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Introduction by the Organisers

The numerical solution of eigenvalue problems for partial differential equations
(PDEs) is an important task in many application areas such as:

• dynamics of electromagnetic fields;
• electronic structure calculations;
• band structure calculations in photonic crystals;
• vibration analysis of heterogeneous material structures;
• particle accelerator simulations;
• vibrations and buckling in mechanics, structural dynamics;
• neutron flow simulations in nuclear reactors; and many more.

The topic involves theoretical research in several different areas of mathemat-
ics ranging from operator theory and matrix computation to modern numerical
treatment of partial differential equations. It is also related to computer science,
since the novel mathematical ideas, related to efficient computation of eigenvalues
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and invariant subspaces, need to be efficiently implemented in modern high per-
formance software. This must be highly parallel, taking advantage of availability
of thousands of multi-core computer processors, which adds significant constraints
on possible algorithms and brings new practical and theoretical challenges.

In recent years major research developments in the area of PDE eigenvalue
problems have taken place including the following:

• meshless and generalized finite element method approximation methods;
• adaptive finite element methods;
• methods for polynomial and other nonlinear eigenvalue problems
• a priori and a posteriori eigenvalue and eigenvector error estimation;
• convergence theory for preconditioned and inexact eigensolvers;
• multigrid, domain decomposition and incomplete factorization based pre-
conditioning for eigenproblems;
• public software implementing efficient eigensolvers for parallel computers.

Novel research directions have appeared for non-linear, non-selfadjoint, and
parameter-dependent problems. New homotopy approaches are combined with
PDE eigensolvers in order to deal with optimization problems, where the PDE
eigenvalue problem appears in the inner loop. Very recently, a new perturba-
tion/error analysis has evolved that applies directly to nonlinear eigenvalue prob-
lems.

Nevertheless, many difficult questions remain open even for linear eigenvalue
problems including the design of good error estimators, the solution effective re-
cycling of computed information in homotopy or optimization methods, and the
treatment of multiple eigenvalues and other ill-conditioned problems. As com-
puters continue getting more powerful, the size of matrices involved in eigenvalue
and singular value computations keeps growing. Numerical solution of billion-size
problems is now typical in quantum mechanics as well as in many engineering
applications. The issues of numerical stability and round-off error analysis thus
attract renewed attention.

These topics were addressed during the workshop, successfully taking advantage
of the interdisciplinary interaction between researchers representing many differ-
ent scientific fields related to eigenvalue problems and PDEs. Major challenges
and further research directions were discussed and the road for further research
cooperation was paved.
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Abstracts

The Life Cycle of an Eigenvalue Problem

Mark Embree

(joint work with Jeffrey Hokanson and Charles Puelz)

This talk set the stage for our workshop on the Numerical Solution of PDE
Eigenvalue Problems by describing the numerous mathematical moves connecting
a motivating physical problem to numerically computed eigenvalues. We break
this process into five steps:

(1) physical problem → mathematical model;
(2) mathematical model → linear operator eigenvalue problem;
(3) linear operator eigenvalue problem → large discretization matrix;
(4) large discretization matrix → small projected matrix;
(5) small projected matrix→ eigenvalues (ideally with high relative accuracy).

We argue that much insight can be gained by working across multiple stages of this
process, while by focusing too narrowly on one stage one might end up answering
the wrong question. Here we briefly discuss a few examples that illustrate this
point. (For others who take a similar perspective, see, e.g., [3, 9, 11].)

(1) Historically and pedagogically, mechanical vibrations give rise to the first
physical eigenvalue problems [13]. Despite this pedigree, reconciling math-
ematical models to the true vibrations of a damped string can prove quite
tricky. The vacuum chamber experiments and improved exponential fitting
algorithms of Hokanson [8] show how difficult it can be to measure high
frequency eigenvalues, though these are precisely the values that differen-
tiate between distinct damping models and play a crucial role in inverse
spectral theory for strings [4].

(2) Nonlinear eigenvalue problems can be linearized in a variety of ways. We
show spectral approximations obtained by a simple linearization of an
exponential eigenvalue problem from a delay differential equation [10], as
well as a quadratic eigenvalue problem modeling vibrations of a damped,
hinged beam. The latter example, discretized with piecewise cubic Hermite
finite elements, can lead to highly inaccurate computed eigenvalues. At
the discretization matrix level, Higham et al. [7] illustrate how careful
scaling can deliver more accurate eigenvalues for this problem. We obtain
similar results simply by using (a discretization of) the correct physical
norm, then argue that, ideally, the conditioning of the eigenvalues of the
discretization matrix should match the norms of the spectral projectors
of the operator: if the eigenvalues are sensitive to perturbations at the
operator level, the discretization should capture that feature of the model.

(3) After outlining some classical results describing how eigenvalues of a dis-
cretization matrix converge to eigenvalues of the underlying operator [1],
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we explore a few pathologies. For example, truncation of an infinite do-
main can introduce spurious eigenvalues [2], while the presence of essential
spectrum can lead to the phenomenon of spectral pollution [6]. With a mul-
tiplication operator proposed by Boulton, we show how a shift-invert eigen-
solver applied to the discretization will be drawn to the polluting eigen-
values, while applying the shift-invert transformation before discretization
avoids this problem. Finally, we address the question of how many eigen-
values one seeks to compute. While typical PDE problems require only a
small number of eigenvalues, in some circumstances one needs the entire
spectrum. As an example, we discuss a Schrödinger operator modeling a
quasicrystal, whose spectrum is a Cantor set; see, e.g., [5] for details.

(4) PDE eigenvalue problems are often solved by applying a Krylov subspace
method to the shift-invert transformation of the discretization matrix,
since convergence of such methods applied to the discretization matrix
itself converge very slowly. At the operator level, the shift-invert trans-
formation is the only natural mode of operation: domain considerations
prevent one from building a Krylov subspace with the operator itself, but
one can readily do so with the inverted operator. Functional analysis
suggests the right matrix approach.

(5) Finally, the computation of discretization matrix eigenvalues is compli-
cated by the limitations on the relative accuracy of the computed eigen-
values. Generally the smallest eigenvalues of the discretization matrix are
associated with lowest frequency modes, and thus converge most rapidly
to the operator eigenvalues. Standard eigenvalue algorithms applied to
the n×n discretization matrix An deliver the exact eigenvalues of An+E,
where ‖E‖ = O(n‖An‖εmach) and εmach reflects the precision of the float-
ing point arithmetic. SinceAn discretizes an unbounded operator, ‖An‖ →
∞ as n→∞, so the relative accuracy of the smallest eigenvalue degrades
with large n (a fact explored in greater detail in the talk by Qiang Ye).
This problem becomes more acute for higher order differential operators,
where ‖An‖ grows more rapidly. At the linear algebra level one might
apply more robust algorithms that preserve high relative accuracy. Alter-
natively, one could use higher order discretizations (e.g., spectral methods)
for which the lowest frequency eigenvalues converge more rapidly, before
accuracy is overwhelmed by n‖An‖εmach.

Spanning across several of these all levels are issues related to non-self-adjointness
(or, more precisely, nonnormality). With a simple convection-diffusion problem
we illustrate three distinct effects of this depature from normality [12]: transient
growth in evolution problems; delayed convergence of matrix eigenvalues to oper-
ator eigenvalues; inaccurate calculation of eigenvalues of the discretization matrix.
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AGMG: from academic research to industrial software

Yvan Notay

The AGMG software [1] is nowadays routinely used in industry to solve large
sparse linear systems arising from scalar elliptic PDEs. For instance, the Rolls-
Royce company integrated it in its combustion code. This is not so frequent for a
project that started as a purely academic research, with first results reported six
years ago at the 2007 Preconditioning Conference in Toulouse, and three subse-
quent publications [2, 3, 4] mainly focusing on theoretical aspects. Of course, this
requires some luck: it is only after significant investigations that one may assess
the industrial potential of an academic research, and quite often the answer is
rather negative.

However, considering how the AGMG project has been developed, it turns out
that the relatively rapid emergence of an industrial code has been possible thanks
to several design choices that are far from standard in the numerical mathematics
community. Indeed, it is nowadays well admitted that a paper cannot be good if
the expectations of the potential readership are not taken into account. However,
one often ignores the consequences of the similar statement: “to develop a good



3230 Oberwolfach Report 56/2013

method, first consider the needs of those who could benefit from it”. In the talk,
we review the implications of this viewpoint, and explain how they contributed to
the success of the AGMG software.

In fact, not all academic developments has industrial potential.

• If one focuses too much on industrial applications, one likely misses real
innovation.
• Academic research is a long term collaborative effort: explicit collabora-
tion, implicit collaboration (one elaborates on others’ results and what one
does aims at being useful to further others).

Industrial applications are only at the end of the chain
AGMG is at cross-point of multigrid and numerical algebra, and is much

indebted to the many ones who contributed these fields
(Industrial applicability of CG in ’56?)

But industrial potential may be missed even when it is present because com-
munication (papers, talks, algorithm description) is organized to be appreciated
by authors’ scientific community, which often does not contain any real user. This
induces some practices which do not help to identify the real practical scope of
the research:

• numerical results focus on iteration counts or other statistics, disregarding
timings and comparison;
• focus is on the detailed analysis of a few examples leaving asides robust-
ness;
• the methods contain various parameters defined in a way that is obscure
for non experts;
• the method is too complex to be recoded but the code is not made avail-
able.

A key point is the willingness to publish software codes. This requires additional
work: clean up, comment crucial parts, etc. But this is often worthwhile, even
for the author of the code; in fact, a code that has not been published most often
perishes.

Once one decides to publish his/her code, this induces a Copernican revolution:
one has to take into account potential users. Otherwise, it is a bit like if one would
consider his/her own notes as manuscript ready to be submitted. And, all in all
the constraints induced by the Copernican revolution are all what is
needed to reveal the industrial potential.

References

[1] Y. Notay, AGMG software and documentation.
See http://homepages.ulb.ac.be/ ynotay/AGMG.

[2] Y. Notay, An aggregation-based algebraic multigrid method, Electronic Trans. Numer. Anal.,
37 (2010), pp. 123–146.

[3] A. Napov and Y. Notay, An algebraic multigrid method with guaranteed convergence rate,
SIAM J. Sci. Comput., 34 (2012), pp. A1079–A1109.

[4] Y. Notay, Aggregation-based algebraic multigrid for convection-diffusion equations, SIAM J.
Sci. Comput., 34 (2012), pp. A2288–A2316.



Numerical Solution of PDE Eigenvalue Problems 3231

The H1-stability of the L2-projection onto finite element spaces and
its meaning for the Rayleigh-Ritz method

Harry Yserentant

(joint work with Randolph E. Bank)

The H1-stability of the L2-projection onto a finite element space is a valuable
tool in many areas of finite element analysis and is easy to prove for uniform
or quasiuniform grids. With the widespread use of adaptive and more general
classes of nonuniform meshes, there is interest in generalizing this result to the
nonuniform mesh case. At first glance, it seems that this should not be a difficult
problem. The mass matrix, while no longer comparable to the identity matrix
independent of the (now local) mesh size, does remain comparable to its own
diagonal. One expects that the exponential decay of matrix elements away from
the diagonal in the inverse of the mass matrix should also remain valid even in
the nonuniform mesh case. However, the central difficulty is that this exponential
decay might potentially be offset by exponential growth due to grading of the finite
element mesh. The work of many authors addressed this issue by imposing certain
local or global growth constraints on the mesh. Recently we have proved a very
general, more or less concluding result of this type [1] that allows the inclusion
of high order elements and meshes generated by many commonly used adaptive
meshing strategies. This result can be used to derive some new error estimates
for the eigenvalues and eigenfunctions obtained by the Rayleigh-Ritz method [2].
The errors are bounded in terms of the error of the best approximation of the
eigenfunction under consideration by functions in the finite element space. In
contrast to most of the classical theory, the approximation error of eigenfunctions
other than the given one does not enter into these estimates.

Although our technique easily transfers to more general situations and can be
applied to a large variety of different finite element spaces, we restrict ourselves in
this note for the ease of presentation to the classical case of piecewise polynomial
conforming elements. Starting point is a conforming triangulation T of a polygonal
domain Ω in two or three space dimensions, built up from triangles in two space
dimensions and tetrahedrons in the three-dimensional case. Associated with T is
a conforming finite element space S of the usual kind, consisting of continuous,
piecewise polynomial functions of at first fixed degree, determined by their nodal
values. Our object of study is the L2-orthogonal projection

Q : L2(Ω) → S
from L2(Ω) onto the finite element space S. We want to estimate the H1-seminorm
of the projection Qu, the L2-norm of its first order derivatives, of a function u in
the Sobolev space H1 by the H1-seminorm of u itself.

We subdivide the elements in the triangulation into elements of different levels.
This level structure is associated with a constant µ ≥ 1 that measures the local
grading of the mesh. To each finite element T ∈ T we assign a nonnegative
integer k(T ), the level of the element, such that µ−k(T ) is roughly proportional to
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the diameter h(T ) of T , in the sense that there are constants α > 0 and β > 0 with

(1) αµ−k(T ) ≤ h(T ) ≤ βµ−k(T ).

The actual size of these two constants is of no significance; only their ratio β/α
enters into our estimates. The triangulation T can be highly nonuniform and can
contain finite elements from a very wide range of levels. We require, however, that
the level of two neighboring elements differs at most by one. By neighbor, we refer
to all elements that share a vertex with a given element.

Such a level structure can be imposed to any shape regular triangulation. Let
the diameter of the elements surrounding a vertex differ at most by the factor
µ > 1. Let h0 be the maximum diameter of an element in the triangulation and
set k(T ) = k for an element T of diameter h0µ

−k ≤ h(T ) < h0µ
−k+1. The

estimate (1) then holds with the constants α = h0 and β = µh0 and the level of
two neighboring elements differs by the choice of µ at most by one. Other choices
of α and β offer a greater flexibility in the choice of µ. Consider, for example,
the red green-refinement in two or three space dimensions and let the level of an
element T count the number of refinement steps that are needed to generate T
from its ancestor in the initial triangulation. Under the additional constraint to the
refinement process that the level of two elements sharing a common vertex must
not differ by more than one, (1) then holds with the generic constant µ = 2. The
ratio of the constants α and β reflects in such cases the degree of non-uniformity
of the initial triangulation but remains independent of the degree of refinement.

The main ingredient of our proof for the H1-stability of the L2-orthogonal
projection Q, as well as of other proofs in the literature, is its strong localization
properties. We study them with help of an iterative procedure. Let S1 be the
subspace of S of the functions vanishing on the boundaries of the single elements
and S0 its L2-orthogonal complement. The projection Q splits then into the sum
Q = Q0 + Q1 of the L2-orthogonal projection Q0 onto the subspace S0 and the
L2-orthogonal projection Q1 onto S1 = S⊥0 . As the contributions from the single
elements to Q1 do not interact, the localization properties of the projection Q are
completely determined by those of of the projection Q0 onto S0.

We label the vertices of the finite elements by the integers i = 1, 2, . . . n. The
vertex i is surrounded by the patch Ui, the union of the finite elements that share
this vertex. Let Vi be the space that consists of the functions in the space S0 that
vanish outside Ui. Let Pi be the L2-orthogonal projection onto Vi and let

C = P1 + P2 + . . . + Pn.

We construct with help of this operator approximations of the projection Q0u of a
given square integrable function u onto S0. For that purpose, we first define finite
element functions u(ν) ∈ S0 recursively by u(0) = 0 and

u(ν+1) = u(ν) + C (u − u(ν))
and recombine them in cg-like manner to weighted averages w(ℓ). Then

‖Q0u− w(ℓ)‖0 ≤
2 q ℓ

1 + q 2ℓ
‖Q0u‖0,
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where the convergence rate

q =

√
κ− 1√
κ+ 1

with respect to the L2-norm is determined by the spectral condition number κ of
the operator C. It turns out that this spectral condition number is completely de-
termined by the reference element and does not depend on the triangulation under
consideration. For linear elements, when the given iterative procedure reduces to
the polynomially accelerated Jacobi method, the condition number is

κ = 4, κ = 5

in the two and the three-dimensional case, respectively. For elements up to order
twelve in the two-dimensional and up to order seven in the three-dimensional case,

q <
1

2
.

Our main theorem links the convergence rate q of this iterative method, which
depends only on the type of the finite elements, with the constant µ from assump-
tion (1), which reflects the local grading of the mesh. If the product of these
constants is less than one, one gets the weighted L2-norm estimate

(2) ‖h−1Qv‖0 ≤ c ‖h−1v‖0
for the functions v in the Sobolev space H1(Ω), where the function h takes the
value h(T ) on the triangle T . The constant depends only on the product of the
constants µ and q and on the ratio β/α of the constants from assumption (1).
From this estimate, the H1-stability

(3) |Qv|1 ≤ c |v|1.
of the L2-orthogonal projection Q follows by a standard argument similar to the
quasiuniform case. The constant in (3) differs from that in (2) and depends addi-
tionally, via the inverse inequality, on the shape regularity of the elements.

This means in particular that the L2-orthogonal projection isH1-stable for finite
elements up to order twelve in two and up to order seven in three space dimensions
as long as µ ≤ 2. This is, for example, the case for the meshes generated by the
red-green refinement process in two and three space dimensions. Similar results
holds for simple hp-methods. For linear elements, the L2-projection is H1-stable if

µ < 3, µ <

√
5 + 1√
5− 1

= 2.6180 . . .

in two and three space dimensions, respectively, a rather mild condition. The
L2-orthogonal projection remains, however, in general no longer H1-stable if the
grading becomes too extreme, as simple examples show [1].

Next we discuss what stability estimates like (3) mean for the Rayleigh-Ritz
method. Our results are of general nature and do not only apply to the finite
element case. We start from the usual abstract framework with two real Hilbert
spaces H0 and H1 ⊆ H0 and a symmetric, coercive, and bounded bilinear form
a : H1 ×H1 → R. The inner product on H0 is denoted by (u, v) and the induced
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norm by ‖u‖0. We equipH1 for simplicity with the energy norm ‖u‖ induced by the
bilinear form a(u, v). For convenience we assume that H1 is compactly embedded
into H0 and that both spaces are infinite dimensional. Then there exists an infinite
sequence 0 < λ1 ≤ λ2 ≤ . . . of eigenvalues of finite multiplicity tending to infinity
and an assigned sequence of eigenvectors u1, u2, . . . in H1 for which

(uk, uℓ) = δkℓ, a(uk, uℓ) = λkδkℓ.

