
Excursions in Computing Science:

Week 7b Quantum Computing

P. Hayden∗

McGill University, Montreal, Canada

May 28, 2007

1. The “strong” Church-Turing thesis, that any real-world computation can be efficiently simulated
on a Turing Machine is a fundamental assumption of C.S.—but quantum computing provides a
counterexample, by computing faster than a Turing Machine can in principle. (For Turing Machine,
read PC with unbounded memory.)

2. Here is a switch-light question: is a light switch connected to a light? or: does this switch
control that light?

Let f : {0, 1} → {0, 1} represent the connection: 0 means “off” and 1 means “on”; the 0 or 1 on
the left of the → refer to the switch; the 0 or 1 on the right of the → refer to the light. f(0) is the
state of the light if the switch is off and f(1) is the state of the light if the switch is on.

Then there is no effect on the light if f(0) = f(1)
and there is a connection if f(0) 6= f(1).

The switch-light question becomes “does f(0) = f(1) or does f(0) 6= f(1)?”.

Classical computing requires two invocations to the function f() to answer this question. We are
going to see that quantum computing needs only one [?].

3. Logic circuits are built out of “gates”, elementary components that can be used repeatedly to
assemble the circuit. We will build a classical circuit to answer the switch-light question using a
not gate and a specialized gate for the function, f(), that represents the switch. We will then build
a quantum circuit to do the same thing using a Hadamard gate and the specialized gate for f().

Here are the not and Hadamard gates, and a small circuit using f() to produce f() applied to
one input “exclusively ored” with a second input.

∗Copyleft c©P. Hayden, 2007 Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and full citation in a prominent place. Copyright for components of
this work owned by others than P. Hayden must be honoured. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee.
Request permission to republish from: P. Hayden, School of Computer Science, McGill University, fax 514 398 3883.
Transcribed by THM from a lecture on 2007/2/28 by PH.

1

| > (|0> + (−1) |1>)
1

2

f

x

x x

y

x = 1

y f x+ ()

x

x
x HHadamard

switch

not

(The symbol ⊕ is the binary operator xor (exclusive-or), with the following truth-table (see Week
10)

x y x ⊕ y
0 0 0

0 1 1

1 0 1

1 1 0

that is, x ⊕ y is 1 if and only if x and y differ.
This means that f(0) ⊕ f(1) is what we must calculate to answer the switch-light question: it is 0
if f(0) = f(1) and 1 otherwise.
Note that 0⊕y = y, 1⊕y = not y, and that ⊕ is commutative and associative.)

The not gate and the switch circuit with f() are written classically, with the variables x and y
standing in for the truth values 0 and 1.

The Hadamard gate is for the quantum computer. The truth values and variables are written
inside Dirac kets (see Week 6), which serve here purely to enable us to write combinations of them,
such as | 0 >| 1 >, and not get them mixed up—they do not commute.

It is useful to spell out the notation shown for the Hadamard gate. Here it is with the variable x
taking on its two possible values, 0 and 1.

H | 0 > =
1√
2
(| 0 > + | 1 >)

H | 1 > =
1√
2
(| 0 > − | 1 >)

Or, again, here it is in matrix form, with | 0 > represented as the vector (1,0)T and | 1 > repre-
sented as (0,1)T .

1√
2

(

1 1
1 −1

) (

1
0

)

=
1√
2

(

1
1

)

1√
2

(

1 1
1 −1

) (

0
1

)

=
1√
2

(

1
−1

)

Note that H is its own inverse:

| 0 > → 1√
2
(| 0 > + | 1 >) → 1

2
(| 0 > + | 1 > +(| 0 > − | 1 >)) =| 0 >

| 1 > → 1√
2
(| 0 > − | 1 >) → 1

2
(| 0 > + | 1 > −(| 0 > − | 1 >)) =| 1 >

2

or

1√
2

(

1 1
1 −1

)

1√
2

(

1 1
1 −1

)

=

(

1 0
0 1

)

4. Here is the classical circuit to answer the switch-light question, using only the classical not gate
and the xor circuit involving f().

b

f f

0

0
c

a

d
The values at points a, b, c and d are

a 0

b 1

c 0 ⊕ f(0) = f(0)

d f(0) ⊕ f(1)

so that d answers the switch-light question.

Note that the classical circuit must use f() twice.

