
Future Work

• Enhance usability with a UI

• Introduce multiple agents using 
multithreading

• Replace interface dictionary 
with flow detector module

• Ignore flows on certain ports

• Automatic updates to call graph

The Progression of DyMonD: A Novel Framework for Application Monitoring

Aaron Lohner, Supervisors: Dr. Bettina Kemme and Mona Elsaadawy

Figure 5: Controller pseudocode
From Mona ElSaadawy (internal communication)

Fig. 2: Capture from live application

Figure 3: Capture from fileFigure 4: Standalone

Figure 1: Original architecture

Fig. 6: Eventual architecture

Objectives

• Improve transfer of 
communication flows

• Enable the framework to be run 
in a distributed setup

• Restructure controller code

• Develop useful framework 
configurations

Introduction

The DyMonD framework is a tool 
designed to monitor the health of a 
large-scale application. Initially, it 
was lacking in functionality, 
efficiency, and interconnectivity. The 
framework operated with three 
independent components (see Figure 
1). The agent component would sniff 
for network packets on an 
application (or read a capture file) 
and write detected communication 
flows to a text file. Then, the 
controller component would read the 
text file and use it to prepare an 
incomplete call graph that would be 
rendered by the visualization 
component.

Methods

• Implemented a more effective 
way for flows to be transferred 
from the agent to the controller 
using TCP and Google Protocol 
Buffers (Protobuf)

• Created the “interfaces loader” 
and the “next hop extractor” 
controller modules

• Structured the controller code to 
allow for production of a 
complete application call graph

• Created various setup 
configurations as the framework 
evolved

Results

Originally, the DyMonD controller was required to be on the same machine as the agent in order to access the 
text file written by the agent, which contained the detected flows. The new process instead uses a TCP 
connection and Google Protocol Buffers to communicate the flows from the agent to the controller. This way 
of transferring flows allows for a distributed setup of the framework (note that for all of the figures below, 
components of the same colour must all run on the same machine).

In addition to the restructured controller code (Figure 5), there are now three principal configurations of 
DyMonD. The primary setup is to have the framework capture packets from a live application (Figure 2). In 
this setting, the controller is started by the user with the IP address of the first component in the monitored 
application as input. The controller determines which network interface corresponds to this IP using its 
interfaces loader module, which loads a dictionary that maps interfaces to IP addresses. The interface is then 
sent to the agent, which produces the communication flows. The controller uses the flows to determine the 
next interface to sniff using its next hop extractor module. This back-and-forth process between the 
controller and agent continues until no new interfaces are detected by the hop extractor. At this point, the 
controller calls its call graph producer module. The module creates a JSON file that is used as input to the 
visualization tool, which generates the call graph.

The “capture from file” setup is similar to the previous setup, except that packets are read from a file rather 
than sniffed from a live application (Figure 3). The standalone setup does not make use of the controller and 
instead simply produces a log of communication flows (Figure 4).

An additional configuration option for the framework includes the ability

to transfer flows to the controller using logs or over TCP.

Conclusion

DyMonD evolved from a collection of 
independent scripts into a 
structured, distributable framework. 
It can send flows in a more effective 
manner, produce a complete 
application call graph and is highly 
configurable. Although there is still 
work to be done for DyMonD to be 
completed, it is now much more 
functional and closer to 
demonstrating that a truly holistic 
and independent application 
monitoring tool can exist.

Acknowledgements

I would like to thank Dr. Bettina 
Kemme and Mona Elsaadawy for 
supervising this project and 
providing their support and 
assistance on it whenever it was 
needed.