For second order elliptic eigenvalue problems over bounded domains Ω,H0=L2(Ω),
and H1 is a subspace of H1(Ω), depending on the boundary conditions.

The aim is to approximate the eigenvalues λk and the vectors in the assigned
eigenspaces. For this, one chooses an n-dimensional subspace S of H1, say the
finite element spaces considered above. Then there exist discrete eigenvectors
u′1, u

′
2, . . . , u

′
n in S for eigenvalues 0 < λ′1 ≤ λ′2 ≤ . . . ≤ λ′n, satisfying the relations

(u′k, u
′
ℓ) = δkℓ, a(u′k, u

′
ℓ) = λ′kδkℓ.

The method thus replicates the weak form of the original eigenvalue problem and
is determined by the choice of the subspace S replacing its solution space H1.

We will measure the approximation properties of the chosen subspace S in terms
of the a-orthogonal projection operator P : H1 → S defined by

a(Pu, v) = a(u, v), v ∈ S.
With respect to the energy norm the projection Pu is the best approximation of
u ∈ H1 by an element of S. Our main assumption is that the correspondingly
defined H0-orthogonal projection Q from H0 onto S is stable in the energy norm,
that is, that there exists another constant κ with

(4) ‖Qv‖ ≤ κ ‖v‖, v ∈ H1.

This constant κ must be independent of hidden discretization parameters. This
trivially holds for spectral methods in which the approximation spaces S are built
up from eigenfunctions of a nearby eigenvalue problem, say, in the case of a second
order problem, from eigenfunctions of the Laplace operator. The finite element
case is more complicated. For second order problems, (4) is the H1-stability (3)
of the L2-orthogonal projection onto the finite element space.

Our analysis starts from an error representation for the eigenvectors. The error
between an eigenvector u ∈ H1 of the original problem for the eigenvalue λ and its
H0-orthogonal projection onto the space spanned by the discrete eigenvectors u′k in
S for the eigenvalues λ′k in a given neighborhood Λ of λ possesses the representation

u −
∑

λ′
k
∈Λ

(u, u′k)u
′
k = R (u− Pu) + (I −Q)(u− Pu),

where the mapping R : H0 → S is defined by the expression

Rf =
∑

λ′
k
/∈Λ

λ′k
λ′k − λ

(f, u′k)u
′
k.

It leads rather immediately to an error estimate in the H0-norm, to
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∥∥∥u −
∑

λ′
k
∈Λ

(u, u′k)u
′
k

∥∥∥
0
≤ max(1, γ)‖u− Pu‖0,

where the constant γ asymptotically measures the separation of the eigenvalue λ
under consideration from the continuous eigenvalues outside Λ and is given by

γ = max
λ′
k
/∈Λ

∣∣∣ λ′k
λ′k − λ

∣∣∣.

With help of the assumption (4) one obtains correspondingly the error estimate
∥∥∥u −

∑

λ′
k
∈Λ

(u, u′k)u
′
k

∥∥∥ ≤ (γ + 1)κ ‖u− Pu‖

in the energy norm, and finally, by the same type of arguments, the error estimate

min
λ′
k
≥ λ

(λ′k − λ) ≤ (ακ)2 ‖u− Pu‖2

for the eigenvalues, provided that already a discrete eigenvalue λ′k ≥ λ exists for
which λ′k − λ ≤ λ. The constant α takes the value α = 1 if there is no discrete
eigenvalue λ′k < λ and otherwise the value

α = max
λ′
k
<λ

λ

λ− λ′k
.

For eigenvalues greater than the minimum eigenvalue, the size of the prefactors
depends asymptotically on the separation of the eigenvalue under consideration
from the smaller eigenvalues. The speed with which the discrete eigenvalues con-
verge to their continuous counterparts is asymptotically determined by the speed
with which the square of the best energy norm approximation error of the assigned
eigenfunctions tends to zero. As with the error estimates for the eigenfunctions,
pollution effects arising from the approximation error for other eigenfunctions than
the one under consideration do not occur.
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Parallel short-range O(N) complexity algorithm for approximate
invariant subspace calculation of dimension N in electronic structure

Jean-Luc Fattebert

(joint work with Daniel Osei-Kuffuor)

Unlike classical physics problem where the number of variables (such as temper-
ature, pressure, etc.) is fixed and does not grow with the system size, quantum
mechanics models have a number of fields — electronic wave functions — propor-
tional to the system size. This leads to O(N2) degrees of freedom to represent
O(N) electronic wave functions for a problem composed of N atoms. From a
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mathematical point of view, the solution to that problem requires to calculate an
invariant subspace of dimension N and thus typically leads to O(N3) operations
for standard eigensolvers.

To make an efficient use of tomorrow’s largest exascale computers, algorithms
with O(N) complexity and short-range communications are needed, so that one
can simulate a number of atoms directly proportional to the number of processors
available, for hundreds of thousands of atoms using hundreds of thousands of
processors.

A lot of research has been carried out in the last 20 year in the physics and chem-
istry communities in an effort to develop O(N) algorithms for electronic structure
calculations [1]. Most O(N) algorithms introduce some approximations or trunca-
tions of terms to reduce computational complexity. It thus becomes important to
evaluate and control the accuracy of the resulting algorithms. A sufficient level ac-
curacy often means that these O(N) algorithms become competitive only at large
scale (more than 500 atoms). But O(N) complexity is not enough if one hopes
to make an efficient use of exascale computers. Optimal algorithms also need to
avoid global communications.

We present the first truly scalable First-Principles Molecular Dynamics algo-
rithm with O(N) complexity and fully controllable accuracy, capable of simulating
systems of sizes that were previously impossible with this degree of accuracy. By
avoiding global communication, we have extended W. Kohn’s condensed matter
“nearsightedness” principle [2] to a practical computational scheme capable of
extreme scalability. Accuracy is controlled by the mesh spacing of the finite dif-
ference discretization, the size of the localization regions in which the electronic
wavefunctions are confined, and a cutoff beyond which the components of the over-
lap matrix can be omitted when computing selected elements of its inverse. We
demonstrate the algorithm’s excellent parallel scaling for up to 101,952 atoms on
23,328 processors, with a wall-clock time of the order of one minute per molecular
dynamics time step.

This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
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Solving Kohn-Sham algebraic nonlinear eigenvalue problem via rapid
iterative diagonalization

Zhaojun Bai

(joint work with Yunfeng Cai, John Pask and N. Sukumkar)

The importance of electronic structure calculations stems from their underly-
ing quantum-mechanical nature, yielding insights inaccessible to experiment and
robust, predictive power unattainable by more approximate, empirical schemes.
However, because such quantum-mechanical (QM) calculations are computation-
ally intensive, a vast range of real materials problems of utmost importance to the
Laboratory and wider scientific community remain inaccessible by such rigorous,
QM approaches. The bottleneck in all such calculations is the solution of the large,
sparse, numerical eigenproblems produced. This is due to the nonorthogonal ba-
sis sets employed in modern electronic-structure methods, such as the partition-
of-unity finite element (PUFE) method and APW+lo. The resulting numerical
eigenvalue problems are ill-conditioned. It is especially pronounced when the ba-
sis is saturated with orbital basis functions with long tails. Specifically, at each
SCF-cycle, the linear generalized eigenvalue problem has ill-conditioned coefficient
matrices with a large common near-null subspace. There are highly clustered eigen-
values with no obvious gap between the eigenvalues that are sought and the rest,
which is particularly severe for magnetic and metallic systems. It is well docu-
mented that existing widely used eigensolvers, such as those based on the Davidson
method, have proven to be no longer satisfactory. Furthermore, large off-diagonal
entries in the coefficient matrices, such as from local orbital components of the
basis, render standard diagonal-based preconditioners ineffective.

To address this deficiency, in the past two and half years, under the support
of the UC-Lab Fees Research Program, we have focused on the development of
new eigensolution algorithms and implementations in the context of a new real-
space PUFE QM method. By virtue of its highly efficient orbital-polynomial
basis, PUFE with our new eigensolver has shown order-of-magnitude reductions
in basis size relative to state-of-the-art planewave based methods to attain the
same accuracies for a variety of physical systems.

In this talk, we present our contributions in the following two major aspects:
(1) To address the issues of ill-conditioned coefficient matrices, non-diagonally

dominant, and clustered eigenvalues, we present an asymptotic convergence analy-
sis of the widely used preconditioned steepest descent method and its variants. We
establish the notion of theoretically optimal preconditioners, and propose highly
effective locally accelerated preconditioners for individual eigenpairs of interest.
We have called the resulting new method the Locally Accelerated Block Steepest
Descent (LABPSD) method [2].

(2) To efficiently implement the LABPSD method, we develop a two-stage
scheme to apply highly effective locally accelerated preconditioners. At the first
stage, we exploit the underlying “sparse + low rank” structure of the coefficient
matrices to perform pre-processing to obtain good starting vectors for an inner
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linear solver. At this stage, it involves a direct sparse indefinite complex matrix
factorization at the first SCF iteration. At the second stage, we use an iterative
linear solver with the pre-processed starting vectors produced by the first stage to
apply targeted preconditioners of desired eigenpairs [1].

We have conducted extensive proof-of-principle tests for a variety of materials
systems. In this talk, we highlight a simulation result for a triclinic metallic system,
CeAl, which is a hard test case due to the following properties: (a) The potentials
of the atoms are deep, producing strongly localized solutions that require larger
basis sets to resolve. (b) The atoms are heavy, with many electrons in valence,
requiring many eigenfunctions to be computed. (c) Because this system contains
Ce, it requires 17 enrichment functions per atom (as opposed to e.g., 2 for Li),
which increases basis size substantially for PUFE: yet, total degrees of freedom
(DOF) are still a factor of 5 fewer than for planewaves. (d) The lattice is distorted,
and atoms are displaced from ideal positions. This provides a completely general
problem, with no special symmetries to exploit. Finally, for the simulation, we do
not assume a band gap, but rather solve the completely general metallic problem.

We present numerical simulation results to show that in the convergence of the
total energy computed by the PUFE method with the new LABPSD eigensolver,
the average number of outer LABPSD iterations per SCF iteration and the average
number of inner MINRES iterations per outer LAPBSD iteration for each eigenpair
are all between 2 and 4. This is a significant achievement since it is comparable
with the typical number of iterations for the standard LOBPCG method used in
ABINIT on the well-conditioned standard eigenvalue problems produced by that
method [3]. This indicates that for generalized eigenproblems with ill-conditioned
coefficient matrices (as occur in electronic structure methods using nonorthogonal
bases), the performance of the LABPSD is clearly superior to current state-of-the-
art methods such as LOBPCG and more recent algorithm of Blaha and co-workers
[4].

In summary, our studies with PUFE reveal for the first time that a systemati-
cally improvable real-space approach can attain the required accuracies in quantum-
mechanical materials calculations with not only fewer but substantially fewer de-
grees of freedom than current state-of-the-art planewave based methods, as imple-
mented in VASP, ABINIT, Qbox, and a host of other codes in current use. The
LABPSD eigensolver has proven to efficiently solve the ill-conditioned generalized
complex eigenproblem produced by PUFE.
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Finite Dimensional Approximations of Nonlinear Eigenvalue Problems
in Density Functional Models

Aihui Zhou

(joint work with Huajie Chen, Xiaoying Dai, Xingao Gong, and Lianhua He)

Density functional theory (DFT) has been widely and successfully used in com-
putational materials science, quantum chemistry, and quantum biology [9, 11, 12,
13, 14, 18]. We see that the Thomas-Fermi-von Weizsäcker (TFvW) type equa-
tions and Kohn-Sham equations, which are nonlinear eigenvalue problems, play
a crucial role in DFT [8, 11, 12, 15]. Hence it is significant to mathematically
understand why DFT and its numerics work so well and to design new efficient
numerical methods for such nonlinear eigenvalue equations.

To our knowledge, there are only a few works on numerical analysis of nonlinear
eigenvalue problems in literature. We refer to [5, 6, 10, 16, 17] for convergence of
finite dimensional approximations and [1, 2, 4, 7] for a priori convergence rates.
We note that numerical analysis given in [1, 16, 17] are for problems with convex
energy functionals only while [6] gives a priori error upper bound for a general case
of TFvW type equations and [2] provides an a priori error estimate for planewave
discretizations for the Kohn-Sham LDA equations under a coercivity assumption.
We refer to [3, 4, 7] for a systematic study on mathematical justification for finite
dimensional approximations of both TFvW type equations and Kohn-Sham equa-
tions as well as the associated directly numerical minimizing energy functional
methods, including some understanding of several existing approximate methods
in electronic structure calculations based on DFT, from a priori error analysis to a
posteriori error estimations, and from designing adaptive finite element algorithms
to analyzing their convergence and complexity.

Let us informally describe several recent results on finite dimensional approxi-
mations of nonlinear eigenvalue problems resulting from DFT in our group. Under
some reasonable assumptions, we prove in [4, 6, 7, 17] that all the limit points
of finite dimensional approximations are ground states of the system, and every
eigenpair can be well approximated by the finite dimensional approximations when
the associated local isomorphism condition is satisfied. We obtain convergence of
ground state energy approximations [6, 17] and convergence rates of both eigen-
value and eigenfunction approximations [4, 7]. We also propose and analyze two
adaptive finite element algorithms, which are based on the residual type a pos-
teriori error estimators. We derive the a posteriori error estimates and show in
[3, 5, 7] that under some reasonable assumptions, all limit points of the adap-
tive finite element approximations are ground states, some ground states can be
approximated by adaptive finite element approximations with some convergence
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rate. In addition, we obtain the quasi-optimal complexity of adaptive finite ele-
ment approximations [3, 7], too.
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Fast algorithms for Kohn-Sham density functional theory

Lin Lin

Kohn-Sham density functional theory (KSDFT) is by far the most widely used
electronic structure theory for condensed matter systems. However, the compu-
tational cost of the standard method for solving KSDFT increases cubically with
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respect to the number of electrons in the system (N). The cubic scaling hinders
the application of KSDFT to systems of large size such as nano-scale systems.

Our aim is to design efficient algorithms for solving KSDFT for both insulating
and metallic systems [3, 2, 5, 1]. Our method focuses on the property that the
electron density ρ depends only on the diagonal of the Fermi-Dirac operator (β:
inverse temperature; µ: chemical potential)

(1) ρ = diag f(H) ≡ diag
2

1 + eβ(H−µ)
.

Our strategy is to expand the Fermi-Dirac operator into resolvents (Green’s func-
tions)

(2) ρ ≈ diag
P∑

i=1

ωi
H − zi

,

where ωi, zi ∈ C. By choosing the proper weight ωi and position of poles zi, the
pole expansion achieves by far the most efficient representation cost that scales
as P ∼ O(log β∆E) with small pre-constant. Numerical example indicates that
P = 80 is more than sufficient even in the extreme case where β∆E ≈ 106 [3].

Another key component in the PEXSI method is the selected inversion method,
which allows the accurate and efficient computation of selected elements of a
Green’s function for a Kohn-Sham system [5, 4], taking the form (H − zS)−1,
where H is the Hamiltonian operator and S is the overlap matrix, and z is a
complex shift. The selected inversion method reveals the connection between the
inverse of a sparse matrix and its associated Cholesky factor: any element in the
inverse matrix corresponding to a nonzero element of its associated Cholesky fac-
tor can be evaluated without using any element outside the nonzero pattern of the
Cholesky factor in the inverse matrix. In particular, if exact arithmetic can be used
(without round-off error), then the selected inversion method is an exact method
for computing these selected elements needed for the electronic structure calcula-
tion. Since the Cholesky factor is sparse compared to the full inverse (H − zS)−1,
selected inversion significantly reduces the computational complexity from O(N3)
to at most O(N2) without loss of accuracy, where N is the number of atoms in
the system.

Using a 2D tight binding system on a structured grid, the selected inversion
method can solve a system with 4.3 billion degrees of freedom under 25 minutes
using 4096 processors in parallel [4]. When PEXSI is applied to Hamiltonian
matrices discretized by atomic orbitals, one can perform first principle KSDFT
calculation for a large carbon nanotube with more than 10,000 atoms on a single
processor [1] using single-zeta basis function. To fully realize the capability of
the PEXSI method and accelerate the electronic structure calculation for large
scale systems in practice, we developed a general purpose massively parallel code
with the same name PEXSI. The parallel PEXSI code is able to use Department
of Energy (DOE) high performance machines with more than 100,000 cores. It
can be used to solve problems that contain 10,000 to 100,000 atoms. The PEXSI
method is now being integrated into SIESTA [6], one of the most popular electronic
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structure software packages based on atomic orbitals. The resulting SIESTA-
PEXSI method will be described in a forthcoming publication.
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Adaptive Wavelet Methods for Calculating Excitonic Eigenstates in
Disordered Quantum Wires

Christian Mollet

A novel adaptive approach to compute the eigenenergies and eigenfunctions of the
two-particle (electron-hole) Schrödinger equation including Coulomb attraction is
presented. We are looking for the energetically lowest exciton state of a thin one-
dimensional semiconductor quantum wire in the presence of disorder which arises
from the non-smooth interface between the wire and surrounding material. The
problem of two interacting particles, a hole and an electron, is described by a
time-dependent two-particle Schrödinger equation of the form

i~
∂

∂t
p (xe, xh, t) =

(
Eg + Ĥkin + Ĥattr + Ĥdis

)
p (xe, xh, t)(1)

−µ̂E (xh, t) δ (xe − xh) ,
which describes the (complex-valued) state function p (xe, xh, t) of the electron-
hole pair. Here

Ĥkin := − ~2

2m∗
e

∂2

∂x2e
− ~2

2m∗
h

∂2

∂x2h
denotes the Hamiltonian of two free particles,

Ĥattr :=
−e2

4πε̂0ε̂r

(
min{|xe − xh|, |xe − xh ± L|}+ γ̂R̂

)

describes the electron-hole attraction and

(2) Ĥdis = Vdis,e (xe) + Vdis,h (xh)
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models the disorder of the interface of the wire which will be specified below. The
term

−µE (xh, t) δ (xe − xh)
describes the optical excitation where the Dirac delta δ(x) models the excitation
and E (xh, t) denotes the function of the electric field of the optical excitation, i.e.,
the electric field of the incident light. Here m∗

e is the effective mass of an electron
and m∗

h the effective mass of a hole, e = 1e = 1,602× 10−19C is the elementary

charge, ε̂0 = 8,854×10−12 C
Vm is the electric constant, ε̂r the relative permittivity,

γ̂R̂ a regularization parameter, µ̂ denotes the optical dipole-matrix-element and
L > 0 the length of the quantum wire.

