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A. Reality
Gonna jump down, spin around, pick a bale of cotton.

Gonna jump down, spin around, pick a bale a day.
Norman Luboff, Harry Belafonte and William Attaway

1. Vectors are real.

• Independent of coordinate axes, so

• transform in a certain way when we change the axes.

Example transformations:

rotate

(

x′

y′

)

=

(

c s
−s c

) (

x
y

)

reflect x

(

x′

y′

)

=

( −1
1

) (

x
y

)

So what are not vectors?

A twirl is not:

it has magnitude m and direction θ,

so x = cos θ and y = sin θ

but it does not reflect the way a vector does.
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We get m′ = −m, i.e., x′ = −x and y′ = −y

instead of

(

x′

y′

)

=

( −1
1

) (

x
y

)

In 3D, an area is like a twirl: it can have an orientation to distinguish above from below.

z

v1

v2

v1

v2

v1

v2

A

x

y

We saw that a right-handed twirl becomes a left-handed twirl in the mirror.

Similarly the direction of turn needed to rotate v1 into v2 is reversed in the mirror. This direction
can be taken to determine the orientation of the parallelopiped area defined by v1 and v2.

In some sense, v1v2 = −v2v1: the “product” is anticommutative. We’ll follow up this essential
insight shortly (Note 6).

2. Some pairs are not vectors: their components are not coordinates.

(

apples′

oranges′

)

??
=

(

c s
−s c

) (

apples
oranges

)

This is not a totally hokey example. Information retrieval (I.R.) often uses “vectors” to capture
the content of documents.

around bale cotton day down jump pick spin
doc1( 1 1 1 0 1 1 1 1 )
doc2( 1 1 0 1 1 1 1 1 )
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I.R. even uses dot products to detect similarity between documents:
(doc1 . doc2)/(|doc1||doc2|) = 6/(

√
7
√

7).

But documents are not vectors: it is not meaningful to rotate or reflect the axes.

3. Even pairs of numbers from geometry, where rotating and reflecting are meaningful, are not
always vectors. Let’s try

(

height
width

)

Here, no matter what the axes do, these numbers should not change.

w

x

y

x’

y’

h

What kind of thing remains invariant no matter what the axes do?

As with a vector, this thing, this pair of numbers, has a reality independent of the choice of
coordinate axes. But the components of this one do not change if axes are rotated or reflected.

How about a matrix whose eigenvalues are w and h?

T ~v1 = w~v1

T ~v2 = h~v2

For example, given the axes x and y shown,

T =

(

w
h

)

v1 =

(

1
0

)

v2 =

(

0
1

)

Then, for axes x′ and y′, related to x and y by rotation R,

~v′1 = R~v1 =

(

c s
−s c

) (

1
0

)

and
RTR−1 ~v′1 = RTR−1R~v1 = RT ~v1 = Rw~v1 = wR~v1 = w~v′1

This suggests that T transforms to the new axes as T ′ = RTR−1.

Hence T ′ ~v′1 = w~v′1

Similarly T ′ ~v′2 = h~v′2
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This is called a tensor transformation. Height and width form a “tensor”. This tensor is a diagonal

matrix,

(

w
h

)

, when the axes are aligned with the rectangle, as x and y are.

This tensor is not diagonal for all coordinate axes, but we can see that it is a symmetric matrix.

T ′ = RTR−1 =

(

c s
−s c

) (

w
h

) (

c −s
s c

)

A symmetric matrix, T , equals its own transpose, T = T T .

In general we may think of a tensor loosely as a matrix describing some real thing, as opposed to
an operation or transformation.

T ′ = RTR−1 is symmetric because the inverse of R is the transpose of R, R−1 = RT , which is the
case for rotations, reflections and other “orthogonal” transformations of coordinate axes.

4. Maybe twirl is a tensor too.

Try S =

(

a b
c d

)

and reflect in y by reversing the direction of x using the reFlection matrix F to

give the tensor transformation FSF−1

−
(

a b
c d

)

=

( −1
1

) (

a b
c d

) ( −1
1

)

=

(

a −b
−c d

)

(Remember, Note 1 found out that the reflection just changes the sign of the twirl, i.e., of the
tensor representing it.)

