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1. INTRODUCTION
The problem of algorithmic bias has become more
and more prominent. Instead of providing im-
partial and unbiased decisions, current technolo-
gies tend to exacerbate the societal problems of
inequality. AI court judges, selective advertise-
ment and school admission algorithms are just a
few examples of these controversial algorithms
that treat people unfairly. Our work focuses on
the problem of fair scheduling.
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3. FAIRNESS
Definition 1 Let ri be the expected completion time
for an individual task under uniform random assign-
ment. Then the individual fairness is defined by fi =
ci
ri

, where ci is the completion time under the consid-
ered schedule.

• The overall fairness of a schedule is defined
to be the maximum of the individual fair-
ness over all agents.

• The optimal fairness is given by the random
assignment, which has value 1. The fairness
of the algorithm should be close to 1.

4. THE ALGORITHM

The algorithm partitions the sorted jobs into pri-
ority groups, some of which follow Smith’s Rule
and others assigned from a uniform random dis-
tribution.

Lemma 2 The worst fairness is given by the smallest
job in the last priority group.

So it suffices to partition the set of jobs into two
priority groups: since only the last group af-
fects the overall fairness, all prior groups can be
merged into a meta-group following Smith’s rule
to optimize the social cost.

Lemma 3 The smallest job in the second section should
be at least as large as the biggest job in the first section.

FairScheduling (set of n jobs, ε):

• Sort the jobs in increasing processing time.

• Partition the jobs into two groups, where the
siye of the first priority group is ε.

• Keep the first priority group according to
Smith’s Rule and reorder the second group
according to a uniform random distribution.
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7. FUTURE RESEARCH

Our future work will focus on applying these con-
cepts to the generalized model with multiple ma-
chines. We are hoping to combine our current
approach with a PTAS to achieve similar perfor-
mance guarantees. Moreover, we will study the

applications of our results to related areas of al-
gorithmic game theory, such as network routing,
and other classical problems of applied computer
science, such as task scheduling in processors and
operating systems.
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5. PARETO OPTIMALITY
The algorithm induces a class of Pareto optimal
schedules: for these algorithms, fairness and so-
cial cost cannot be simultaneously improved. The
graphic below shows their performance on the
Pareto frontier in red.

A simple swapping argument shows that having
a task in the first section with longer processing
time than some task in the second section violates
Pareto optimality.

2. THE MODEL

• The model consists of n agents, each want-
ing to schedule a single task on a shared ma-
chine.

• The individual cost ci of agent i is defined as
the completion time of its single task.

• The social cost is defined as the sum of indi-
vidual costs over all agents: S =

∑
all i ci

• The schedule minimizing the social cost is
given by Smith’s Rule, which schedules the
tasks in the order of increasing duration.

Example: Given 4 jobs with processing time: a < b < c < d, where a = 1, b = 2, c = 3, d = 4.

This example illustrates the intuition behind Smith’s rule: every agent has to wait while the first task is
being processed, so its duration will be counted n times in the social cost. Hence, it is better to put the
shorter tasks first.

6. RESULTS
It remains to decide on the right trade-off between
fairness and social cost by choosing an appropri-
ate value for ε, which measures the proportion of
the first priority group.

Theorem 4 The algorithm yields a fairness of 1 +
ε, i.e. each task finishes within a factor of (1 + ε) of
their expected completion time in the uniform random
assignment.

As ε tends to zero, the schedule resembles the
fully random assignment with optimal fairness of
1, but the social cost increases:

Theorem 5 The social cost of the algorithm is within
a factor of 1

2 (1 +
1
ε ) of the social cost of Smith’s rule.

This bound is tight and essentially cannot be im-
proved, as the matching worst case example is
given by instances with only one large task and
many smaller tasks of unitary size.
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