The solution, i.e., the wavefunction, provide information on the optical prop-
erties of the wire, whereas the energies of the excitons are determined by the
eigenvalues of the Hamiltonian. To this end, we are interested in solving the
eigenvalue problem

Ê X(x) = Ĥ X(x), x ∈ (0, L)2,

with Hamiltonian

(3) Ĥ := Eg + Ĥkin + Ĥattr + Ĥdis.

The eigenvalue problem (3) is equipped with periodic boundary conditions and
zero initial conditions.

Due to production processes involving a random disorder of the interface with
the surrounding material, we have to deal with a non-ideal wire. The potential
functions Vdis,h and Vdis,e appearing in (2) may therefore be assumed to be a
periodic potential function on (0, L) or, more realistically, may be modeled as a
stochastic perturbation on (0, L). This we describe using a piecewise constant
function with randomly chosen step heights,

Vdis,e(xe) :=
∑M

i=1 Randis,e(i)Char[(i−1) L
M
,i L

M )(xe),

where CharÎ(xe) := 1 for xe ∈ Î and zero otherwise denotes the character-

istic function on an interval Î and M is the number of steps. Furthermore,
Randis,e(i) ∼ N

(
0, σ2

)
for all i ∈ N are the corresponding randomly chosen step

heights, that is, Randis,e(i) is for each i ∈ N a normally distributed random number
with expectation zero and variance σ2.

We reformulate the eigenvalue problem (3) in an appropriate weak form whose
bilinear form, after introducing a shift, can be arranged to be symmetric, contin-
uous, and coercive. We obtain our final problem formulation:
Find u ∈ H1

per((0, L)
2) and E ∈ C such that

(4) a(u, v) = E (u, v)L2((0,L)2) for all v ∈ H1
per((0, L)

2),

where a(·, ·) defines the derived (shifted) bilinear form and E the shifted eigenvalue
of (3).
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In order to calculate the smallest eigenpair of (4), we will apply an adaptive
wavelet method. To this end, we consider a suitable Riesz basis Ψ := {ψi : i ∈ I}
of H1

per((0, L)
2) with

‖
∑

i∈I

viψi‖H1((0,L)2) ∼ ‖v‖ℓ2 , for all v ∈ ℓ2(I).

This leads to an equivalent generalized eigenvalue problem over ℓ2(I)
(5) Au = EBu, u ∈ ℓ2(I),
with bi-infinite matrices A := (a(ψj , ψℓ))ℓ,j∈I and B := ((ψj , ψℓ)L2((0,L)2))ℓ,j∈I . A
detailed analysis of adaptive wavelet computations of eigenvalues for the present
problem is described in [4]. Considering (5), a preconditioned inverse iteration
scheme (PINVIT) yields an ideal solution algorithm to calculate the smallest eigen-
pair. In order to obtain an algorithm which is numerically feasible, we introduce a
perturbation. This leads to the following perturbed preconditioned inverse iteration
(PPINVIT) introduced in [6], essentially based on [2], of the form

(6) v← v − P−1(Aǫ(v) − µǫ(v)Bǫ(v)),
with appropriate properly scaled (diagonal) preconditioner P−1 and Rayleigh quo-

tient µ(v) := 〈Av,v〉
〈Bv,v〉 with ℓ2(I)-inner product 〈·, ·〉. The perturbation in (6) is

introduced by an inexact operator application indicated by the index ǫ. Since we
deal with wavelet bases, we are able to control the error. The inexact operator
application can essentially be separated into two main parts. First, the prediction
of a suitable index set ensuring exactness of the operator application and second,
the efficient evaluation of the corresponding inner products. The first task was
elaborated in [1], where a PREDICTION scheme was introduced which yields a
desired index set with an asymptotically optimal size and optimal computational
effort by using tree structured index sets. The evaluation of the inner products
can be done efficiently with the evaluation scheme based on local polynomial rep-
resentations introduced in [5]. It can be shown, that the overall scheme can be
applied to the present situation and allows for a convergence proof together with
asymptotically optimal complexity estimates, see [3].

The numerical results demonstrate the benefit of the adaptive scheme. Figure
1 shows the numerical solution without disorder (left), the corresponding adaptive
grid after some iteration steps (middle) and the error related to the used degrees
of freedom on uniform grids and adaptive grids (right).
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Figure 1. Eigenfunction w.r.t. smallest eigenvalue (left), adap-
tive grid (middle) and performance (right).
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Backward errors in the inexact Arnoldi process

Christian Schröder

(joint work with Ute Kandler, Leo Taslaman)

Arnoldi’s method is a standard tool in numerical linear algebra. Given a matrix
A ∈ Cn,n and a normed starting vector v1 ∈ Cn it generates the matrices Vk+1

and Hk satisfying the well known Arnoldi relation AVk = Vk+1Hk.
In numerous applications including tensor computations and mixed precision

arithmetic vector operations like matrix-vector multiplications, but also summa-
tion are subject to inaccuracies. This talk considered the question whether these
inaccuracies in Arnoldi’s method can be interpreted as backward error, that is,
whether the resulting matrices Vk+1,Hk are exact for a perturbed matrix A + E
for some matrix E (hopefully of small norm).

The talk consisted of two parts. In the first part we considered the shift-invert
Arnoldi method which consists of computing

(1) wi+1 = (A− τI)−1vi, [vi+1, hi] = orthonormalize(wi+1, Vi)

for i = 1, 2, . . . k. After k steps the method returns an isometric matrix Vk+1 =
[v1, . . . , vk+1] ∈ Cn,k+1 and a Hessenberg matrix Hk ∈ Ck+1,k defined recursively
by

Hk =

[
Hk−1

0
hk

]
.
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Considering the case that the linear systems in (1) are solved only approximately,
we now assume

(2) ‖vi − (A− τI)wi+1‖2 ≤ ε1
for some tolerance level ε1. This means that the linear systems are solved up to
a residual of small norm. Then we can show that there is a backward error Ek
(depending on the iteration count k) such that a Arnoldi relation for A+ Ek,

(3) (A+ Ek − τI)−1Vk = Vk+1Hk

holds with

‖Ek‖/‖A− τI‖ = O(ε1).
In other words, the shift-invert-Arnoldi method is backward stable with respect to
small residuals in the linear systems.

Unfortunately, a small residual is not always possible, e.g., when ε1 is intended
to be on the order of machine precision. So, we relaxed the assumption (2) to

‖vi − (A− τI)wi+1‖2 ≤ ε1‖vi‖2 + ε2‖(A− τI)wi+1‖.
Additionally, we now allow inaccuracies in the orthonormalization phase of (1).
More precisely, we assume that the obtained values of vi+1, hi fulfill

‖wi+1 − Vi+1hi‖2 ≤ ε3‖wi+1‖2, κ(Vk) ≤ 1 + ε4

for some ε3, ε4. It turns out that then (3) holds for some matrix Ek with

‖Ek‖/‖A− τI‖ = O(ε1) +O(ε2 + ε3 + ε4)κ(Hk).

So, with inaccurate orthogonalization the shift-invert Arnoldi method could be
backwards-unstable when κ(Hk) is large, e.g., if τ is close to an eigenvalue of A.
This is work in progress, more details will be provided in [2].

The second part of the talk considered the standard Arnoldi method (i.e.,
without shift-invert transformation), but with a non-standard orthogonalization
scheme called compensated Gram-Schmidt method (ComGS). In addition to Vk
and Hk it constructs the matrix Dk := V Hk Vk.
Algorithm 1. Inexact Arnoldi method

Input: A ∈ Cn,n, v1 ∈ Cn normed, k ∈ N

Output: Vk+1 ∈ Cn,k+1, Hk ∈ Ck,k,
hk+1,k ∈ C, Dk+1 ∈ Ck+1,k+1

1: V1 = v1, D1 = 1, H0 = [ ] ∈ C0,0

2: for i = 1, 2, 3, . . . , k do

3: wi+1 = Avi − f
(M)
i+1

4: [vi+1, h1:i,i, hi+1,i, Di+1] =
ComGS(wi+1, Vi, Di)

5: Hi =

[

Hi−1 h1:i−1,i

hi,i−1e
T
i−1 hi,i

]

6: Vi+1 = [Vi, vi+1]
7: end for

Algorithm 2. ComGS

Input: wi+1 ∈ Cn, Vi ∈ Cn,i, Di ∈ Ci,i

Output: vi+1 ∈ Cn, h1:i,i ∈ Ci,
hi+1,i ∈ C, Di+1 ∈ Ci+1,i+1

1: s(0) = D−1
i V H

i wi+1

2: l
(0)
i+1 = wi+1 − Vis

(0) − f
(0)
i+1

3: s(1) = D−1
i V H

i l
(0)
i+1

4: l
(1)
i+1 = l

(0)
i+1 − Vis

(1) − f
(1)
i+1

5: hi+1,i = ‖l
(1)
i+1‖2, h1:i,i = s(0) + s(1)

6: vi+1 = (l
(1)
i+1 − f

(S)
i+1)/hi+1,i

7: Di+1 =

[

Di V H
i vi+1

vHi+1Vi vHi+1vi+1

]

Here f
(M)
i , f

(0)
i , f

(1)
i ,and f

(S)
i model the perturbations in matrix-vector multiplica-

tion, in orthogonalization and in vector scaling, respectively. We assume that they
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are bounded by ‖f (M)
i+1 ‖2 ≤ iε‖A‖2, ‖f

(0)
i+1‖2 ≤ iε‖wi+1‖2, ‖f (1)

i+1‖2 ≤ iε‖l
(0)
i+1‖2, and

‖f (S)
i ‖2 ≤ ε‖l

(1)
i+1‖2, respectively, where ε describes the level of accuracy of the vec-

tor operations.
To measure the distance to orthogonality of the basis Vk produced by the inexact

Arnoldi method, Algorithm 1, the quantity ‖Ck − Ik‖F is used where Ck is the
Cholesky factor of Dk. We formulate the bounds for the cases with and without
reorthogonalization (steps 3 and 4) within ComGS.

Theorem 1. Let ℓ ∈ {0, 1} be the number of reorthogonalization steps used in
ComGS. Let κk := maxi=1,...,k ‖h1:i,i‖2/hi+1,i and κ0 = 0. Then for sufficiently
small ε > 0 the Cholesky factor Ck of Dk satisfies

‖Ck − Ik‖F ≤
√
k5/2

(
2 + (kε)ℓκk−1

)
· ε

1− (
√
k5(2 + (kε)ℓκk−1) + k(ℓ + 1) + 2)ε

.

The bound for ‖Ck − Ik‖F is of the form α1ε/(1 − α2ε). Hence the bound is
useful if max{α1, α2} ≪ ε−1. This is the case whenever εℓκk is not large. Then,
Ck differs from the identity by order ε, which means that Algorithm 1 generates
an almost orthonormal basis Vk. Moreover, the algorithm provides implicitly an
orthonormal basis of the search space by V̂k := VkC

−1
k . It is implicit since building

V̂k would involve inaccurate vector additions.
We now com back to considering backward errors and restrict the scope to

Hermitian matrices A. The output of Algorithm 1 satisfies the perturbed Arnoldi

relation, AV̂k = V̂kĤk + v̂k+1ĥk+1,ke
T
k + F̂k where

V̂k = VkC
−1
k ,

[
Ĥk

ĥk+1,ke
T
k

]
:= Ck+1

[
Hk

hk+1,ke
T
k

]
C−1
k , F̂k := FkC

−1
k .

In order to reformulate this as an unperturbed Krylov relation of a nearby matrix
A+ Ek, it turns out we have to replace Hk.

Theorem 2. Let A ∈ Cn,n be Hermitian and Bk ∈ Ck,k. Then there exists a
Hermitian Ek ∈ Cn,n such that

(A+ Ek)V̂k = V̂kBk + v̂k+1ĥk+1,ke
T
k+1.

holds if and only if Bk is Hermitian. In particular for Bk from the table

Bk α β
1
2 (Hk +HH

k ) 1 +
√
2 1

1
2 (Ĥk + ĤH

k ) 1 +
√
2 0

1
2 tridiag(Hk +HH

k ) 2 +
√
2 2

1
2 tridiag(Ĥk + ĤH

k ) 2 +
√
2 0

a corresponding Ek is bounded by ‖Ek‖F ≤ α‖F̂k‖F + β‖Ĥk‖F ζk+ζk+1

1−ζk+1
provided

ζk := ‖Ck − Ik‖2 < 1.

In conclusion we have shown that for Hermitian A the inexact Arnoldi method
yields an exact Krylov relation of a nearby matrix A + Ek. Several choices are
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possible for the small matrix Bk and we have proven bounds for the corresponding
Ek.

Acknowledgment For proofs, details, numerical experiments etc. see [1]. This
work is supported by deutsche Forschungsgemeinschaft, DFG under project ME
790/28-1 “Scalable Numerical Methods for Adiabatic Quantum Preparation”.
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A priori convergence analysis for inexact Hermitian Krylov methods

Ute Kandler

(joint work with Christian Schröder)

I real life applications typically only a small subset of eigenvalues and the cor-
responding invariant subspace of a large, sparse matrix is desired. Under these
conditions the most prominent methods search for approximations of eigenvec-
tors/invariant subspaces within Krylov subspaces

Kk := Kk(A, v1) := span(v1, Av1, A
2v1, . . . , A

k−1v1)

of increasing dimension k.
Usually, an iterative numerical method for the Hermitian eigenvalue problem

will employ the Lanczos process [2], resulting in an orthonormal basis Vk =
[v1, . . . , vk] of Kk, a k × k tridiagonal matrix Tk, and a scalar tk+1,k such that
the Lanczos relation

(1) AVk = VkTk + vk+1tk+1,ke
H
k .

is satisfied. The Lanczos process consists mainly of matrix vector multiplications
and orthogonalizations. Both may be inaccurate in multiple scenarios of practical
interest like tensor computations (when v1, . . . , vk, and A are high-dimensional
tensors allowing only approximate operations), mixed precision arithmetic (when
the computations are carried out in double precision, but the vectors are stored in
single precision) or inexact solves in a shift-invert setting (when A = (A−σI)−1).
Often [1, 4] in these cases the perturbation can be interpreted as a backward error
with respect to A so that a relation similar to (1) of the form

(2) (A+ Ek)Ṽk = ṼkBk + ṽk+1b
H
k+1.

holds. Here, Ṽk is still orthogonal, bk+1 ∈ Ck, and B = BH ∈ Ck×k are known
whereas Ek = EHk ∈ Cn×n is unknown, but small in norm. Relation (2) implies

that Ṽk is a basis of a Krylov subspace

K̃k := Kk(A+ Ek, ṽ1)
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of a Hermitian matrix A+ Ek close to A.
We use the relation (2) as a starting point for our a priori convergence analysis,

i.e. we investigate how well an invariant subspace of A is contained in K̃k which is
a Krylov subspace of a perturbed matrix A+ Ek. More precisely we consider the
question: If l iterations have been performed without converging, how many more
iteration steps of a Krylov subspace method are necessary to ensure convergence?
Therefore we generalize a classic result of Saad [3, Theorem 6.3] that bounds of the
angle between an eigenvector and the k-th Krylov subspace. As a suitable measure
of the quality of an approximate invariant subspaces we use the angle between the
exact and the approximated subspace since this measure does not depend on the
choice of bases of the subspace. Our a priori bound constitutes a generalization of
Saad’s theorem in several respects:

i) The search space is chosen as Krylov subspace of a perturbed matrix A+Ek
(instead of A itself). Thus the setting of inexact Krylov methods is covered.

ii) Instead of just eigenvectors we consider invariant subspaces. This allows to
treat clusters of eigenvalues as a whole.

iii) The eigenvalues corresponding to the subspace X need not be well separated
from the remaining spectrum of A for the bound to be meaningful.

iv) The dimension l of the Krylov subspace on the right hand side is allowed to
be larger than one. This is first of all necessary for the theorem to be meaningful,
but also useful if information about the angle l-th Krylov subspace and the exact
subspace are available.

To sum up, we provide a bound on how well the exact subspace X is contained
in the search space K̃k. This bound is in terms of eigenvalues of A, their gaps
and uses Chebychev polynomials. It is suitable for perturbations and a small gap
between the desired and the remaining eigenvalues and the bound depends on how
well the subspace X is contained in the search space K̃l after l iterations.