So a = 0 = d.

Any reflection will give a similar sign change, so let’s see what reflecting in the line x = y gives us:

F =

(

1
1

)

−
(

b
c

)

=

(

1
1

) (

b
c

) (

1
1

)

=

(

c
b

)

and so c = −b.

Unfortunately, we’ve gone too far. We now have only one number, b, to describe a twirl, which we
saw in Note 1 requires two numbers, m and θ.

So maybe two dimensions is too small to contain a twirl. This rather makes sense now that we
think of it.

Let’s see if we can decribe a twirl in three dimensions.

First note that

( −b
b

)

is an antisymmetric matrix: it equals the negative of its transpose.

So we’ll try an antisymmetric matrix in 3D. A 3×3 antisymmetric matrix has three components.




u v
−u w
−v −w





Try reflecting in the yz plane: x ↔ −x




−1
1

1









u v
−u w
−v −w









−1
1

1



 =





−u −v
u w
v −w





This almost just changes the sign of the matrix. Is it right?
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wx

y

z

v

u

Yes, if we interpret w as the x-component of the twirl, v as the y-component and u as the z-
component. Check the diagram carefully!

Let’s see what happens if we rotate in the xy plane.





c s
−s c

1









u v
−u w
−v −w









c −s
s c

1



 =





u sw + cv
−u cw − sv

−(sw + cv) −(cw − sv)





This should be, and is, the same result we would get with





w
v
u



 being just a vector, transformed

in the usual vector way,




c −s
s c

1









w
v
u





So a twirl, while transforming like a vector under rotation, is in general a tensor; for instance, it
does not transform like a vector under reflection.

(Even though “twirl” is in one sense a rotation, we are here looking at it as a “real thing” so
the matrix representing it is a tensor—as opposed to the quite different matrix that describes the
operator, rotation.)

5. Twirl and area are “pseudovectors” or “axial vectors” in Willard Gibbs’ vector analysis (which
is widely used in spatial science). We now know that they are really tensors. It is just a coincidence
that 3×3 antisymmetric tensors have 3 components, like a vector. This does not happen in two
dimensions (1 component) or four dimensions (6 components).

Vector analysis generates pseudovectors by a “cross product” of two vectors: A = v1×v2 = −v2×v1,
to use the area example from Note 1.

Vector analysis is unsatisfactory because

a) it is not a closed system: operating on vectors we get things that are not vectors (and, worse,
they look like vectors);

b) it only works in three dimensions and does not generalize to more, or fewer, dimensions.

Can we make better abstractions for spatial entities, instead of vectors?

We need a formalism

• which is independent of coordinate axes;

• which captures the notion of area being the anticommutative combination of two vectors;

• which does not depend on the number of dimensions of the space.
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B. Angle Algebra
6. Vectors and Areas and .. All Together

• Parts of space are lines, areas, volumes, ..

• We’ll ignore absolute position and consider only direction and magnitude.

• We’ll take the basis elements to be orthonormal and anticommutative.

(We’ll use the word “elements” instead of “vectors”: some but not all elements can be thought of
as vectors.)

1. The basis elements are e1 and e2, which are defined to have the following properties.

e1e1
def
= 1

e2e2
def
= 1

e12
def
= e1e2

def
= −e2e1

2. An arbitrary element can be a linear combination of basis elements. Its product with itself is
the square of its length or magnitude.

u = e1 + e2

uu = (e1 + e2)(e1 + e2) = 1 + 1 = 2

v =
√

3e1 + e2

vv = (
√

3e1 + e2)(
√

3e1 + e2) = 3 + 1 = 22

v =  3 e + e

1

e2

/6

_
4

u =
 e 

+ e2

1

1
2

e

3. The product of two different elements gives their magnitudes times the cosine and sine of the
angle between them.

uv = (e1 + e2)(
√

3e1 + e2)

=
√

3 + 1 + (1 −
√

3)e12

= 2
√

2(

√
3 + 1

2
√

2
+

1 −
√

3

2
√

2
e12)

= 2
√

2(cos(π/6 − π/4) + sin(π/6 − π/4)e12)

(ce1 + se2)(c
′e1 + s′e2) = (cc′ + ss′) + (cs′ − c′s)e12

= cos(−) + sin(−)e12
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where cos(−) and sin(−) are respectively the cosine and sine of the angle between the two
unit elements in this second example.

