.
a) Which of these four elements behaves as 1 and which as 0? Invent symbols, such as a and
b, for the remaining two sets.
b) Verify that the boolean axioms hold for the three operators on these elements.
c) How many boolean elements arise from a 3-member set? Draw the diagram corresponding
to the diamond for the 2-member set, showing all connections between subsets (upwards
for unions, downwards for intersections). To what three-dimensional figure is this diagram
equivalent?

25. If we have a set, A, of apples and a set, R, of red fruit, the set AR is the red apples. (There
might also be green and yellow apples, and red strawberries.) The set A + R is all the fruit
that is red or an apple.
This is especially useful in assessing probabilities: the probability of a set is the number in
the set divided by the total number. The intersection of two overlapping sets is assigned
as probability the (arithmetic) product of the probabilities of the two sets. (What is it if
the sets are disjoint?) The union of two disjoint sets is assigned the probabality that is the
(arithmetic) sum. But if the sets overlap, we must use De Morgan’s laws and the “not”
operator: A + R = (A′R′)′. The probability that something is not in a set is 1 − the
probability that it is in the set, so “not”, ′, becomes subtraction from 1. Thus the probability
that a fruit is an apple or red is prob(A + R) = prob((A′R′)′) = 1 − prob(A′R′) = 1 − (1 −
prob(A))(1 − prob(R)).
Using the counts

red green yellow TOTALS
apples 10 6 4 20
bananas 8 8
strawberries 20 20
grapes 15 18 33
lemons 3 3
limes 2 2
TOTALS 45 26 15 85

and assuming that this accounts for all fruit, calculate
a) the probability that a fruit is a red apple;
b) the probability that a fruit is not a red apple;
c) the probability that a fruit is a red apple and a green apple;
d) the probability that a fruit is a red apple or a green apple.
Now suppose that you know only the probability that a fruit is an apple and the probability
that a fruit is red, and calculate
e) the probability that a fruit is a red and an apple;
f) the probability that a fruit is a red or an apple;
and compare these results to the actual number of fruit that satisfy the two conditions.
g) What is the probability that an apple is red (that is, you know it is an apple, and want to
know how likely it is to be red)?
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26. The “birthday paradox” states that, with 23 people gathered in a room, the probability that
at least two of them share a birthday is over 50%.
a) If n people in a room take turns crossing off their birthday on a calendar of 365 days,
and the k + 1st person finds k crosses on the calendar (none of the k predecessors shares a
birthday with any other predecessor), how many ways out of the 365 can k + 1 place heir
cross on a blank day?
b) What is the probability that k + 1 does not share a birthday with the previous k?
c) What is the probability that none of the n people share a birthday with any other. (Try
this for n < 365. Think about it for n ≥ 365.) What assumptions must you make to calculate
this probability?
d) From (c), what is the probability that at least two people of the n share a birthday? What
must n be for this to exceed fifty-fifty? (Use MATLAB to plot the probability versus n.)

27. Children get half their genetic inheritance from each parent. In the following questions, “ge-
netic overlap” means the probability that the genetic material is the same in two individuals:
count the number of ways it can be the same relative to the (total) number of ways it can be
the same or different.
a) What is the genetic overlap between siblings?
b) What is the genetic overlap between grandparent and grandchild?
c) What is the genetic overlap between first cousins? Between two first cousins who marry
and their children?
d) What is the genetic overlap between yourself and your aunt or uncle? (Consider both
possibilities.) What if two brothers married two sisters?
e) What is the genetic overlap between yourself and a half-sibling? A step-sibling?
f) In “haplodiploid” species such as bees, fathers have only one chromosome so that the ge-
netic inheritance from the father is identical in each offspring: what is the genetic overlap
between siblings?
g) Supposing that genes control a species’ behaviour so as to maximize their own (the genes’
own) survival down the generations, would a bee be more likely to risk its own life for a sibling
or for an offspring?
h) Do these calculations contradict the assertion that humans share 97% of our genes with
chimpanzees?

28. Show that right, left, xor, nxor, nright and nleft can be combined in any pairs, except
<op> with n<op>, whose results can be combined in turn to give back the original inputs.
E.g., X = X left Y, Y = (X xor Y ) xor (X left Y ).

29. Show that any boolean operator can be got from the third output of the controlled exchange
operator, CX. That is, CX is universal.

30. Show that the second output of CX gives the same collection of operators as the third output
does, and thus is also universal.

31. What operators does the first output of CX give?

32. What is the inverse of CX? Give two different arguments. (Hint: write the numbers, 0, .., 7,
on the cube in two ways, first labelling the inputs, second labelling the outputs.)

33. Look up Edward Fredkin, 1934– . What is the Fredkin gate? What are tries?

34. Show that CCN, the controlled controlled not operator, is reversible. What is its inverse?
Show that it is universal.

35. Show that CCN and the controlled not operator, CN, do give a half adder. What is the
inverse of the half adder?
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36. Can a operator with three inputs and three outputs be reversible if one output is the full
adder sum and another output is the full adder carry?

37. Construct a reversible operator, G(X,Y,Z), such that the first output gives nand and nor
and not when inputs are equated (e.g., G1(X,Y, Y ) = X nand Y ) and the second output,
G2(X,Y,Z), gives the full adder sum. What is its inverse?

38. Can a operator be built which is its own inverse and which gives nand by setting some inputs
equal to each other?

39. How many different reversible three-input operators can there be? How many of these are
their own inverse?

40. How can we get exchange from controlled not? Vice versa?

41. Using the matrix representation of operator, show that CCN is

(ifnotX1Y + ifX ifnotY )1Z + ifX ifY notZ = 1 + ifX ifY (notZ − 1Z)

42. Look up George Boole’s The Laws of Thought [Boo54]. What is the connection between logic
and probability?

43. Look up Georg Ferdinand Ludwig Philipp Cantor (1845–1918) on sets and infinities.

44. Look up Richard Feynman’s Lectures on Computation [Fey99]. What are the energy require-
ments for computing in principle and in current practice? How many atoms are involved in a
modern transistor? What did Charles Bennett prove? What is the significance of reversible
computation?

45. Look up Kee Dewdney’s The Turing Omnibus [Dew89] or The New Turing Omnibus [Dew93]
(call them [61] and [66], respectively) chapters 3, 13 and 20 [66] (3, 12 and 18 [61]).

46. Any part of the lecture that needs working through.
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