Theorem 1. Let A ∈ Cn×n be Hermitian with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.
Let J1 ⊆ J2 ⊆ J3 ⊆ J4 be nested nonempty subsets of {1, 2, . . . , n} such that
max(J3) < n and J2, J3 are intervals. Denote by JL := {1, 2, . . . ,min(J3) − 1}
the leading and by JT := {max(J3) + 1, . . . , n} the trailing indices. Let Λi :=
{λj : j ∈ Ji} and Λ−i = {λj : j ∈ {1, . . . n} \ Ji} for i ∈ {1, . . . , 4, L, T }.
Let X1 and X4 be invariant subspaces of A corresponding to Λ1 and Λ4, re-
spectively. Let k > max(J3). For j = 1, . . . , k let K̃j := Kj(A + Ek, ṽ1) for

some Hermitian Ek ∈ Cn×n and some ṽ1 ∈ Cn. For i ∈ {2, 3} let X̃i be
an invariant subspace of A + Ek corresponding to {λj(A + Ek) : j ∈ Ji} .
If 2‖Ek‖2 < min{gap(Λ1,Λ−2), gap(Λ3,Λ−4), gap(Λ2,ΛL ∪ ΛT )} then for every
l = 1, . . . , k − |JL|, we have that

∠y

max

(
X1, K̃k

)
≤ ∠y

max

(
X̃2, K̃k

)
+ δ12

≤ arctan
(
̺kl · tan∠y

max(X̃3, K̃l)
)
+ δ12

≤ arctan
(
̺kl · tan≤π

2
(∠y

max(X4, K̃l) + δ34)
)
+ δ12



3250 Oberwolfach Report 56/2013

where tan≤π
2
(α) := tan(min{α, π2 }) and

̺kl :=
(∑

i∈J2

θ̃2i
ψk−l−|ΛL|(1+2η̃i)2

) 1
2

, δij := arctan
(

‖Ek‖2

gap(Λi,Λ−j)−2‖Ek‖2

)
,

θ̃i :=
∏
j∈JL

|λj−λn|+2‖Ek‖2

|λj−λi|−2‖Ek‖2
> 0, η̃i := gap(λi,ΛT )−2‖Ek‖2

spread(ΛT )+2‖Ek‖2
> 0,

where ψj denotes the Chebychev polynomial of degree j.
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A posteriori error estimate for nonconforming approximation of
multiple eigenvalues

Daniele Boffi

(joint work with Ricardo G. Durán, Francesca Gardini, Lucia Gastaldi)

We discuss a posteriori error estimates for the nonconforming finite element ap-
proximation of the eigenvalue problem associated with Laplace equation. This
topic has been the object of the results presented in [4]. Here, we are particularly
interested in the case when multiple eigenvalues are present.

To fix the notation, let us consider a Hilbert space V which is compactly em-
bedded in a Hilbert space H (typically equal to L2(Ω)); we are given bilinear,
continuous, and symmetric forms a : V × V → R and b : H ×H → R so that our
problem reads: find λ ∈ R such that for u ∈ V it holds

a(u, v) = λb(u, v) ∀v ∈ V

Given Vh ⊂ H , a nonconforming approximation usually needs a discrete form
ah : (V + Vh)× (V + Vh)→ R (typically constructed element by element) so that
the discrete problem reads: find λh ∈ R such that for uh ∈ Vh it holds

ah(uh, v) = λb(uh, v) ∀v ∈ Vh
In our case, V = H1

0 (Ω), the bilinear forms are a(u, v) = (gradu,grad v),
b(u, v) = (u, v), ah =

∑
T (grad u,grad v)T , and Vh is the standard Crouzeix–

Raviart nonconforming space.
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We introduce the following estimators:

ηT = hT ‖λhuh‖L2(T ) η2 =
∑

T

η2T

µT = ‖ grad ũh − gradh uh‖L2(T ) µ2 =
∑

T

µ2
T

Here ũh is the conforming p.w. P1 function obtained by averaging the values of
uh at the vertices of the triangulation.

In [4] it is shown that the following estimates hold:

‖ gradh(u− uh)‖0 ≤ µ+ Cη + h.o.t.

ηT ≤ C‖ gradh(u − uh)‖L2(T ∗) + h.o.t.

µT ≤ C‖ gradh(u − uh)‖L2(T )

As usual, T refers to the mesh and T ∗ to the elements of the mesh in a small
neighborhood of T .

It is clear that the way these estimates are written makes them only useful in the
case of simple eigenvalues. In particular, expressions like u−uh make little sense in
the case of multiple eigenvalues. In this case, the gap between subspaces should be
used, by adopting expressions like dista(uh, Eλ) or distb(uh, Eλ). This is what has
been done, for instance, in [6] where results by [5] and [7] have been generalized.
A more detailed discussion on the approximation of multiple eigenvalues has been
performed in [8]; see also [1], [2], and [3].

Concerning the links between the introduced a posteriori estimator and the
approximation of the eigenvalues, in [4] the analysis is performed only for the first
simple eigenvalue. Recently, by using techniques borrowed by [8], we extended the
analysis to general (possibly multiple) eigenvalues. In particular, we obtained the
following result.

Theorem. Let λi be an eigenvalue of multiplicity q and suppose that we have

λi−1 < λi = · · · = λi+q−1 < λi+q

Let λi,h ≤ · · · ≤ λi+q−1,h be approximations of λi so that

λj,h ≤ λi for j = i, . . . , i+ q − 1

Then we have

λi − λj,h
λi

≤ ‖(I − PCh + PC1,...,i−1,h)Pi,...,j,h‖2

Here P(·) and PC(·) refer to suitable elliptic projections onto the space of non-

conforming, respectively conforming, finite element subspaces, in the spirit of [8].
It turns out that the right hand side of the final estimate can be directly related
to the introduced estimator.
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Two-Grid Methods for Maxwell Eigenvalue Problems

Long Chen

(joint work with Xiaozhe Hu, Shi Shu, Liuqiang Zhong, Jie Zhou)

We develop an efficient algorithm for computing the Maxwell eigenvalue problem,
which is a basic and important computational model in computational electromag-
netism, in regard to electromagnetic waveguides and resonances in cavities. The
governing equations are

curl(µ−1
r curlu) = ω2εru in Ω,(1)

div(εru) = 0 in Ω,(2)

γtu = 0 on ∂Ω,(3)

where Ω ⊂ Rn(n = 2, 3) is a bounded Lipschitz polyhedron domain and γtu
is the tangential trace of u. The coefficients µr and εr are the real relative mag-
netic permeability and electric permittivity, respectively, that satisfy the Lipschitz
continuous condition, whereas ω is the resonant angular frequency of the electro-
magnetic wave for cavity Ω. In the sequel, we will use the conventional notation
λ to replace ω2.

We focus on speeding up the inverse or Rayleigh quotient iterations by using
a two-grid approach. The two-grid method for elliptic eigenvalue problems [3]
is developed by Xu and Zhou. The main idea is to reduce the solution of an
eigenvalue problem on a given fine grid with mesh size h to the solution of the
same eigenvalue problem on a much coarser grid with mesh size H ≫ h, which
can be easily solved as the size of the discrete eigenvalue problem is significantly
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smaller than the original eigenvalue problem on the fine grid, and the solution of a
linear problem on the same fine grid, which can be solved by mature and efficient
numerical algorithms.

It is important to note that the standard two-grid method (Xu and Zhou [3])
for elliptic eigenvalue problems works when the order of error in the L2 norm is
one order higher than the error in the energy norm. In terms of approximation of
Maxwell equations, it is known that establishing an L2 norm error estimate is a
very challenging task. For example, for the first family edge element, we cannot
expect the error in the L2 norm has higher convergence rate than the error in the
energy norm. As a result, in order to make the two-grid algorithm work, on the
fine grid, we must solve a linear Maxwell equation derived from the shifted inverse
iteration (or Newton’s method). This idea is proposed in [2, 4] as an acceleration
scheme for the standard two-grid method of elliptic eigenvalue problems.

We adopt this idea and develop efficient two-grid methods for solving the
Maxwell eigenvalue problem. Specifically, we first solve a Maxwell eigenvalue
problem on a coarse grid, and then solve a linear Maxwell equation on a fine grid.
Essentially, the procedure is similar to performing only one step of a Rayleigh
quotient iteration. We present our algorithm below.

(1) Solve a Maxwell eigenvalue problem on the coarse grid TH :
Find (λH ,uH) ∈ R× V H and uH 6≡ 0 satisfying

a(uH ,vH) = λHb(uH ,vH), for all vH ∈ V H .

(2) Solve an indefinite Maxwell equation on the fine grid Th:
Find uh ∈ V h such that

a(uh,vh)− λHb(uh,vh) = b(uH ,vh), for all vh ∈ V h.

(3) Use the Rayleigh quotient to compute the approximate eigenvalue on the
fine grid:

λh =
a(uh,uh)

b(uh,uh)
.

Several non-trivial theoretical and practical issues must be addressed when gen-
eralizing the two-grid approach to the Maxwell eigenvalue problems. First for the
shifted inverse iteration, we need to solve an indefinite and nearly singular Maxwell
equation on the fine grid. It is difficult to solve this equation such that very ef-
ficient solvers are required. We will use the preconditioned GMRES and the HX
preconditioner [1] for the corresponding definite linear equation. Because we are
interested in small eigenvalues, the wave number of this indefinite Maxwell prob-
lem is relatively small. Our numerical computation shows that the solver converges
in a few steps and that the solver is almost uniform to the size of the problem.

Another problem introduced by the shifted inverse iteration is the divergence-
free constraint which only holds weakly on the coarse grid. It is possible to explic-
itly impose this constraint in the fine grid by projecting the obtained approximated
eigenfunction on the coarse grid to the discrete divergence-free space on the fine
grid by solving an extra Poisson equation. However, our analysis, which is based
on the Helmholtz decomposition and an estimate of the differences between the
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weakly divergence-free functions on coarse and fine grids, show that even without
the projection step, our two-grid method produce an approximation λh to λ, and
remain asymptotically convergence rate for H3 = h when the domain is smooth
or convex.
Theroem. Let (λh,uh) be computed by our two grid method, and under the as-
sumptions the coarse grid size H is small enough, then there exists an eigenfunction
u ∈M(λ) such that

min
α∈R

‖u− αuh‖L2 ≤ C(h1/2+δ +H3(1/2+δ)),(4)

min
α∈R

‖u− αuh‖curl ≤ C(h1/2+δ +H3(1/2+δ)).(5)

And for the eigenvalue, we have

(6) |λ− λh| ≤ C(h1+2δ +H3(1+2δ)),

where the constant C and 0 < δ ≤ 1/2 depend only on µr, εr, ρ, λ, and u.
When Ω is smooth or convex, we have δ = 1/2 and

min
α∈R

‖u− αuh‖L2 ≤ C(h+H3),

min
α∈R

‖u− αuh‖curl ≤ C(h+H3),

|λ− λh| ≤ C(h2 +H6).

Note that H3 = h implies that a very coarse mesh can be used–which saves
considerable computational cost and time, especially in three dimensions. For
example, for a three-dimensional unit cube, h = 1/64, the number of unknowns is
1, 872, 064 whereas for H = h1/3 = 1/4 there are only 604 unknowns.
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Self-adjoint Curl-Operators

Ralf Hiptmair

(joint work with P.R. Kotiuga, S. Tordeux)

Force free magnetic fields. According to Ampere’s law a stationary current
j : Ω→ R3, Ω ⊂ R3 bounded, spawns a magnetic field H that satisfies curlH = j.
Since the Lorenz force is proportional to j×H, magnetic fields that do not exert
a force onto the moving charges causing j must fulfill curlH = α(x)H with some
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scalar function α : Ω→ R. If α is constant, we face the linear eigenvalue equation
curlH = αH for the curl-operator and its solutions are called (linear) Beltrami
fields, first studied by E. Beltrami in a fluid dynamics context. Beltrami fields also
play a role in the study of stable plasmas [6, 15, 1, 7, 17]. They possess fascinating
topological properties [5].

Eigenvalue problem for curl. Understanding the eigenvalue problem curlH =
αH entails understanding the spectral properties of the unbounded operator curl
on (L2(Ω))3. This approach was pioneered by R. Picard [18, 19, 20], see also [22],
and a key step is to specify the domain D(curl) by imposing suitable boundary
conditions. Of particular interest are boundary conditions that render the asso-
ciated curl-operator self-adjoint with compact resolvent. Then abstract spectral
theory of unbounded operators tells us that the eigenfunctions of this curl pro-
vide an orthonormal basis of (L2(Ω))3 and its eigenvalue form discrete sequence
accumulating at ±∞.

Self-adjoint extensions. The Green’s formula for curl
∫

Ω

curl u · v − curl v · u dx =

∫

∂Ω

(u× v) · n dS ,(1)

shows that curl is a symmetric operator on the sense subset (C∞
0 (Ω))3 ⊂ (L2(Ω))3.

In an abstract fashion all possible self-adjoint extensions are accessible through the
Glazman-Krein-Naimark Theorem [10, 11]. To apply it we equip the tangential

trace space of H(curl,Ω), usually denoted by H− 1
2 (curlΓ, ∂Ω) [4], with the sym-

plectic form [ν,µ] :=
∫
∂Ω(ν(x) × µ(x)) · n dS(x), where n is the exterior unit

normal of ∂Ω. Then there is a one-to-one mapping between complete Lagrangian

subspaces L of the symplectic space (H− 1
2 (curlΓ, ∂Ω), [·, ·]) and self-adjoint ex-

tensions of curl, characterized through their domains. This mapping is given by
L 7→ DL(curl), DL(curl) := {u ∈ H(curl,Ω) : ut ∈ L}, where ut denotes the
tangential component of u.

Remark. A fascinating property of the symplectic form [·, ·] is its invariance
under continuous deformations of Ω. It has its roots in the fact that the curl-
operator incarnates the exterior derivative for 1-forms in three dimensions. This
makes the set of all self-adjoint extensions of curl a topological invariant of Ω.

Special Lagrangian subspaces of (H− 1
2 (curlΓ, ∂Ω), [·, ·]). The starting

point is the “L2(∂Ω)-orthogonal” Hodge decomposition

H− 1
2 (curlΓ, ∂Ω) = gradΓH

1
2 (∂Ω)⊕ curlΓH

3
2 (∂Ω)⊕H1(∂Ω) ,(2)

where H1(∂Ω) is the space of harmonic tangential vector fields on ∂Ω, whose
dimension is 2β, β ∈ N0 standing for the first Betti number of Ω. It turns out
that (H1(∂Ω), [·, ·]) is a symplectic space as well, of which a canonical basis can
be built as follows: denote by {γ1, . . . , γβ , γ′1, . . . , γ′β} a set of fundamental cycles

of ∂Ω, for which the γj are bounding w.r.t. R3 \ Ω, whereas the γ′j are bounding
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w.r.t. Ω. Moreover, γj and γ
′
j are dual to each other [12, Ch. 5]. Then

LH :=

{
{
η ∈ H1(∂Ω) :

∫

cj

η · ds = 0 , cj ∈ {γj, γ′j}, j = 1, . . . , β
}
}

(3)

provides all complete Lagrangian subspaces of H1(∂Ω) [14, Sect. 6.3].

Theorem 1 ([14, Sect. 6]). If L ∈ LH, then

(i) gradΓH
1
2 (∂Ω) + L (closed traces), and

(ii) curlΓH
3
2 (∂Ω) + L (co-closed traces)

are complete Lagrangian subspaces of (H− 1
2 (curlΓ, ∂Ω), [·, ·]).

Consequently, for β = 0, extension of curl to the following domains

(i) D0 := {v ∈H(curl,Ω) : curlΓ vt = 0 on ∂Ω} ,

(ii) D⊥ := {v ∈H(curl,Ω) :

∫

∂Ω

vt · gradΓ ϕdS = 0 ∀ϕ ∈ H 1
2 (∂Ω)} .

will be self-adjoint.

Spectral properties. The self-adjoint curl-operators are invertible on the
L2(Ω)-orthogonal complements of their kernels, all of which contain gradH1

0 (Ω).
Thanks to well-known compact embedding results like [13, Sect. 4.1]

{v ∈H(curl,Ω) : div v = 0, v · n = 0} →֒ (L2(Ω))3 ,

{v ∈H(curl,Ω) : div v = 0, divΓvt = 0} →֒ (L2(Ω))3 ,

their inverses are compact. Therefore from classical spectral theory we conclude
that self-adjoint curl-operators have a pure point spectrum with ±∞ as sole ac-
cumulation points and that they possess a complete L2(Ω)-orthonormal system of
eigenfunctions.

Numerical approximation. Approaches to the numerical computation of
Beltrami fields [21, 2, 3] have mainly considered the self-adjoint curl-operator
curl |D0

based on closed traces. Throughout, they relied on the squaring approach
and converted the eigenvalue problem for curl into (mixed) variational eigenvalue
problems for curl curl [21, Sect. 3], e.g., seek H ∈ D0∫

Ω

curlH · curl v dx = α2

∫

Ω

H · v dx ∀v ∈ D0 .(4)

After Galerkin discretization the eigenfunctions have to be assigned to eigenvalues
±|α| in a post-processing step. Numerical analysis of the discretized variational
problem (4) can be based on the theory from [8, 9].

A direct Galerkin discretization of the eigenvalue problem for the self-adjoint
curl-operator based on closed traces reads (for Ω topologically equivalent to a
ball, β = 0): seek Hh ∈ Vh :=W1

0 (Ωh) + gradW0
∂(Ωh) such that

∫

Ω

curlHh · vh dx = α

∫

Ω

Hh · vh dx ∀vh ∈ Vh .(5)
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Here W1
0 (Ωh) ⊂ H0(curl,Ω) is a space of lowest order edge finite elements on a

(curvilinear) simplicial triangulation of Ω, and W0
∂(Ωh) is spanned by piecewise

linear nodal basis functions associated with nodes on ∂Ω. The numerical analysis
of (5) is still open. Even more so the analysis of Galerkin approximations of
eigenvalue problems for curl |D⊥

involving co-closed traces, where the boundary
condition has to imposed as a linear constraint, cf. the definition of D⊥.