7. Rotation

Let’s have a magnitude operator,

| v |=
√

vv = length of v

and a normalizing operator,

nv = v/ | v |: nvnv = 1; vnv =| v |

and nvnuu = nv | u |, which rotates u into the direction of v.

Try nv = ce1 + se2

u = | u | (c′e1 + s′e2) = xe1 + ye2
nvnu = (cc′ + ss′) − (c′s − cs′)e12

= C − Se12

where C = cos(−) and S = sin(−) as in Note 6. Compare this with 2-numbers, C − iS.

If we note that e12e12 = e1e2e1e2 = −e1e2e2e1 = −1, we seem to find that e12 is the square root of
−1. It’s better to think of e12 as a π/2 rotation:

e12e2 = e1

e12e1 = −e2

So what is the meaning of C − Se12?

(C − Se12)u = (C − Se12)(xe1 + ye2)

= (Cx − Sy)e1 + (Sx + Cy)e2

= (e1 e2)

(

C −S
S C

) (

x
y

)

It’s the rotation that rotates u onto v.

u

1

e2

−0

−0

0 −
 0

−
−

u

v

vn

n u

v

e

8. Reflection

If uuv and vuu rotate u → v what is uvu?

Let’s try it with u and v normalized.

u = c′e1 + s′e2
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v = ce1 + se2

uvu = (c′e1 + s′e2)(ce1 + se2)(c
′e1 + s′e2)

= Ce1 + Se2 where

C = cos(θu − θv + θu) = cos(θu − (θv − θu))

S = sin(θu − θv + θu) = sin(θu − (θv − θu))

uvu

1

e2

−0v

−0u−0v

−0u

uv
e

uvu is the reflection of v in u.

(Another viewpoint: since w(vu) rotates w by the angle between v and u, so (vu) is the reflection
of v in u.)

Note that the projection of v in u is (uvu + v)/2, which can be written as a relationship among the
reflection operator, F , the identity operator, I, and the projection operator, P : P = (F + I)/2.

Note finally that a rotation is two reflections:

1. in e1;

2. in “half-v”, an element whose angle with e1 is half the angle we wish to rotate through.

(We’ll use the subscript J to indicate half-angles, since J sort of looks like 2 upside-down.)

u = xe1 + ye2 c = cos θ cJ = cos θ/2

vJ = cJe1 + sJe2 s = sin θ sJ = sin θ/2

vJe1ue1vJ = (cJ − sJe12)u(cJ + sJe12)

= (e1 e2)

(

c −s
s c

) (

x
y

)

which is the rotation. (Recall that c = c2
J
− s2

J
and s = 2cJsJ .) θ/2 + θ/2 + α − α = θ:

2

0_
2

e1

e2

−0
c

c

u = xe  +
 ye

v

u
1

1

2u

−
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9. 3D rotations

Outside of a 2-D plane we can’t use C + Se12 in 3-D:

e3(C + Se12) = Ce3 + Se123

(Note the extension of the rule for combining basis elements:

e3e12 = e3e1e2 = −e1e3e2 = e1e2e3
def
= e123)

So let’s try two reflections:

rotate u = xe1 + ye2 + ze3

in plane P = re12 + pe23 + qe31

with P normalized: p2 + q2 + r2 = 1.

(cJ − sJP )u(cJ + sJP ) =

(e1 e2 e3)









c −sr sq
sr c −sp
−sq sp c



 + (1 − c)





p
q
r



 (p, q, r)









x
y
z





Note that pe1 + qe2 + re3 ⊥ P = re12 + pe23 + qe31.