5. Here is the quantum-mechanical circuit to answer the switch-light question, using only the
Hadamard gate and the xor circuit involving f(). (X is the operation of measuring the result,
which converts from the quantum state to classical observation.)

|1>

H H

fH

X

t0 t1 t2 t3

|0>

We can write the values at the various times t0, t1, t2 and t3 as combinations |upper>|lower>—and
we can see why this notation is useful and why juxtaposition of kets is not commutative.

t0

| 0 >| 1 >

t1

H | 0 > H | 1 > =
1√
2
(| 0 > + | 1 >)

1√
2
(| 0 > − | 1 >)

=
1

2
(| 0 >| 0 > − | 0 >| 1 > + | 1 >| 0 > − | 1 >| 1 >)

3

For steps t2 and t3 we will consider two cases.

Case i: f(0) = f(1)
def
= c

t2

1

2
(| 0 >| 0 ⊕ c > − | 0 >| 1 ⊕ c > + | 1 >| 0 ⊕ c > − | 1 >| 1 ⊕ c >)

=
1

2
(| 0 >| c > − | 0 >| 1 ⊕ c > + | 1 >| c > − | 1 >| 1 ⊕ c >)

=
1√
2
(| 0 > + | 1 >)

1√
2
(| c > − | 1 ⊕ c >)

t3

| 0 >
1√
2
(| c > − | 1 ⊕ c >)

(The result for t3 follows because H is its own inverse: check this!)

Note that at t3 the upper channel always has the value | 0 >, which is the result we want if
f(0) = f(1),

Case ii: f(0)
def
= c; f(1) = c′ = 1 ⊕ c

t2

1

2
(| 0 >| 0 ⊕ c > − | 0 >| 1 ⊕ c > + | 1 >| 0 ⊕ 1 ⊕ c > − | 1 >| 1 ⊕ 1 ⊕ c >)

=
1

2
(| 0 >| c > − | 0 >| 1 ⊕ c > + | 1 >| 1 ⊕ c > − | 1 >| c >)

=
1√
2
(| 0 > − | 1 >)

1√
2
(| c > − | 1 ⊕ c >)

t3

| 1 >
1√
2
(| c > − | 1 ⊕ c >)

Note that at t3 the upper channel always has the value | 1 >, which is the result we want if
f(0) 6= f(1),

So the upper channel answers the switch-light question in both cases—and we used f() only once.

6. We can abstract from this to a discussion of state spaces.

The classical state space is

∑

x,y

cx,y | x >| y >= {| 0 >| 0 >, | 0 >| 1 >, | 1 >| 0 >, | 1 >| 1 >, }

with cx,y ∈ {0, 1} and
∑

x,y cx,y = 1.

The quantum state space is
∑

x,y

cx,y | x >| y >

4

with cx,y ∈ C, the 2-numbers, and
∑

x,y | cx,y |2= 1.

(This quantum-mechanical (QM) state space permits “unreal” states such as

1√
2
(| 0 >| 0 > − | 1 >| 1 >)

which cannot be factored in the way we did above at time t2, and are thus “entangled”. Such
states underly the puzzles of EPR, supported by the experiments of Aspect et al. and Gisin. Note
that under QM, locality and realism are inconsistent with each other: locality means there are no
instant effects (faster than lightspeed); realism means we can isolate parts of the system.)

7. Developments after Deutsch’s seminal 1985 paper

• 1993: potential ability to crack most public-key encryptions by factoring large integers, but
also—

• unbreakable cryptography;

• search an unordered list of n elements in O(sqrt(n)) time;

• Feb. 2007: speed up game tree search (e.g., chess) by factor sqrt(n), where n is roughly the
number of moves that would need to be checked.

8. Physical construction of quantum computers

• ion trap: ions are qbits: gates by laser, e.g., H by shining the light for half the time needed
to cause a transition;

• nuclear spins in molecules are qbits: gates by changing bonds;

• up to 13 qbits from liquid states of MRI (magnetic resonance imaging);

• superconductors on the surface of liquid helium

Note: the bottleneck is in the measurement step: parallelism ends at the boundary between QM
and classical physics.

9. Summary

(These notes show the trees. Try to see the forest!)

A quantum computer can compare f(0) and f(1) by invoking f() only once, while a classical
computer must invoke it twice.

10. Excursions for Friday and beyond.
You’ve seen lots of ideas. Now do something with them!

1. What is the relationship between the Hadamard matrix, H, and the rotation operators Rz(π)
and Ry(π/2) from Week 6?

2. Look up Einstein, Podolsky and Rosen’s thought experiment, “EPR” (1935), and the exper-
iments of Alain Alspect et al. (1982) and of Nicolas Gisin (1984).

3. Any part of the lecture that needs working through.

References

[Deu85] David Deutsch. Quantum theory, the Church-Turing principle and the universal quantum
computer. Proc. R. Soc. Lond., A400:97–117, 1985.

5