Remark. The Galerkin matrix arising from the left-hand-side of (5), also called
the helicity matrix [16], does depend only on the topology of the triangulation.
This property is closely related to the homeomorphic invariance of the symplectic
form [·, ·] mentioned above.
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Constructing both lower and upper bounds of eigenvalues by
nonconforming finite element methods

Jun Hu

(joint work with Yunqing Huang, Rui Ma, Qun Lin, Quan Shen)

The first aim of this talk is to introduce a new systematic method that can produce
lower bounds for eigenvalues. The main idea is to use nonconforming finite element
methods. The conclusion is that if local approximation properties of nonconform-
ing finite element spaces are better than total errors (sums of global approximation
errors and consistency errors) of nonconforming finite element methods, corre-
sponding methods will produce lower bounds for eigenvalues. More precisely, un-
der three conditions on continuity and approximation properties of nonconforming
finite element spaces we analyze abstract error estimates of approximate eigenval-
ues and eigenfunctions. Subsequently, we propose one more condition and prove
that it is sufficient to guarantee nonconforming finite element methods to pro-
duce lower bounds for eigenvalues of symmetric elliptic operators. We show that
this condition hold for most low–order nonconforming finite elements in literature.
In addition, this condition provides a guidance to modify known nonconforming
elements in literature and to propose new nonconforming elements. In fact, we
enrich locally the Crouzeix-Raviart element such that the new element satisfies the
condition; we also propose a new nonconforming element for second order elliptic
operators and prove that it will yield lower bounds for eigenvalues. Finally, we
prove the saturation condition for most nonconforming elements. We also present
a guidance for how to design the nonconforming finite element methods which can
produce the lower bounds for the eigenvalues of the elliptic operators.

The second aim of the talk is to, based on such nonconforming discrete eigen-
functions, propose a simple method to produce the upper bounds of the eigen-
values. More precisely, we construct a conforming approximation of the exact
eigenfunction by the projection average interpolation of the nonconforming dis-
crete eigenfunction. After showing the approximation property of the projection
average interpolation, we prove that the Rayleigh–quotient of the aforementioned
conforming approximation is convergent to the exact eigenvalues from above. Fi-
nally, we combine the lower and upper bounds of the eigenvalues to obtain a
high accuracy approximation of the eigenvalues. Numerical examples verify our
theoretical results.
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Cluster robust estimates for eigenvalues and eigenfunctions of
convection–diffusion–reaction operators

Luka Grubǐsić

(joint work with Stefano Giani, Agnieszka Miedlar and Jeffrey S. Ovall)

We present a collection of direct residual error estimates for finite element approx-
imations of eigenvalues and eigenfunctions of linear convection–diffusion–reaction
operators in bounded polygonal domains Ω ⊂ R2, as given by the formal differen-
tial expression

(1) Aψ := −∇ ·A∇ψ + b · ∇ψ + cψ = λψ .

In general we assume that A ∈
[
L∞(Ω)

]2×2
, b ∈

[
L∞(Ω)

]2
with ∇ · b ∈ L∞(Ω),

and c ∈ L∞(Ω). Our model problems will be mostly form the class of eigenvalue
problems which include Fokker-Planck operators of the spectral type, see [4]. This
is a representable class of analytically well understood benchmark model problems
which will be used to test numerical procedures. We note that their numerical
analysis is also a challenging problem in its own right. We concentrate on features
relevant for testing numerical procedures.

Example 1. Let Au := −∇ · (A∇u) + b · ∇u + cu, where the coefficients A, b
and c satisfy the conditions above. Define the multiplication operator Xu := eβu
for some function β ∈ W 1,∞(Ω). If A−1b is a conservative vector field, then we
choose β such that ∇β = 1

2 A
−1b, and determine that

Hu = X−1AXu = −∇ · (A∇u) +
(
c− 1

2
∇ · b+ 1

4
b · (A−1b)

)
u ,(2)

is self adjoint. From this argument we also deduce that (λ, φ) is an eigenpair of H
if and only if (λ, eβφ, e−βφ) is an eigentriple of A.

In what follows we call the operator A, which is similar in the sense of (2) to a
(in general) normal operator, a diagonalizable operator.
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Residual. For a scalar µ and φ ∈ H1
0 (Ω) \ {0} we define the residual functional

r(µ)[ψ, ·] = B(ψ, ·) − µ(ψ, ·) and use ‖r(µ)[ψ, ·]‖−1 to denote its negative order
Sobolev norm. Let now Ψ := {ψ1, · · · , ψn} ⊂ H1

0 (Ω) be a linearly independent set
and let µi, i = 1, · · · , n be given. By P we denote the L2 orthogonal projection
onto Ψ and Q denotes the orthogonal projection onto an isolated component of the
spectrum which consists of semisimple eigenvalues of joint multiplicity n. Then
we show

min
ξ∈Spec(A)

|µi − ξ|√
|µi|ξ

≤ O
(‖r(µi)[ψi, ·]‖−1√

µ̂

)
,(3)

min
φ∈Ran(Q)

‖φ− ψi‖1 ≤ O
(
‖r(µi)[ψi, ·]‖−1) ,(4)

‖Q− P‖HS ≤ O
(
√√√√

n∑

i=1

‖r(µi)[ψi, ·]‖2−1

)
.(5)

Here ‖·‖HS denotes the Hilbert-Schmidt operator norm. Note that we have placed
no Galerkin orthogonality constraints on either the scalars µi or vectors ψi. This
is particularly useful if one wants to incorporate the effects of inexact numerical
linear algebra when numerically solving the discrete eigenvalue problems. To this
end we followed the approach of [2] which we combined with spectral calculus
from the theory of diagonalizable operators—equivalently terminology is scalar
operators as presented in the monograph of Dunford-Schwartz—with the analysis
of the associated Sobolev scale.

A Sobolev scale for non-selfadjoint operators. Define the form B(w, v) =∫
ΩA∇w ·∇v+(b ·∇w+ cw)v dx , then there exists the sectorial operator A which

represents the form B in the sense of B(ψ, φ) = (Aψ, φ)L2(Ω), φ ∈ H1
0 (Ω) and

ψ ∈ Dom(A) ⊂ H1
0 (Ω) and A1/2 = 2

π

∫∞

0 (I + t2A)−1A dt defines the operator

square root. Kato’s square root theorem [1, 3] yields Dom(A1/2) = Dom(A∗1/2) =
H1

0 (Ω), where A∗1/2 denotes the dual operator. This allows us to define the norms
‖ · ‖1/2 = ‖A1/2 · ‖L2(Ω) and ‖ · ‖∗1/2 = ‖A∗1/2 · ‖L2(Ω) which are equivalent to

the norm ‖ · ‖1 on H1
0 (Ω). Subsequently, we have that the dual norms ‖ · ‖−1/2

and ‖ · ‖−∗1/2 are equivalent to the H−1(Ω) norm. Since residual functionals for

finite element approximations are (typically) elements of H−1(Ω), this allows us to
build our error estimation theory on the analysis in the Sobolev scales associated
to operators A and A∗. The constants in (3)–(5) depend on the norms of X
and X−1—which measure the departure from normality of A—the separation of
spectral components, and the equivalence constants between the norms ‖ · ‖1/2,
‖ · ‖∗1/2 and ‖ · ‖1. For details see the preprint which is published as Matheon

Preprint #1008.

Numerical experiments. Let us now discretize our model problem (1) using
hp-finite element spaces. Let T = Th be a triangulation of Ω with the piecewise
constant mesh function h : Th → (0, 1), h(T ) = diam(T ) for T ∈ Th and let
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p : Th → N denote the polynomial degree distribution function. We define the
space

V = V ph = {v ∈ H1
0 (Ω) ∩C(Ω) : v

∣∣
T
∈ Pp(T ) for each T ∈ Th} ,

where Pp(T ) is the collection of polynomials of total degree not greater than p. For
further technical details please consult the preprint mentioned above.

For ψi ∈ H1
0 (Ω) set RT (ψi) := ψi − µ−1

i (−∇ · A∇ψi + b · ∇ψi + cψi) and

Rε(ψi) := µ−1
i (−(A∇ψi)|T · nT − (Aψi)|T ′ · nT ′), and

η(ψi)
2 :=

∑

T∈T

(
h(T )

p(T )

)2

‖RT (ψi)‖20,T +
∑

ε∈E

h(ε)

p(ε)
‖Rε(ψi)‖20,ε

Then ‖r(µi)[ψi, ·]‖−1 ≤ Cµiη(ψi), and the constants depend only on the hp shape
regularity constant as given in [5]. Analogous statement hods for the dual operator.
Here E denotes the set of interior edges.

Note that starting from this formulation there are several upwinding finite el-
ement schemes to discretize the drift-diffusion operator, eg. [6]. Our focus is on
providing error estimates regardless of the origin of the approximation functions
ψi. Given the assumptions—no restrictions on the coefficients—estimates (3)–(5)
are sharp. However, if we assume that the residuals are so small that the estimates
guarantee ‖P −Q‖HS < 1 then we can identify a matching between a basis {ψi}
of Ran(P ) and a basis {φi} of Ran(Q) such that

|µi − λ|
µi

≤ Cµiη(ψi)ηd(ψdi ), ‖φi − ψ‖1 ≤ Cµi η(ψi) .

Note that there is also an efficiency estimate µiη(ψi) ≤ C(‖φi−ψi‖1+|µi−λ|) . The
constant—as in the boundary value problem case from [5]—depends on maximal
p(T ). We use these estimates for experiments. Note, equivalent statements hold
for left eigenvectors and the eigenvalue λ is assumed semisimple of multiplicity n.

Obligatory L-Shape benchmark. We consider the operator A = −∆+ b · ∇,
where b = (2, 2) and Ω is the L-shaped domain.

First effectivity indices of the left and right eigenvectors (eigenfunctions) cor-
responding to the first eigenvalue on the L-shaped domain. The singularities of
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the left and right eigenvectors at the origin (the reentrant corner) have been rec-
ognized by our adaptive scheme, which does heavy h-refinement near the ori-
gin. The exponential convergence rates, estimated with least-squares fitting, were
α = 0.2697, 0.2671.
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Hierarchically enhanced adaptive finite element method for PDE
eigenvalue/eigenvector approximations

Agnieszka Międlar

(joint work with Luka Grubǐsić and Jeffrey S. Ovall)

1. Introduction and Preliminaries

In this work we are interested in solving generalized eigenvalue problems as-
sociated with finite element disretization of PDE eigenvalue problems up to the
accuracy guaranteed by the higher order finite elements while keeping the com-
putational cost of the lower finite elements approximation, i.e., obtaining approx-
imations of the P2 finite elements accuracy within the cost of P1 finite elements
computations. We are generally interested is solving the PDE problems of the
form
Find (λ, ψ, ψ⋆) ∈ R×H1

0 (Ω)×H1
0 (Ω) such that

B(ψ, v) = λ(ψ, v), B(v, ψ⋆) = λ(ψ⋆, v) for all v ∈ H1
0 (Ω).

where ψ⋆, ψ 6= 0 for all v ∈ H1
0 (Ω). We assume that B(·, ·) is bounded and

coercive, and it defines the compact solution operator which maps the function
f ∈ L2(Ω), to u(f) ∈ H1

0 (Ω), i.e., u(ψ) =
1
λψ. Therefore, the eigenvalue problems

can be easily transformed to the boundary value problem of the form
Find u(f), u⋆(f) ∈ v ∈ H1

0 (Ω) such that

B(u(f), v) = (f, v), B(v, u⋆(f) = (f, v) for all v ∈ H1
0 (Ω).
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Standard finite element discretization is obtained by solving the problem in the
finite dimensional space

Vp =
{
v ∈ C(Ω) ∩H1

0 (Ω) : v|T ∈ Pp for each T ∈ T
}
,

where T defines a conforming, shape-regular triangulation of domain Ω ⊂ R2,
with internal nodes and edges V , E , respectively. The most common basis for Vp
is the so-called Lagrange (nodal) basis, globally continuous, piecewise polynomials
of degree at most p (Pp), i.e., Vp = span{ℓz}, for node z ∈ V . In contrast, the
p-hierarchical basis for Vp contain functions of various degrees suggested by the
corresponding hierarchical splitting [Ban96]

Q = V ⊕W,
with V,W ⊂ H1

0 (Ω). Here we consider, the following hierarchical splitting

Q = V2, V = V1 = span{ℓz}z∈V , W = V2\V1 = span{be}e∈E ,

where be = 4ℓzℓz′ , where z, z
′ are the two vertices of the edge e ∈ E . The system

matrices, stiffness matrix KLB,KHB and mass matrixMLB,MHB, corresponding
to the choice of Lagrange and p-hierarchical basis, respectively, possess the similar
block structure

KLB =

[
KLB

11 ALB12
KLB

21 ALB22

]
, KHB =

[
KHB

11 KHB
12

KHB
21 KHB

22

]
.

However, the corresponding blocks of both matrices have severely different prop-
erties, see [BO13]. The diagonal blocks KLB

11 ,KLB
22 are both well-conditioned,

whereas the off-diagonal blocks are strongly coupled and therefore highly ill-
conditioned, which causes problems in the numerical computations. In contrast,
the ill-conditioning of KHB is concentrated in the diagonal block KHB

11 which can
be treated numerically very well and the off-diagonal coupling is very mild due to
the strengthened Cauchy-Schwarz inequality between spaces V1 and V2\V1 [Ban96].
Let us now restrict our investigation to the aforementioned choice of the hierar-
chical splitting of the finite element space V2 = V1 ⊕ (V2\V1) which results in the
system matrices of the following block structure

KP2 =

[
KP1 R
RT D

]
, MP2 =

[
MP1 LB
LBT BB

]
.

2. Hierarchically enriched AFEM algorithm

The properties of the system matrix KP2 and MP2 accordingly, allow us to
introduce a very effective adaptive finite element eigensolver. The main idea of
the method is to exploit the hierarchical splitting of the finite element space and
the hierarchical residual representation presented in [HOS11] to design a cheap a
posteriori error estimator which will be used not only to conduct the proper mesh
refinement, but in particular to improve the quality of the approximate eigen-
triples. The hierarchical residual representation combined with the hierarchical
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splitting Q = V ⊕ W of the finite element space allow us to state our original
problem in the following form

B(û(f), v) = (f, v) for all v ∈ V,(1)

B(ε(f), v) = (f, v)−B(û(f), v) for all v ∈W,(2)

where u(f) ∈ H1
0 (Ω), û(f) ∈ V and ε(f) ∈W . Equation (1) determine the solution

of the original problem in the P1 finite element space. This approximation have
to be very accurate because of the ill-conditioning of the KP1 block. The second
equation (2) allows to determine the bubble residual term ε(f), which will be used

to steer the mesh refinement and improve the P1 finite element solution ψ̃h, i.e.,

the new hierarchically enhanced approximation will be given as ψ̃h+ε. Therefore,
the approximate solution can be found using the following Algorithm.

Hierarchically enriched AFEM algorithm

Input: Th, tol

1: (λ̂h, ψ̂h) = eig(KP1

h
,MP1

h
, Th) ✄ Solve (1).

2: û(ψ̂h) =
1

λ̂ h
ψ̂h

3: rhs = ψ̂bubbles − RT û(ψ̂h) ✄ Determine the right-hand side of (2).
4: ε̃h = bubble solve(D, rhs) ✄ Solve (2).
5: while η̂h := ‖|ε̃h‖| ≥ tol do
6: Refine Th ✄ Iterate further with inexact solve

7: (λ̃h, ψ̃h) = eig(KP1

h
,MP1

h
,Th) ✄ Solve EVP with refined eigenvector ψ̂h

8: ũ(ψ̃h) =
1

λ̃ h
ψ̃h

9: rhs = ψ̃bubbles − RT ũ(ψ̃h)
10: ε̃h = inexact bubble solve(D, rhs)

11: ψ̂h = refined vect(ψ̃h, ε̃h) = arg-min
v∗=ψ̃h+αε̃h

B(v∗ , v∗)

12: end while

Output: (λ̂h, ψ̂h)

We can show that for ψ̂, ψ̂⋆ ∈ V , (ψ̂, ψ̂⋆) 6= 0 being the Galerkin approximations
of ψ, ψ⋆, the following estimates hold

‖ψ − ψ̂‖1 ≤ Cλ̂max{K1,K2}(‖ε(ψ̂)‖1 + osc),

‖ψ⋆ − ψ̂⋆‖1 ≤ Cλ̂max{K⋆
1 ,K

⋆
2}(‖ε(ψ̂⋆)‖1 + osc⋆).

This allow us to use the bubble residual vector ε to obtain a more accurate eigen-
triples with the minor additional cost of view iterative steps of some simple linear
system solver, e.g., Gauss-Seidel.

3. Numerical experiments

Some preliminary numerical examples for the Laplace eigenvalue problem on the
uniformly refined L-shape domain confirm the efficiency of the presented algorithm.
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#DOFs P1 error P1 − P2 error P2 error

9 1.3674× 10−1 3.6258× 10−3 −−−
49 3.7372× 10−2 3.1688× 10−4 2.2472× 10−4

225 9.5626× 10−3 2.1867× 10−5 1.4345× 10−5

961 2.4048× 10−3 1.4040× 10−6 9.0148× 10−7

3969 6.0209× 10−4 8.8361× 10−8 −−−
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Adaptive C0 interior penalty method for biharmonic eigenvalue
problems

Joscha Gedicke

(joint work with Susanne C. Brenner, Li-Yeng Sung)

This talk presents a residual based a posteriori error estimator for biharmonic
eigenvalue problems and the C0 interior penalty method. Biharmonic eigenvalue
problems occur in the analysis of vibrations and buckling of plates. The a posteriori
error estimator is proven to be reliable and efficient for sufficiently large penalty
parameter σ ≥ 1 and sufficiently small global mesh size H . The theoretical results
are verified in numerical experiments.

The weak formulation of the eigenvalue problem for the vibration of plates
seeks an eigenfunction u ∈ H2

0 (Ω) in the polygonal Lipschitz domain Ω ⊂ R2 with
b(u, u) = 1 and nonzero eigenvalue λ ∈ R such that

a(u, v) = λb(u, v) for all v ∈ H2
0 (Ω),

where the bilinear forms a(·, ·) and b(·, ·) read

a(u, v) =

∫

Ω

D2u : D2v dx =

∫

Ω

2∑

i,j=1

∂2u

∂xi∂xj

∂2v

∂xi∂xj
dx,

b(u, v) =

∫

Ω

uv dx.