Note also that





p
q
r



 is an eigenvector of the rotation matrix: what is the significance of that?

Now two rotations:

by (c, s) about pe1 + qe2 + re3

then by (c′, s′) about p′e1 + q′e2 + r′e3

⇓
a rotation by (c′′, s′′) about p′′e1 + q′′e2 + r′′e3

(cJ + sJ(re12 + pe23 + qe31))(c
′
J + s′J(r′e12 + p′e23 + q′e31))

= c′′J + s′′J(r′′e12 + p′′e23 + q′′e31)

where

c′′J = cJc′J − sJs′J(rr′ + pp′ + qq′)

s′′Jr′′ = sJc′Jr + cJs′Jr′ + sJs′J(qp′ − pq′)

s′′Jp′′ = sJc′Jp + cJs′Jp′ + sJs′J(rq′ − qr′)

s′′Jq′′ = sJc′Jq + cJs′Jq′ + sJs′J(pr′ − rp′)

Note that in 3-D all the angles are half angles.

Note that 3-D rotations do not commute.

10. Summary

(These notes show the trees. Try to see the forest!)

• Vectors are real things, independent of coordinates.
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• So where they are written in terms of coordinates, these coordinates must transform correctly
under rotation, reflection, projection and inversion: X~v.

• Some real things are not vectors, but tensors, and so tensor elements must also transform
correctly: XTX−1.

• Clifford or geometric or angle algebra:

– parts of space: lines, areas, volumes, ..;

– ignore position, consider only magnitude, direction;

– basic elements are orthonormal and commutative.

• 2-D rotation from u to v is uuv or vuu.

• Reflection of v in u is uvu.

• 3-D rotation by (c, s) about re12 + pe23 + qe31 ..

• Two 3-D rotations need half angles and are not commutative.

NB In 2-D: 1, e1, e2, e3, e12. In 3-D: 1, e1, e2, e3, e12, e23, e31, e123.

11.Appendix: Summary of vector and matrix operations

+

~u + ~v =

(

u1 + v1

u2 + v2

)

A + B =

(

a11 + b11 a12 + b12

a21 + b21 a22 + b22

)

•

~u.~v = (u1 u2)

(

v1

v2

)

= u1v1 + u2v2

= | ~u || ~v | cos(6 (~u,~v))

A~u =

(

a11 a12

a21 a22

) (

u1

u2

)

=

(

a11u1 + a12u2

a21u1 + a22u2

)

~uA = (u1 u2)

(

a11 a12

a21 a22

)

= (u1a11 + u2a21 u1a12 + u2a22)

AB =

(

a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)

⊗

A ⊗ B =

(

a11B a12B
a21B a22B

)
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Clifford algebra

uv = (u1e1 + u2e2)(v1e1 + v2e2)

= u1v1 + u2v2 + (u1v2 − u2v1)e12

= ~u.~v+ | ~u × ~v | e12

= | u || v | (cos(6 (~u,~v)) + sin(6 (~u,~v))e12)

Compare

(

u1

u2

)

(v1, v2) =

(

u1v1 u1v2

u2v1 u2v2

)

Finally, compare these with 2-numbers (Week 4):

u + v = u1 + v1 + i(u2 + v2)

uv = (u1 + iu2)(v1 + iv2)

= u1v1 − u2v2 + i(u1v2 + u2v1)

= | u | ei6 u | v | ei6 v

= | u || v | ei(6 u+ 6 v)

12. Excursions for Friday and beyond.
You’ve seen lots of ideas. Now do something with them!

1. The dot product of two normalized vectors in any number of dimensions equals the cosine of
the angle between the vectors. Show this: a) use (Xu)T Xv = uT v to discover that the dot
product is invariant under any axis transformation, X, whose transpose is its inverse; and b)
use this invariance to reduce any two d-dimensional vectors, ~u and ~v, to the two dimensions
of their common plane.
What is the angle between doc1 and doc2 in Note 2?