For simplicity, this talk is restricted to simple eigenvalues. Let Tℓ be a (shape
regular) triangulation with set of edges Eℓ and set of interior edges E iℓ . For any v ∈
H2(Ω, Tℓ) := {v ∈ H1

0 (Ω) : v|T ∈ H2(T ) for all T ∈ Tℓ} and any w ∈ H3(Ω, Tℓ),
the jump of the derivative in normal direction and the average of the second
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derivative in normal-normal direction along the edge E = T+ ∩ T−, T± ∈ Tℓ, with
normal nE pointing from T− to T+, are defined by
[[
∂v

∂n

]]
=
∂v+
∂nE

∣∣∣∣∣
E

− ∂v−
∂nE

∣∣∣∣∣
E

and

{{
∂2w

∂n2

}}
=

1

2

(
∂2w+

∂n2
E

∣∣∣∣∣
E

+
∂2w−

∂n2
E

∣∣∣∣∣
E

)
.

The C0 interior penalty method [1, 3] avoids the use of complicated C1 finite
elements but uses standard Lagrange finite elements of total degree k ≥ 2. This
method is nonconforming in the sense that Pk(Tℓ) ∩ H1

0 (Ω) := Vℓ 6⊂ H2
0 (Ω), and

the associated nonconforming bilinear form reads

aNC(uℓ, vℓ) =
∑

T∈Tℓ

∫

T

D2uℓ : D
2vℓ dx

+
∑

E∈Eℓ

∫

E

({{
∂2uℓ
∂n2

}}[[
∂vℓ
∂n

]]
+

[[
∂uℓ
∂n

]]{{
∂2vℓ
∂n2

}})
ds

+
∑

E∈Eℓ

σ

hE

∫

E

[[
∂uℓ
∂n

]][[
∂vℓ
∂n

]]
ds

for all uℓ, vℓ ∈ Vℓ. Note that the second term results from consistency, the third
term realises symmetry and the last term is a penalty term with the penalty
parameter σ ≥ 1. The bilinear form aNC(·, ·) is symmetric, continuous and coercive
for sufficiently large penalty parameter σ ≥ 1 [1, 3]. Hence, the discrete eigenvalue
problem, to seek uℓ ∈ Vℓ with b(uℓ, uℓ) = 1 and λℓ ∈ R such that

aNC(uℓ, vℓ) = λℓb(uℓ, vℓ) for all vℓ ∈ Vℓ,
leads to a sequence of positive real eigenvalues 0 < λℓ,1 ≤ λℓ,2 ≤ . . . ≤ λℓ,dim(Vℓ).
Similar to the a posteriori error estimator for the source problem [2], the a pos-
teriori error estimator for the eigenvalue problem and polynomial degree k = 2
reads

η2ℓ :=
∑

T∈Tℓ

h4Tλℓ‖uℓ‖2L2(T ) +
∑

E∈Eℓ

σ2

hE
‖[[∂uℓ/∂n]]‖2L2(E) +

∑

E∈Ei
ℓ

hE‖[[∂2uℓ/∂n2]]‖2L2(E).

The a posteriori error estimator ηℓ is proven to be reliable and efficient for the
mesh dependent norm

‖v‖2H2(Ω,Tℓ)
=
∑

T∈Tℓ

|v|2H2(T ) + σ
∑

E∈Eℓ

h−1
E ‖[[∂v/∂n]]‖2L2(E) for all v ∈ H2(Ω, Tℓ),

in the sense that up to generic constants

‖u− uℓ‖H2(Ω,Tℓ) . ηℓ + ‖λu− λℓuℓ‖L2(Ω),

ηℓ . ‖u− uℓ‖H2(Ω,Tℓ) +H2‖λu− λℓuℓ‖L2(Ω),

where ‖λu − λℓuℓ‖L2(Ω) is of higher order compared to ηℓ. The reliability and

efficiency of η2ℓ for the eigenvalue error |λ−λℓ| is verified in numerical experiments
for varying penalty parameters, sizes of eigenvalues, and for convex and non-convex
domains.
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An Optimal Adaptive FEM for Eigenvalue Clusters

Dietmar Gallistl

Let Ω ⊆ Rd, d ≥ 2, be a bounded Lipschitz domain with polyhedral bound-
ary. The adaptive finite element approximation of multiple eigenvalues of the
model problem −△u = λu leads to the situation of eigenvalue clusters because the
eigenvalues of interest and their multiplicities may not be resolved by the initial
mesh. The optimality analysis of adaptive finite element methods in the literature
is based on the comparison of the finite element solutions on different meshes.
In the case of multiple eigenvalues, this leads to the difficulty that the discrete
orthonormal systems of eigenfunctions produced by the adaptive algorithm may
change in each step of the adaptive loop. The work [1] for multiple eigenvalues
introduces the innovative methodology to use one bulk criterion for all discrete
eigenfunctions in the algorithm for automatic mesh refinement and proves equiv-
alence to the simultaneous error of the discrete eigenvalue approximation to the
fixed orthonormal basis of the exact eigenspace. In practice, little perturbations in
coefficients or in the geometry immediately lead to an eigenvalue cluster of finite
length. This talk is based on the work [3] and extends the approach of [1] to the
more practical case of eigenvalue clusters.

Suppose that the eigenvalues and the discrete eigenvalues are enumerated

0 < λ1 ≤ λ2 ≤ . . . and 0 < λℓ,1 ≤ · · · ≤ λℓ,dim(Vℓ).

Let (u1, u2, u3, . . . ) and (uℓ,1, uℓ,2, . . . , uℓ,dim(Vℓ)) denote some L2-orthonormal sys-
tems of corresponding eigenfunctions. For a cluster of eigenvalues λn+1, . . . , λn+N
of length N ∈ N define the index set J := {n + 1, . . . , n + N} and the spaces
W := span{uj}j∈J and Wℓ := span{uℓ,j}j∈J . The eigenspaces E(λj) may differ
for different j ∈ J . Let the cluster be contained in a bounded interval [A,B].

The adaptive algorithm is driven by the element-wise sum of the residual-based
error estimator contributions [2] of all uℓ,j (j ∈ J) and runs the following loop

Solve→ Estimate→Mark→ Refine

based on an initial triangulation T0, and the bulk parameter 0 < θ ≤ 1 for the
Dörfler marking.

Let ‖·‖ denote the L2 norm and |||·||| denote the H1 seminorm and set

Aσ :=
{
v ∈ V

∣∣ |v|Aσ
:= sup

m∈N

mσ inf
T ∈T(m)

‖(1−Π0
T )Dv‖ <∞

}
.
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(H1) MJ := sup
Tℓ∈T

max
j∈{1,...,dim(Vℓ)}\J

max
k∈J

λk

|λℓ,j − λk|
< ∞

(H2) ‖h0‖2s∞B2C2
drel(1 +MJ )

2 ≤ 1

(H3) ε := maxj∈J‖uj − Λℓuj‖ ≤
√

1 + (2N)−1 − 1

(H4) (1 +MJ )
2(BCqo‖h0‖2s∞ + B2C2

reg‖h0‖
2+2s
∞ ) < min

{
1, 1−ρ1
KC2

drel

}
/4

Table 1. The constants Creg, Cqo, Cdrel depend only on Ω and
its geometry and on the set T of admissible triangulations.

Here, T(m) is the set of admissible triangulations whose cardinality differs from
that of the initial triangulation T0 by at most m and Π0

T is the L2 projection
onto piecewise constants. Let (λj | j ∈ J) denote the cluster under consideration
with (possibly different) eigenspaces E(λj). Provided that all eigenfunctions in
the cluster belong to Aσ, the error quantities

( |λk − λℓ,k|
λℓ,k

)1/2

and sup
j∈J

sup
w∈E(λj)
‖w‖=1

inf
vℓ∈Wℓ

|||w − vℓ|||

decay as (card(Tℓ) − card(T0))−σ. One subtle aspect is the dependence of the
parameters on the smallness of the initial mesh and the initial resolution of the
cluster and its length. An overview of sufficient conditions for optimal convergence
is given in Table 1. The precise statement of the main result is as follows.

Theorem 1. Provided the bulk parameter θ ≪ 1 is sufficiently small and the initial
mesh size ‖h0‖∞ := max{diam(T ) | T ∈ T0} satisfies the conditions (H1)–(H4)
of Table 1, the adaptive algorithm computes discrete eigenpairs ((λℓ,j , uℓ,j)j∈J ))ℓ
with optimal rate of convergence in the sense that, for some constants C, Copt and
all k ∈ J ,

(1 +M2
JB

2C)−1/2

( |λk − λℓ,k|
λℓ,k

)1/2

+ sup
j∈J

sup
w∈E(λj)
‖w‖=1

inf
vℓ∈Wℓ

|||w − vℓ|||

≤ 2Cba(1 + (1 +MJ)B‖h0‖s∞)(1 +B‖h0‖2∞)Copt

(card(Tℓ)− card(T0))−σ

∑

j∈J

|uj|2Aσ




1/2

.

The proof is concerned with the analysis of the eigenfunction approximation.
The estimate for the eigenvalues then follows from the results of [4].

A theoretical non-computable error estimator is employed which allows a proof
of equivalence to the refinement indicator of the adaptive algorithm. In contrast
to the case of one multiple eigenvalue, care has to be taken that the reliability
and equivalence constants of the error estimator do not depend on the cluster
or its length. The non-computable error estimator allows reliable and efficient
error estimates and is locally equivalent to the computable explicit residual-based
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x = −0.4975 x = 0.5025

y = −0.5

y = 0.5025

Figure 1. Square domain (0, 1)2 with perturbed symmetric slits
and coarse initial triangulation T0 with 5 interior vertices.
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Figure 2. Convergence history for J ⊆ {2, 3} based θ = 0.1.

error estimator. The proof of this property requires a careful analysis and the
condition (H3) on the initial mesh-size. The equivalence of error estimators allows
to consider the theoretical error estimator in the analysis with some modified bulk
parameter. This leads to estimator reduction and contraction properties.

The following numerical test suggests that the adaptive cluster approximation
seems to be superior compared to the use of an adaptive scheme for each eigenvalue
separately, even if all eigenvalues on the continuous level are simple.

The exact second and third eigenvalues on the domain of Figure 1 read as
λ2 = 17.6455, λ3 = 17.6626. This cluster J = {2, 3} is not resolved on coarse
or moderately fine meshes. The adaptive algorithm with bulk parameter θ = 0.1
and an initial triangulation with 5 degrees of freedom yields the results displayed
in Figure 2. In the case of J = {2} one can observe some pre-asymptotic effect
up to 105 degrees of freedom for the second eigenvalue λℓ,2. Indeed, the dis-
crete eigenfunctions are not resolved on moderately refined meshes. The choice
J = {2, 3} seems to resolve the cluster in a better way, in the sense that the dis-
crete eigenfunctions are correctly separated on coarse meshes and the simultaneous
approximation produces optimal rates.

The author is supported by the DFG Research Center Matheon (Berlin).
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Adaptive Nonconforming Crouzeix-Raviart FEM for Eigenvalue
Problems

Mira Schedensack

(joint work with C. Carstensen, D. Gallistl)

The nonconforming approximation of eigenvalues is of high practical interest be-
cause it allows for guaranteed upper and lower eigenvalue bounds [4] and for a
convenient computation via a consistent diagonal mass matrix in 2D as well as a
low-order discretization of elasticity and fluid problems. The underlying paper [1]
of this presentation proves quasi-optimal convergence of an adaptive algorithm of
the form

(inexact Solve & Estimate)→Mark→ Refine

with respect to the number of degrees of freedom.
Given a bounded polygonal Lipschitz domain Ω ⊂ R2, the Laplace eigenvalue

problem seeks eigenpairs (λ, u) ∈ R×H1
0 (Ω) with ‖u‖L2(Ω) = 1 and

∫

Ω

∇u · ∇v dx = λ

∫

Ω

uv dx for all v ∈ H1
0 (Ω).(1)

For simplicity, the analysis is carried out for the smallest eigenvalue, but the results
remain true for higher simple eigenvalues. The nonconforming P1 finite element
space reads

CR1
0(Tℓ) :=



v ∈ L

2(Ω)

∣∣∣∣∣∣

v|T ∈ P1(T ) for all T ∈ Tℓ and v is continuous
in midpoints of interior edges and vanishes
in midpoints of boundary edges





for a regular triangulation Tℓ of Ω. The discretization of (1) seeks (λℓ, uℓ) ∈
R× CR1

0(Tℓ) with∫

Ω

∇NCuℓ · ∇NCvℓ dx = λℓ

∫

Ω

uℓvℓ dx for all vℓ ∈ CR1
0(Tℓ)

with the piecewise gradient ∇NC.
Given κ > 0, the inexact Solve of the adaptive algorithm allows the compu-

tation of an approximation (λ̃ℓ, ũℓ) ∈ R×CR1
0(Tℓ) of the discrete eigenpair (λℓ, uℓ)

with

|||uℓ − ũℓ|||2NC + |λℓ − λ̃ℓ|2 ≤ κmin{η2ℓ , η2ℓ−1}
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with the error estimator ηℓ from Estimate with respect to λ̃ℓ and ũℓ. Precisely,
ηℓ is defined by

η2ℓ (T ) := |T |‖λ̃ℓũℓ‖2L2(T ) + |T |1/2
∑

E∈Eℓ(T )

‖ [∇NCũℓ]E · τE‖2L2(E)

for the edges Eℓ(T ) of a triangle T ∈ Tℓ, the tangential vector τE of E and the

jump [•]E along E and ηℓ :=
√∑

T∈Tℓ
η2ℓ (T ) (and η−1 := ∞). This coupling

of inexact Solve and Estimate was analysed in [3] for an adaptive algorithm
with the lowest-order conforming FEM for eigenvalue problems. The steps Mark
and Refine consist of Dörfler marking with bulk parameter θ and newest-vertex
bisection.

The quasi-optimal convergence of the adaptive algorithm is stated in terms of
an approximation semi-norm, which is defined by

|u|Aσ
:= sup

N∈N

Nσ inf
T ∈T(N)

‖∇u−ΠT∇u‖L2(Ω)

for some σ > 0 and the L2 projection to piecewise constants ΠT . Here, T(N)
denotes the set of all regular triangulations which are created from the initial
triangulation T0 using newest-vertex bisection and which consist of less than N
newly created triangles.

The following theorem states optimal convergence rates for the adaptive algo-
rithm.

Theorem 1. For any σ > 0 such that |u|Aσ
<∞ and sufficiently small parameters

θ ≪ 1, κ≪ 1 and initial mesh-size ‖h0‖∞,Ω ≪ 1, the adaptive algorithm computes

sequences of triangulations (Tℓ)ℓ and discrete approximations (λ̃ℓ, ũℓ)ℓ of optimal
rate of convergence in the sense that there exists C > 0 with

(card(Tℓ)− card(T0))σ‖∇NC(u − ũℓ)‖L2(Ω) ≤ C|u|Aσ
ℓ = 0, 1, 2, . . .

The proof consists of five main ingredients. The first tool is a best-approxima-
tion result for the nonconforming FEM, which proves the equivalence

‖∇NC(u− uℓ)‖L2(Ω) ≈ ‖∇u−ΠTℓ
∇u‖L2(Ω) .

The second ingredient is the L2 and eigenvalue control

|λ− λℓ|+ ‖u− uℓ‖L2(Ω) ≤ C‖h0‖s∞,Ω‖∇NC(u− uℓ)‖L2(Ω)

with 0 < s ≤ 1 depending on the regularity of the domain. The third to fifth
ingredients are the quasi-orthogonality, the contraction property and the discrete
reliability for the approximation of the discrete eigenpair.

Numerical experiments suggest that the optimality is obtained for θ = 0.1 and
κ = 0.01 even for very coarse initial meshes.

The n-dimensional discrete reliability [2] allows the generalisation of the quasi-
optimal convergence to three dimensions.

The author is supported by the Berlin Mathematical School.
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Variational Approximation for Self-adjoint Eigenvalue Problems

Christopher Beattie

(joint work with Friedrich Goerisch)

This work presents inequalities for the inertia of a quadratic form restricted to
arbitrary subspaces contained within its domain of definition. These inequalities
are the basis of a new approach for computing rigorous lower bounds to eigenvalues
of self-adjoint, semi-bounded operators, such as are commonly associated with
boundary value problems in engineering and mathematical physics. The bounds
obtained are complementary to those obtainable by the Rayleigh-Ritz procedure
and together provide eigenvalue estimates with absolute error bounds.

Let A be a self-adjoint operator in a Hilbert space H, densely defined on
a domain Dom(A) ⊂ H. Let a(u) denote the closure of the associated qua-
dratic form 〈u,Au〉 in H. The Rayleigh-Ritz procedure proceeds as follows: Pick
RN = span{r1, r2, · · · , rN} ⊂ Dom(a); Assemble and solve the matrix eigenvalue
problem:

Ax = ΛBx with

{
A = [a(ri, rj)]

N
i,j=1

B = [〈ri, rj〉]Ni,j=1

∈ CN×N

for Λ
(N)
1 ≤ Λ

(N)
2 ≤ · · · ≤ Λ

(N)
N .

The bounding properties of Λ
(N)
1 ≤ Λ

(N)
2 ≤ · · · ≤ Λ

(N)
N are founded on the

min-max characterization of the (lower) eigenvalues of self-adjoint operators, an
important tool in spectral analysis:

Theorem(Courant, Fischer, Weyl): Let λ∞(A) denote the lowest point of
the essential spectrum for A. Define λ(p) for any finite index p as

λ(p) = inf
U⊂Dom(A)
dimU≤p

sup
u∈U
u6=0

〈u, Au〉
〈u, u〉 .

Then if λ(p) < λ∞(A),

• there exist at least p eigenvalues of A below λ∞(A) and
• the pth algebraically smallest eigenvalue of A (counting multiplicity) is
given by λp(A) = λ(p).
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The bounding properties of the Rayleigh-Ritz procedure follows directly from
this, since

λℓ(A) = min
dimU=ℓ

max
v∈U

〈v, Av〉
〈v, v〉 ≤ min

dimU=ℓ
U⊂RN

max
v∈U

〈v, Av〉
〈v, v〉 = Λ

(N)
ℓ

The computation of complementary eigenvalue lower bounds is intrinsically
more difficult than the computation of upper bounds, and it appears necessary to
incorporate a priori spectral information that the Rayleigh-Ritz procedure does
not require. Lower bounds can be obtained by several methods, each with different
needs for such a priori information.