2. Calculate the reflections in the yz plane of twirls pointing along each of the x, y and z axes,
and explain why what you get is right.

3. Confirm that w, u and v in the 3D twirl tensor must refer to the x, y and z components,
respectively.

4. Is there a way to use 2-numbers to represent 3D twirl as a 2×2 tensor?

5. What is the matrix for the reflection of u = xe1 + ye2 in v = ce1 + se2 (c and s are cosine
and sine, respectively, so v is normalized)?

6. Why is u(vu) the reflection of v in u? Explain in terms of the rotation, (uv). (Take u and v
to be normalized.)

7. Explain why the projection of v on u is (uvu + v)/2. For u = c′e1 + s′e2 and v = ce1 + se2,
give the matrices F (reflection) and P (projection). What is the significance of P − I, where
I is the identity matrix?

8. Show that 3D rotation by angle (c, s) about re12 + pe23 + qe31 is the matrix given in Note 9.
Show that (p, q, r)T is an eigenvector (Note 1 of Week 8), find the corresponding eigenvalue,
and explain what these mean.

9. Check the derivation of the expression for double rotation in 3D. How would we find p′′, q′′

and r′′?

10. Compare rotating by π/2 about (1,0,0) then π/2 about (0,1,0) with rotating π/2 about (0,1,0)
then π/2 about (1,0,0). Use both angle algebra and your hands and some physical object
such as a book.
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11. Using rotations (and other operations) in the angle algebra and a starting edge, e1, find the
other two edges of an equilateral triangle. How would this help you draw it with a graphics
program?

12. Using rotations (and other operations) in the angle algebra and the equilateral triangle of the
previous Excursion, calculate the three edges needed to build it into an equilateral tetrahe-
dron. How would you find the angles between the planes in the tetrahedron?

13. a)
(Warmup and check.) What is
the plane formed by the edges
e1 and (e2 + e3)/

√
2? What

is the angle between these two
edges? What angle does the
plane make with e12? (Keep
all edges and planes normal-
ized! Be careful about signs,
and check what they mean!)
b) Answer the questions from
(a) for the edges (e1 + e3)/

√
2

and (e2 + e3)/
√

2.

1

e

e

e

e

e

2

12

23

31

e  + e

e 1

1
2

3

(          )

2 1
1

3

e  + e
(          )

e  
+ e
2

3

(  
    

    
)

1
22

c) Examine and test the MATLAB function

% function [cos12,sin12,face12] = product(edge1,edge2)
% THM 070410 in file: product.m
% edge1: normalized 3-vector, e.g. [p1,q1,r1]
% edge2: normalized 3-vector, e.g. [p2,q2,r2]
% cos12 = p1p2+q1q2+r1r2
% sin12 = +sqrt(1-cos^2)
% face12: normalized 3-vector,
% [(q1r2-r1q2)/sin12,(r1p2-p1r2)/sin12,(p1q2-q1p2)/sin12]
% (Works for planes as input, but use -cos12, -sin12)
function [cos12,sin12,face12] = product(edge1,edge2)
p1 = edge1(1); q1 = edge1(2); r1 = edge1(3);
p2 = edge2(1); q2 = edge2(2); r2 = edge2(3);
cos12 = p1*p2+q1*q2+r1*r2;
sin12 = sqrt(1-cos12^2): % when might this be 0?
if abs(sin12)<10^-8 face12 = [0,0,0]; else
face12 = [(q1*r2-r1*q2)/sin12,(r1*p2-p1*r2)/sin12,(p1*q2-q1*p2)/sin12];
end

Why must we change the sign if edge1 and edge2 represent faces rather than edges on input?
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(Hint. Multiplying by e12 in 2D gives a quarter-rotation. Does multiplying by e123 in 3D also
do this? What does a “quarter rotation” mean in this case for an edge? For a face? What is
e123e123?)
d) (Warmup and check.) Rotate the edges e1 and (e2 + e3)/