The method of intermediate problems, originated by Alexander Weinstein [5],
is founded on the observation that oftentimes there can be found an operator,
a base operator, whose eigenvalues give lower bounds (possibly quite crude) to
the eigenvalues of the original problem and whose eigenfunctions are known and
simple enough to be used in numerical computations. Starting with such a base
operator, a sequence of intermediate operators is formed in such a way so that
the eigenvalues of each operator are never less than the corresponding eigenvalues
of the preceding operator and yet never larger than the corresponding eigenvalues
of the original problem. Most importantly, the intermediate operators are formed
so as to allow the resolution of the corresponding eigenvalue problems explicitly
using the eigenvalues and eigenfunctions of the base operator.

Intermediate problem techniques often are able to provide accurate lower bounds
for eigenvalues in many applications. However, the necessity of using base opera-
tor eigenfunctions in numerical computations can produce serious computational
difficulties as well severely restricting the choice of base operators.

The Lehmann-Maehly [1, 2] method for computation of eigenvalue lower bounds
makes use of a parameter which separates two consecutive eigenvalues with known
index. This is tantamount to requiring a sufficiently accurate lower bound to an
eigenvalue of a chosen index. Such information is at times either unavailable or
must be obtained independently by other methods – but when such a parameter
is known, the Lehmann-Maehly method can be a very effective tool.

The method of Weinberger [4] for computation of eigenvalue lower bounds is
based on theoretical foundations that are somewhat distinct from that of the
method of intermediate problems and of Lehmann-Maehly methods while at the
same time generalizing them both. While being a substantial theoretical advance-
ment over earlier methods, in its practical application it generally suffers from the
same difficulties as the method of intermediate problems.

For the methods presented in this work, we make use of a base operator as well,
though the only a priori spectral data used are lower bounds to the base problem
eigenvalues. Neither eigenfunction information nor exact eigenvalue information
for the base operator is necessary for the method to produce rigorous results.
Unlike the Lehmann-Maehly method, our approach does not require a separation
parameter for the problem under study. However, if such a parameter is known,
we are able to recover Lehmann-Maehly bounds with our method.
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The first set of results that are offered are applicable to self-adjoint operators
projected and restricted to subspaces within their domain of definition. In partic-
ular, suppose A is a restriction of a self-adjoint operator A0 in the sense that for
some closed subspace, P , of H (and associated orthogonal projection, P), suppose
that A = PA0|P on Dom(A) = P ∩ Dom(A0). Notice that a(u) = a0(Pu) and
Dom(A0) ⊃ Dom(A). Thus A0 constitutes a base operator relative to A.

Theorem 1. Suppose a value τ0 and an index m0 > 1 are known so that

λm0−1(A0) < τ0 ≤ λm0
(A0).

Define the “Temple quotient relative to A0” as

T̂τ0(u) = τ0 +
‖P(A0 − τ0)u‖2
〈u, (A0 − τ0)u〉

and the cone in H: Y0 = {u ∈ Dom(A0) | 〈u, (A0 − τ0)u〉 ≤ 0} .
Then:

λm0−ℓ(A) = max
dim S=ℓ
S⊂Y0

min
u∈S

T̂τ0(u)

Restricting the max to a finite dimensional subspace leads to a computationally
feasible problem yielding lower bounds: Choose trial functions,

QN = span{q1, q2, · · · , qN} ⊂ Dom(A0).

Then, analogously to the argument above that shows the Rayleigh-Ritz method
produces eigenvalue upper bounds, we have

λm0−ℓ(A) = max
dim S=ℓ
S⊂Y0

min
u∈S

T̂τ0(u) ≥ max
dim S=ℓ

S⊂Y0∩QN

min
u∈S

T̂τ0(u) = τ0 +
1

Θℓ

where Θ1 Θ1 . . . ,Θℓ are the (negative) eigenvalues of

F̂ x = Θ Ĝ x with





F̂ = [〈(A0 − τ0)qi, qj〉] , and

Ĝ = [〈(A0 − τ0)qi,P(A0 − τ0)qj〉]

When P = I (so that A = A0), this approach reduces to the Lehmann-Maehly
method.

The second set of results that are offered follow the same pattern seen above
for restrictions of quadratic forms, but instead for operators that are defined as a
sum of operators (or more generally via a sum of closed quadratic forms). Specif-
ically, suppose A = A1 + A2 is self-adjoint and densely defined on Dom(A) =
Dom(A1)∩Dom(A2) with A1, A2 self-adjoint, semibounded, and densely defined
on Dom(A1) and Dom(A2), respectively. An analogous variational characteriza-
tion of eigenvalues of operator sums then appears as follows:
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Theorem 2. Suppose separating parameters for A1 and A2 are known:
λm1−1(A1) < τ1 ≤ λm1

(A1) and λm2−1(A2) < τ2 ≤ λm2
(A2).

For u =

{
u1
u2

}
∈ Dom(A1)⊕Dom(A2), define

T̃ (u) = τ1 + τ2 +
‖(A1 − τ1)u1 + (A2 − τ2)u2‖2

〈u1, (A1 − τ1I)u1〉+ 〈u2, (A2 − τ2)u2〉
and the cone in H⊕H:
Y⊕ =

{(

u1

u2

)

∈ Dom(A1)⊕Dom(A2)) |〈u1, (A1 − τ1)u1〉+ 〈u2, (A2 − τ2)u2〉 ≤ 0

}

Then with k = m1 +m2 − 1

λk−ℓ(A) = max
dim S=ℓ
S⊂Y⊕

min
u∈S

T̃ (u)

As before, restricting the max to a finite dimensional subspace will lead to a
computationally feasible problem that yields lower bounds: Choose trial functions:

PN = span{p1, p2, · · · , pN} ⊂ Dom(A1), and

QM = span{q1, q2, · · · , qM} ⊂ Dom(A2).

Define ZNM = PN ⊕QM . Then,

λk−ℓ(A) ≥ max
dim S=ℓ

S⊂Y⊕∩ZNM

min
u∈S

T̃ (u) = τ1 + τ2 +
1

Θℓ

where Θ1 Θ1 . . . ,Θℓ are the (negative) eigenvalues of

(1)

[
F̃1 0

0 F̃2

]
x = Θ

[
G̃11 G̃12

G̃21 G̃22

]
x

with





F̃1 = [〈(A1 − τ1)pi, pj〉] , G̃11 = [〈(A1 − τ1)pi, (A1 − τ1)pj〉]

F̃2 = [〈(A2 − τ2)qi, qj〉] , G̃22 = [〈(A2 − τ2)qi, (A2 − τ2)qj〉]

G̃12 = [〈(A1 − τ1)pi, (A2 − τ2)qj〉] G̃21 = [〈(A2 − τ2)qi, (A1 − τ1)pj〉]
As a simple illustration, consider a model of a rotating uniform beam

d4u

dx4
− α2

2

d

dx

(
1− x2

) du
dx

= λu with u(0) = u′(0) = u′′(1) = u′′′(1) = 0

Express the operator as A = A1 +A2 where

• A1 =
d4u

dx4
with Dom(A1) =

{
u ∈ H4(0, 1)

∣∣∣∣
u(0) = u′(0) = 0
u′′(1) = u′′′(1) = 0

}

and
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• A2 = −α
2

2

d

dx

(
1− x2

) du
dx

with

Dom(A2) =

{
u ∈ H2(0, 1)

∣∣∣∣∣
u(0) = 0

lim
x→1

(1− x)u′(x) = 0

}

Observe that eigenvalues of A1 are λ4 for roots, λ, of cosh(λ) cos(λ) + 1 = 0.
Eigenvalues of A2 are explicitly computable as λk(A2) = α2 k(2k − 1) for k =
1, 2, . . . We take trial functions pk(x) = cos(kπx) + ak cos ((k + 1)πx) − (1 + ak)
for k = 1, . . . , N with a1, a2, . . . chosen so that pk match boundary conditions
for Dom(A1) and qj(x) = P2j−1 for j = 1, 2, . . . ,M where Pi(x) are Legendre
polynomials of order i (which are also eigenfunctions of A2). For α = 10, we
compute upper bounds to λ2(A) with a Rayleigh-Ritz problem of order N = 3
using trial functions p1, p2, , p3, providing the upper bound

λ2(A) ≤ Λ
(3)
2 ≤ 2304.

An a priori lower bound for λ2(A) may be computed directly from the eigenvalues
of A1 and A2 as

max{λ1(A1) + λ2(A2), λ2(A1) + λ1(A2)} = 612.3 ≤ λ2(A)
An improved lower bound may be obtained by taking first

λ1(A1) < τ1 = 485. < λ2(A1) and λ2(A1) < τ2 = 1400. < λ3(A2).

Then next forming and evaluating the generalized eigenvalue problem (1) forN = 1
and M = 2 and using Theorem 2, which yields

τ1 + τ2 +
1

Θ2
= 1080.7 ≤ λ2(A).

Note that the main computation involved two 3 × 3 matrix eigenvalue problem
and yields a rigorous1 conclusion: λ2(A) ∈ (1080, 2304).
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Lyapunov Inverse Iteration for Rightmost Eigenvalues of Generalized
Eigenvalue Problems

Howard Elman

(joint work with Minghao Wu)

This project concerns an efficient algorithm for computing a few rightmost eigen-
values of generalized eigenvalue problems. We are concerned with problems of the
form

(1) J (α)x = µMx

arising from linear stability analysis (see [2]) of the dynamical system

(2) Mut = f(u, α).

M ∈ Rn×n is called the mass matrix, and the parameter-dependent matrix J (α) ∈
Rn×n is the Jacobian matrix ∂f

∂u (u(α), α) =
∂f
∂u (α), where u(α) is the steady-state

solution to (2) at α, i.e., f(u, α) = 0. Let the solution path be the following
set: S = {(u, α)|f(u, α) = 0}. We seek the critical point (uc, αc) associated
with transition to instability on S. While the method developed in this study
works for any dynamical system of the form (2), our primary interest is the ones
arising from spatial discretization of 2- or 3-dimensional time-dependent partial
differential equations (PDEs). Therefore, we assume n to be large and J (α),M
to be sparse throughout this paper.

The conventional method of locating the critical parameter αc is to monitor the
rightmost eigenvalue(s) of (1) while marching along S using numerical continuation
(see [2]). In the stable regime of S, the eigenvalues µ of (1) all lie to the left of the
imaginary axis. As (u, α) approaches the critical point, the rightmost eigenvalue
of (1) moves towards the imaginary axis; at (uc, αc), the rightmost eigenvalue of
(1) has real part zero, and finally, in the unstable regime, some eigenvalues of (1)
have positive real parts. The continuation usually starts from a point (u0, α0) in
the stable regime of S and the critical point is detected when the real part of the
rightmost eigenvalue of (1) becomes nonnegative. Consequently, robustness and
efficiency of the eigenvalue solver for the rightmost eigenvalue(s) of (1) are crucial
for the performance of this method. Direct eigenvalue solvers such as the QR
and QZ algorithms (see [4]) compute all the eigenvalues of (1), but they are too
expensive for large n. Existing iterative eigenvalue solvers [4] are able to compute
a small set (k ≪ n) of eigenvalues of (1) near a given shift (or target) σ ∈ C

efficiently. For example, they work well when k eigenvalues of (1) with smallest
modulus are sought, in which case σ = 0. One issue with such methods is that there
is no robust way to determine a good choice of σ when we have no idea where the
target eigenvalues may be. In the computation of the rightmost eigenvalue(s), the
most commonly used heuristic choice for σ is zero, i.e., we compute k eigenvalues of
(1) with smallest modulus and hope that the rightmost one is one of them. When
the rightmost eigenvalue is real, zero is a good choice. However, such an approach
is not robust when the rightmost eigenvalues consist of a complex conjugate pair:
the rightmost pair can be far away from zero and it is not clear how big k should
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be to ensure that they are found. Such examples can be found in the numerical
experiments of this study.

Meerbergen and Spence [3] proposed the Lyapunov inverse iteration method,
which estimates the critical parameter αc without computing the rightmost eigen-
values of (1). Assume (u0, α0) is in the stable regime of S and is also in the
neighborhood of the critical point (uc, αc). Let λc = αc − α0 and A = J (α0).
Then the Jacobian matrix J (αc) at the critical point can be approximated by
A + λcB where B = dJ

dα (α0). It is shown in [3] that λc is the eigenvalue with
smallest modulus of the eigenvalue problem

(3) AZMT +MZAT + λ(BZMT +MZBT ) = 0

of Lyapunov structure and that λc can be computed by a matrix version of inverse
iteration. Estimates of the rightmost eigenvalue(s) of (1) at αc can be obtained as
by-products. Elman et al. [1] refined the Lyapunov inverse iteration proposed in [3]
to make it more robust and efficient and examined its performance on challenging
test problems arising from fluid dynamics. Various implementation issues were
discussed, including the use of inexact inner iterations, the impact of the choice of
iterative method used to solve the Lyapunov equations, and the effect of eigenvalue
distribution on performance. Numerical experiments demonstrated the robustness
of their algorithm.

The method proposed in [1, 3], although it allows us to estimate the critical
value of the parameter without computing the rightmost eigenvalue(s) of (1), only
works in the neighborhood of the critical point (uc, αc). In [1], for instance, the
critical parameter value αc of all numerical examples is known a priori, so that
we can pick a point (u0, α0) close to (uc, αc) and apply Lyapunov inverse iteration
with confidence. In reality, αc is unknown and we start from a point (u0, α0)
in the stable regime of S that may be distant from the critical point. In this
scenario, the method of [1, 3] cannot be used to estimate αc, since J (αc) cannot
be approximated by A + λcB. However, quantitative information about how far
away (u0, α0) is from (uc, αc) can still be obtained by estimating the distance
between the rightmost eigenvalue of (1) at α0 and the imaginary axis: if the
rightmost eigenvalue is far away from the imaginary axis, then it is reasonable to
assume that (u0, α0) is far away from the critical point as well, and therefore we
should march along S using numerical continuation until we are close enough to
(uc, αc); otherwise, we can assume that (u, α0) is already in the neighborhood of
the critical point and the method of [1, 3] can be applied to estimate αc.

In this study, we develop a robust method to compute a few rightmost eigen-
values of (1) in the stable regime of S. We show that the distance between the
imaginary axis and the rightmost eigenvalue of (1) is the eigenvalue with smallest
modulus of an eigenvalue problem similar in structure to (3). As a result, this
eigenvalue can be computed efficiently by Lyapunov inverse iteration. We present
numerical results for several examples arising from fluid dynamics, which demon-
strate the fast convergence of this method, and we give an analysis that provides
insight into the fast convergence. In addition, based on this analysis, we propose
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a more efficient version of Lyapunov inverse iteration and a way of validating its
results.
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Field of values type eigenvalue inclusion regions

Michiel Hochstenbach

(joint work with David A. Singer, Paul F. Zachlin, Ian N. Zwaan)

In the talk we have given a brief overview of recent developments in the generation
of fast and tight spectral inclusion regions for large sparse matrices, based on the
field of values

W (A) = {x∗Ax : ‖x‖2 = 1 }
and generalizations thereof. We give a brief overview of some key aspects.

Matrix scaling
Denote the spectral radius by ρ(A) = max |λ|, and the numerical radius by r(A) =
max

z∈W (A)
|z|. For a tight spectral inclusion region, we hope that

r(A)

ρ(A)
≈ 1.

However, for some matrices, such as tols4000 [9], we have r(A)≫ ρ(A). We may
try to improve this situation using scaling, which leaves the eigenvalues invariant
but may change the field of values. We get

r(D−1AD)

ρ(D−1AD)
=
r(D−1AD)

ρ(A)
≪ r(A)

ρ(A)

if we manage to find a scaling matrix D such that r(D−1AD)≪ r(A). In view of
the “squeeze theorem” [6, p. 331]

1
2 ‖A‖ ≤ r(A) ≤ ‖A‖,

we try to find D such that ‖D−1AD‖ ≪ ‖A‖. Various (Krylov) scaling techniques
for this situation were investigated and developed in [5] (see also [1]), showing that
scaling of a matrix may be a very helpful technique for generating tight spectral
inclusion regions based on a field of values. In fact, we believe that the combination
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of matrix scaling and a field of values based on an Arnoldi decomposition gives an
eigenvalue inclusion region that is very hard to beat both in quality and efficiency.

Computing interior eigenvalues of large matrices may be very challenging. How-
ever, sometimes computing exterior eigenvalues also may take many matrix-vector
products. It is quite surprising that with (say) 20 matrix-vector products we can
often get a good idea of the location of all eigenvalues. In Figure 1, we plot
W (H20), an eigenvalue inclusion region, and several exclusion regions for the ma-
trix grcar of dimension n = 1000; see also the rest of this extended abstract for
more information.
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Figure 1. Eigenvalue inclusion and exclusion region after 20
Krylov steps for the grcar matrix of dimension n = 1000. In-
dicated are the eigenvalues (red), W (H20) (blue), the Ritz value
(blue), and exclusion regions based on several τ (green).

Projection
As for the solution of large-scale linear systems and eigenvalue problems, projection
onto a Krylov subspace is a very useful technique to approximate the field of values.
Let

AVk = VkHk + hk+1,k vk+1 e
∗
k

be the Arnoldi decomposition after k steps, starting with v1 with unit norm. The
approximation

W (Hk) ⊂W (Hk+1) ⊂W (A)

has already been described by Manteuffel [7] and also mentioned in [8, 10]. The
convergence of the sets W (Hk) to the set W (A) is often quite rapid. In Figure 2,
we plot the relative change of the area of W (Hk):

area(W (Hk+1))− area(W (Hk))

area(W (Hk))
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Figure 2. The relative increase of the area of W (Hk) as a func-
tion of k for several large matrices.

as a function of k for various large matrices from [9].

Exclusion regions
The set W (Hk) is always a convex and compact inclusion region. In [3] (see also
[4]), the following equality was proved:

Λ(A) =
⋂

τ∈C\Λ(A)

1

W ((A − τI)−1)
+ τ,

and used in a practical way by automatically selecting a finite number of targets
τ , and using Krylov projections instead of the large matrices.