√
2 through the angle you found

in (a) so as to put them both in e12: this should give e1 itself and e2, respectively.
e) Rotate the edges from (b) so as to put them both in e12. Check that they have the same
angle with each other that they did before rotating.
f) Find two additional normalized edges that share with each of the new edges from (e) the
same angle you found in (b) that they have with each other. (Note that the solution is direct
if the input edges are in e12 but would require iteration if the e3 components of the edges are
nonzero: try it!)
g) Write a MATLAB function, e12equiAngle(), for (f), i.e., which given two edges in e12

finds an edge sharing with those two edges the angle that is between the input edges.
Write a MATLAB function, equiAngle(), which given any two edges finds an edge sharing
with those two edges the angle that is between the input edges: find the plane of the given
edges, rotate it into the e12 plane, use e12equiAngle() to find the new edge, and rotate this
back again. (The next excursion gives a possible rotate3D() function interface.)
h) Rotate the edge from (f) that has the negative e3 component inversely to the rotation in
(e). What is the resulting combination of this edge and the two original edges in (b)?

14. Inspect and run the following MATLAB function.

% function [pentcoords,pentedges,pentface] = pentagon(startcoords,startedge,pentface)
% THM 070409 in file: pentagon.m
% Makes pentagon of unit edges, given 3D coords for 1 vertex, 1 edge, 1 plane
% startcoords 3-vector, e.g. [0,0,0]
% startedge 3-vector, e.g. [1,0,0]
% pentface 3-vector, e.g.[0,0,1] The plane in which the pentagon is made
% pentcoords 5*3 array, e.g. [0,0,0;1,0,0;..]
% pentedges 5*3 array, e.g. [1,0,0;..]
% uses rotate3D
function [pentcoords,pentedges,pentface] = pentagon(startcoords,startedge,pentface)
angle = 2*pi/5;
edgesIN = startedge’;
planesIN = pentface’;
pentedges = edgesIN;
pentcoords = startcoords’;
[edgesOUT,planesOUT] = rotate3D(pentface,angle,edgesIN,planesIN);
for k = 1:4

pentedges = [pentedges,edgesOUT];
coords = pentcoords(k,:) + pentedges(k,:)
pentcoords = [pentcoords,coords];
[edgesOUT,planesOUT] = rotate3D(pentface,angle,edgesOUT,planesIN);

end

Write the function rotate3D(plane,angle,edgesIN,planesIN), which rotates arbitrary sets
of edgesIN and planesIN about angle in plane.
Write a program which calls pentagon() and uses quiver3 to draw the resulting pentagon.
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15.

Above are the five “Platonic solids”: the tetrahedron (4 faces), the cube (hexahedron, 6 faces),
octahedron (8 faces), dodecahedron (12 faces) and icosahedron (20 faces). Use the techniques
of the previous excursions to build them in MATLAB.
(The cube and octahedron do not need angle algebra machinery and their edges can be written
down straight from pairs of coordinates. They make a good place to start. The tetrahedron
can also be written down directly from coordinates, or it can be made from an equilateral
triangle and an additional vertex out of the plane and equidistant from each vertex of the
triangle; but it is good exercise to use angle algebra for this, following the next-to-previous
excursion or the notes on Clifford Algebra available from the course home page.)
By finding a way to draw the octahedron inside the cube and the icosahedron inside the do-
decahedron, show that these are two pairs of “duals”—the faces of one of each pair correspond
to the vertices of the other, and vice-versa. What is the dual of the tetrahedron?

16. How many colours are needed to colour the vertices of each of the Platonic solids, if no two
vertices of the same colour may be joined by an edge? How many colours for the faces, if
no two faces separated by an edge as a boundary may have the same colour? What about
colouring vertices of polygons in 2D?

17. Confirm that the Platonic solids satisfy

2 + E = F + V

where E is the number of edges, F is the number of faces and V is the number of vertices.
Does this hold for any other figure?

18. How many spheres can be packed around a sphere of the same radius? (Hint: start with 2D
and show that six circles pack a centre circle. What angle does each circle subtend at the
centre? Approximately what proportion of the spherical surface area, 4πr, is inside one of
the packing spheres centred at distance r? Must the centres of the packing spheres form the
vertices of one of the Platonic solids?)

19.

The red additions to the cube and the dodecahedron above are the paths of length 2. That
is, since the cube has a blue edge (0,0,0)–(1,0,0) and a blue edge (1,0,0)–(1,1,0), then (0,0,0)–
(1,1,0) will be a red edge.
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Here are all the coordinate pairs for the cube, in two different orders: the set on the left is
sorted by columns 4, 5 and 6; the set on the right is sorted by columns 1, 2 and 3.

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 1 0 0 1
1 0 1 0 0 1
0 0 0 0 1 0
0 1 1 0 1 0
1 1 0 0 1 0
0 0 1 0 1 1
0 1 0 0 1 1
1 1 1 0 1 1
0 0 0 1 0 0
1 0 1 1 0 0
1 1 0 1 0 0
0 0 1 1 0 1
1 0 0 1 0 1
1 1 1 1 0 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 1 1 0
0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 0 1 1
0 0 1 1 0 1
0 1 0 0 0 0
0 1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 1
0 1 1 0 1 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 1 0 1
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 1 0 0
1 0 1 1 1 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

a) Confirm that these coordinate pairs link up so as to give the red edges shown with the
cube.
b) Examine the following MATLAB code which will make the links you checked in (a). It
implements a simplified natural composition operator of the relational algebra. It is built
in terms of three other relational algebra operators, natural join, projection and a family
of operators that treat relations as sets of rows and produce set difference (−), union (u),
intersection (n) and symmetric difference (+). (Note that this last operator is here applied
to the set of columns of the relations being put together.)
Look up [Mer99, Database programming], implement these operators, and show that
relationCompos() applied to the coordinate pairs for the cube produces the red figures
shown.
c) Run your relationCompos() on the coordinate pairs you got for the dodecahedron in an
earlier excursion.

% function joinOut = relationCompos(joinIndices,joinIn1,joinIn2)
% THM 070420 in file relationCompos.m
% joinIndices 2*m array giving indices to be joined
% joinIn1 n1*m1 array
% joinIn2 n2*m2 array
% joinOut n*(m1-m+m2) array
% joinOut rows will be unduplicated if joinIn1 and joinIn2 rows are
% Uses relationSetOp(), relationJoin(), relationProject()
function joinOut = relationCompos(joinIndices,joinIn1,joinIn2)
sizIn1 = size(joinIn1);
sizIn2 = size(joinIn2);
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sizInd = size(joinIndices(1,:));
%all = zeros(sizInd); % indices for compareRows(): all columns
for k = 1:sizIn1(2) - sizInd(2) + sizIn2(2) all(k) = k; end
projIndices = relationSetOp(’-’,all’,joinIndices(1,:)’)
joinOut = relationProject(projIndices’,relationJoin(joinIndices,joinIn1,joinIn2));

20. Look up H. S. M. Coxeter’s Regular Polytopes [Cox63] and use the angle algebra to construct
higher-dimensional versions of the tetrahedron, cube and octahedron.

21. How might we use the angle algebra to describe a shear operation?

22. Look up William Kingdon Clifford, 1845–1879, and describe his role in creating the angle
algebra. (It is really called the Clifford algebra, or sometimes the geometric algebra.)

23. Look up Josiah Willard Gibbs, 1839–1903, and his vector analysis.

24. Look up Sir William Rowan Hamilton, 1805–1865, and his “quaternions”. What mental
block stumped him for a long time? How did he misinterpret what he invented, and how do
quaternions relate to 3D angle algebra? (see [Alt92].)

25. How do the Pauli matrices (Week 6) relate to 3D angle algebra?

26. Why is the number of basic elements of d-dimensional angle algebra equal to 2d?

27. Survey the usage of the phrase “real world” and distinguish a legitimate usage from a put-
down of academics.

28. Any part of the lecture that needs working through.
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