Generalized eigenvalue problem
Field of values based inclusion regions for the generalized eigenvalue problem Ax =
λBx (that is, matrix pencils) are studied in [2]. Key aspects are approximations
to the sets W (B−1A), W (AB−1), 1

W ((B−1A−τI)−1) + τ , and 1
W ((AB−1−τI)−1) + τ ,

obtained by projection onto a Krylov space.

References

[1] T.-Y. Chen and J. W. Demmel, Balancing sparse matrices for computing eigenvalues,
Linear Algebra and Its Applications, 309 (2000), pp. 261–287.



3282 Oberwolfach Report 56/2013

[2] M. E. Hochstenbach, Fields of values and inclusion regions for matrix pencils, Electron.
Trans. Numer. Anal., 38 (2011), pp. 98–112.

[3] M. E. Hochstenbach, D. A. Singer, and P. F. Zachlin, Eigenvalue inclusion regions
from inverses of shifted matrices, Linear Algebra Appl., 429 (2008), pp. 2481–2496.

[4] , Numerical approximation of the field of values of the inverse of a large matrix,
Textos de Matematica, 44 (2013), pp. 59–71.

[5] M. E. Hochstenbach and I. N. Zwaan, Matrix balancing for field of values type inclusion
regions, preprint, TU Eindhoven, October 2013. Submitted.

[6] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
UK, 1985.

[7] T. A. Manteuffel, Adaptive procedure for estimating parameters for the nonsymmetric
tchebychev iteration, Numer. Math., 31 (1978), pp. 183–208.

[8] T. A. Manteuffel and G. Starke, On hybrid iterative methods for nonsymmetric systems
of linear equations, Numer. Math., 73 (1996), pp. 489–506.

[9] The Matrix Market. http://math.nist.gov/MatrixMarket, a repository for test matrices.
[10] K.-C. Toh and L. N. Trefethen, Calculation of pseudospectra by the Arnoldi iteration,

SIAM J. Sci. Comput., 17 (1996), pp. 1–15.

Something about Numerical Approximation of PDE Eigenvalue
Problems

Zhimin Zhang

1. How many numerical eigenvalues can we trust? [9]
When approximating PDE eigenvalue problems by numerical methods such as

finite difference and finite element methods, it is a common knowledge that only
a small portion of numerical eigenvalues are reliable. However, this knowledge is
only qualitative rather than quantitative in the literature. Here we investigate
the number of “trusted” eigenvalues by the finite element approximation of 2m-th
order elliptic PDE eigenvalue problems. Our two model problems are the Laplace
and bi-harmonic operators. We show that the number of reliable numerical eigen-
values can be estimated in terms of the total degree of freedom N of resulting
discrete systems. The result is worse than what we used to believe in that the
percentage of reliable eigenvalues decreases with an increased N . As an example,
we consider eigenvalues of the Laplace operator calculated by linear, bilinear fi-
nite element methods, or by 5-point, 9-point finite difference schemes. If we want
numerical eigenvalues converge at least linearly, the number of reliable eigenvalues

are roughly O(
√
N) and the portion of the trusted eigenvalues is then O(

1√
N

).

2. Spectral and spectral collocation methods for eigenvalues of differ-
ential and integral operators [1, 5].

On the other hand, spectral methods have advantage for eigenvalue approxi-
mation in the sense that when eigenfunctions are sufficiently smooth, the portion

of reliable eigenvalues is

(
2

π

)d
, where d is the dimension. We see that although

the advantage diminishes with increased d, the percentage of reliable eigenvalues
is fixed for any fixed dimension.
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As an example, we propose and analyze a C0 spectral element method for a
model eigenvalue problem with discontinuous coefficients in the one dimensional
setting. A super-geometric rate of convergence is proved for piecewise constant
coefficients case. For the model problem with one jump in the middle of the
solution interval, the machine epsilon is reached at polynomial degree N = 6 on
two elements.

We also propose and analyze a spectral collocation method to solve eigenvalue
problems of compact integral operators, particularly, piecewise smooth operator
kernels and weakly singular operator kernels of the form |t − s|−µ, 0 < µ < 1.
The convergence rate of eigenvalue approximation depends upon the smoothness
of the corresponding eigenfunctions, especially, for an eigenfunction with rα type
singularity, the typical “double” convergent rate N−4α (comparing with h2α of the
h-version) of the p-version method is observed.

3. Enhance eigenvalue approximation by gradient recovery techniques
[3, 4, 6].

The polynomial preserving recovery (PPR) is used to enhance the finite ele-
ment eigenvalue approximation. Remarkable fourth order convergence is observed
for linear elements under structured meshes as well as unstructured initial meshes
(produced by the Delaunay triangulation) with the conventional bisection refine-
ment. As for singular eigenfunctions under adaptive meshes, superconvergence is
also achieved by using PPR.

Furthermore, function value recovery techniques for linear finite elements are
discussed. Using the recovered function and its gradient, we are able to enhance the
eigenvalue approximation and increase its convergence rate to h2α, where α > 1 is
the superconvergence rate of the recovered gradient. This is true in both symmetric
and nonsymmetric eigenvalue problems.

4. Eigenvalue approximation from below by some non-conforming finite
elements [7, 8, 10].

Consider general nonconforming finite element methods for eigenvalue problems
in the abstract form:

ah(uh, v) = λb(uh, v).

Let uI be any interpolation in the nonconforming finite element space, we have
the following identity,

λ− λh = ‖u− uh‖2h − λh‖uI − uh‖2b + λh(‖uI‖2b − ‖uh‖2b) + 2ah(u − uI , uh).
By estimating each term on the right, it is possible to show that the first term
is the dominate one for some non-conforming elements. As a consequence, λh is
smaller than λ (in contrary to conforming elements) and hence approximates λ
from below. Here is a partial list of nonconforming finite elements that yield lower
bounds for particular eigenvalue problems under certain meshes.

1) Wilson element, 2nd-order elliptic operator, rectangle and cube
2) Qrot1 and EQrot1 , 2nd-order elliptic operator, Steklov eigen-problem, rectangle
3) Crouzeix-Raviart element, 2nd-order elliptic operator, n-simplex mesh;
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Steklov eigen-problem, triangular mesh
4) Extended Crouzeix-Raviart element, 2nd-order elliptic operator, Stokes, and

Steklov eigen-problems, triangular mesh
5) Morley element, 4th-order elliptic operators, n-simplex mesh
6) Adini element, 4th-order elliptic operator, rectangle and cube
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On the Convergence of the Residual Inverse Iteration for Nonlinear
Eigenvalue Problems

Daniel Kressner

(joint work with Cedric Effenberger)

We consider nonlinear eigenvalue problems of the form

(1) T (λ)x = 0, x 6= 0,

where T : D → Cn×n is a continuously differentiable matrix-valued function on
some open interval D ⊂ R.

In the following, T (λ) is supposed to be Hermitian for every λ ∈ D. Moreover,
we assume that the scalar nonlinear equation

(2) x∗T (λ)x = 0
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admits a unique solution λ ∈ D for every vector x in an open set Dρ ⊂ Cn. The
resulting function ρ : Dρ → D, which maps x to the solution λ of (2), is called
Rayleigh functional, for which we additionally assume that

x∗T ′(ρ(x))x > 0 ∀x ∈ Dρ.

The existence of such a Rayleigh functional entails a number of important prop-
erties for the eigenvalue problem (1), see [4, Sec. 115.2] for an overview. In
particular, the eigenvalues in D are characterized by a min-max principle and
thus admit a natural ordering. Specifically, if

λ1 := inf
x∈Dρ

ρ(x) ∈ D

then λ1 is the first eigenvalue of T .
It is of interest to study the convergence of Neumaier’s residual inverse itera-

tion [3] for computing the eigenvalue λ1 of T and an associated eigenvector x1. In
the Hermitian case, this iteration takes the form

(3) vk+1 = γk(vk + P−1T (ρ(vk))vk), k = 0, 1, . . . ,

with normalization coefficients γk ∈ C, an initial guess v0 ∈ Cn, and a Hermitian
preconditioner P ∈ Cn×n. Usually, P = −T (σ) for some shift σ not too far away
from λ1 but the general formulation (3) allows for more flexibility, such as the use
of multigrid preconditioners.

In [3, Sec. 3], it was shown that (3) with P = T (σ) converges linearly to an
eigenvector belonging to a simple eigenvalue, provided that σ is sufficiently close
to that eigenvalue. Jarlebring and Michiels [2] derived explicit expressions for
the convergence rate by viewing (3) as a fixed point iteration and considering the
spectral radius of the fixed point iteration matrix.

Our new convergence analysis is tailored to the particular situation of having a
Rayleigh functional, and differs significantly from [2, 3]. Our major motivation for
reconsidering this question was to establish mesh-independent convergence rates
when applying (3) with a multigrid preconditioner to the finite element discretiza-
tion of a nonlinear PDE eigenvalue problem. The analyses in [2, 3] do not seem to
admit such a conclusion, at least it is not obvious. On the other hand, such results
are well known for the linear case T (λ) = λI − A, for which (3) comes down to
the preconditioned inverse iteration (PINVIT). In particular, the seminal work by
Neymeyr establishes tight expressions for the convergence of the eigenvalue and
eigenvector approximations produced by PINVIT. Unfortunately, the elegance of
Neymeyr’s mini-dimensional analysis of the Rayleigh-quotient is strongly tied to
linear eigenvalue problems; there seems little hope to carry it over to the gen-
eral nonlinear case. Our approach proceeds by directly analysing the convergence
of the eigenvector. Although leading to weaker bounds than Neymeyr’s analysis
in the linear case, the obtained results still allow to establish mesh-independent
convergence rates.

In the first step, we show that

tanφP (vk+1, x1) ≤ γ · tanφP (vk, x1) +O(ε2),
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where x1 is an eigenvector belonging to λ1 and φP denotes the angle in the geom-
etry induced by P . In the second step, we show that γ < 1 (independent of h) for
a multigrid preconditioner of T (σ) with σ sufficiently close to λ1.
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Rational Krylov for nonlinear eigenvalue problems arising from PDEs

Karl Meerbergen

(joint work with Roel Van Beeumen and Wim Michiels)

The solution of the nonlinear eigenvalue problem, in its most general form, written
as

A(λ)x = 0 , x 6= 0

where λ is the eigenvalue, is appearing more and more often in applications arising
from PDEs. We present three examples.

The first example is the delay eigenvalue problem, which is related to the delay
differential equation. Indeed, the delayed term leads to a term involving exponen-
tials. For example, the standard delay equation

u′(t) +Au(t) +Bu(t− τ) = f(t)

leads to the eigenvalue problem

λx +Ax+ e−λτBx = 0.

The second example is the 1D Schroedinger equation on an infinite domain
whose potential is flat everywhere except in an interval. The eigenvalue prob-
lem is formulated as the classical equation with boundary conditions that reflect
the exponential decay of the eigenfunction for a flat potential. These boundary
conditions lead to an eigenvalue problem of the form

(−D + diag(U) + Σ(λ))x = λx

where D is the Laplacian, U is the discrete potential, and Σ is a matrix that is zero
everywhere except on both ends of the main diagonal, where terms exp(i

√
λ− si),

i = 1, 2, appear. As a result, Σ is a nonlinear term of the eigenvalue problem.
The extension to the 2D equation leads to Σ with more nonzero elements, also
including exponentials of square roots [4].

The third and last example arises from the study of nonlinear damping in
mechanical engineering. New damping models are more and more often used for
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more accurate numerical simulations. The example that we report on here is a
model of a clamped sandwhich beam [3] that takes the form

Kex+
G0 +G∞(iλτ)α

1 + (iλτ)α
Kv − λ2Mx = 0

with α = 0.675 and τ = 8.230.
We now discuss numerical methods for solving the nonlinear eigenvalue problem.

All problem mentioned higher can be written as

(A0 + λA1 +

m∑

i=1

fi(λ)Bi)x = 0

where fi are scalar functions in the complex plane. For the nonlinear eigenvalue
problem, we have local search methods and global search methods. The prototype
examples of local search methods are Newton’s method and residual inverse iter-
ation [2]. Global method first build a rational or polynomial approximation to fj ,
j = 1, . . . ,m and then solve the related polynomial or rational eigenvalue problem
[1].

In this talk, we discuss methods that lie in between these two classes of methods.
The Newton method and the residual inverse iteration method can be seen as
methods that approximate A(λ) by a polynomial of degree one. We build an
interpolating polynomial of degree k for A(λ) in the points σ0, . . . , σk ∈ C and
then perform k iterations of the rational Krylov method on the linearization of the
resulting polynomial eigenvalue problem. When we use Newton polynomials and
choose the poles of the rational Krylov method equal to the nodes of the Newton
interpolation, then the algorithm can be organized in such a way that the nodes
need not be determined in advance. This allows for tuning these parameters during
the execution of the algorithm. In this way, we obtain a method that converges
in less iterations than, e.g, the Newton method. The method thus behaves like a
local search method, but can be used for building a global approximation, but in
a dynamic way [3].

An appealing extension of the method lies in the use of rational Newton poly-
nomials, that also lead to a similar recurrence relation as the classical polynomials
and also allow for an efficient implementation of the rational Krylov method. In
this case, we choose the poles and nodes as Leja-Bagpy points for optimal ap-
proximation of the nonlinear functions. The method can then be used as a global
search method by selecting poles on the boundary of the search domain, in a Leja
fashion.

The efficient and reliable implementation uses matrix functions for computing
the divided differences required for Newton interpolation, proper scaling of the
base functions and takes into account low rank of the nonlinear terms.
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Solving symmetric quadratic eigenvalue problems with SLEPc

Jose E. Roman

(joint work with Carmen Campos)

This work [1] is framed in the context of SLEPc, the Scalable Library for Eigenvalue
Problem Computations [2]. SLEPc contains parallel implementations of various
eigensolvers for different types of eigenproblems. The linear eigenvalue problem
solver (EPS) contains basic methods as well as more advanced algorithms, includ-
ing Krylov-Schur, Generalized Davidson, Jacobi-Davidson, Rayleigh-quotient con-
jugate gradient or the contour integral spectral slicing technique. Eigensolvers can
be combined with spectral transformations (such as shift-and-invert) or precondi-
tioners in the case of preconditioned eigensolvers. Linear solvers as well as data
structures for matrices and vectors are provided by PETSc [3], on which SLEPc
is based. Further functionality of SLEPc includes solvers for the partial singular
value decomposition, as well as quadratic and general nonlinear eigenproblems.

For quadratic eigenvalue problems (QEP) we provide a solver based on lineariza-
tion, as well as various memory-efficient solvers. The former explicitly builds the
matrices of a companion linearization of the quadratic problem and then invokes a
linear eigensolver from EPS to obtain the solution. The latter include the Q-Arnoldi
and TOAR methods, that aim at exploiting the structure of the linearization in
such a way that memory requirements for storing the Krylov basis are roughly
divided by two.

In this work we investigate how to adapt the Q-Arnoldi method [4] for the case
of symmetric quadratic eigenvalue problems, that is, we are interested in comput-
ing a few eigenpairs (λ, x) of (λ2M +λC+K)x = 0 with M,C,K symmetric n×n
matrices. This problem has no particular structure, in the sense that eigenvalues
can be complex or even defective. Still, symmetry of the matrices can be ex-
ploited to some extent. For this, we perform a symmetric linearization Ay = λBy,
where A,B are symmetric 2n× 2n matrices but the pair (A,B) is indefinite and
hence standard Lanczos methods are not applicable. We implement a symmetric-
indefinite Lanczos method [5] and enrich it with a thick-restart technique [6]. This
method uses pseudo inner products induced by matrix B for the orthogonalization
of vectors (indefinite Gram-Schmidt). Restarting the pseudo-Lanczos recurrence
requires special ways of solving the projected problems, using techniques such as
those described in [7], that try to minimize the use of non-orthogonal transforma-
tion to try to elude instability.
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The next step is to write a specialized, memory-efficient version that exploits
the block structure of A and B, referring only to the original problem matrices
M,C,K as in the Q-Arnoldi method. This results in what we have called the
Q-Lanczos method. The Q-Arnoldi method may suffer from instability when the
Hessenberg matrix of the Arnoldi relation has large norm, and so may Q-Lanczos.
Therefore, we need to define a stabilized variant analog of the TOAR method,
which represents the basis vectors of the pseudo-Lanczos recurrence as the prod-
uct of two matrices that are orthogonal with respect to some non-standard inner
product (STOAR). Restarting in this case is more complicated and involves com-
puting the SVD of a small matrix.

We show results obtained with parallel implementations of all methods in SLEPc,
when solving several problems from the NLEVP collection [8]. Although the meth-
ods relying on an indefinite inner product are not guaranteed to be stable, we
observe reasonably good behaviour of the pseudo-Lanczos method operating on
the explicit linearization as well as the STOAR variant.
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Computation of the H∞-Norm for Large-Scale Systems

Matthias Voigt

(joint work with Peter Benner and Ryan Lowe)

In this short report we consider linear time-invariant descriptor systems

Eẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t),

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, x(t) ∈ Rn is the descriptor vector,
u(t) ∈ Rm is the input vector, and y(t) ∈ Rp is the output vector. Assuming that
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the pencil λE − A is regular, the relationship between inputs and outputs in the
frequency domain is given by the transfer function

G(s) := C(sE −A)−1B.

By RHp×m∞ we denote the Banach space of all rational p × m matrix-valued
functions that are analytic and bounded in the open right half-plane C+ :=
{s ∈ C : Re(s) > 0}. For G ∈ RHp×m∞ , the H∞-norm is defined by

‖G‖H∞
:= sup

s∈C+

‖G(s)‖2 = sup
ω∈R

‖G(iω)‖2 .

The aim is to compute this norm under the assumption that all the matrices
E, A, B, C are large and sparse and that m, p≪ n. We propose two approaches
to achieve this.

The first approach is presented in [1] and considers perturbed transfer functions

G∆(s) = C(sE − (A+B∆C))−1B.

We define the structured complex stability radius by

rC(E,A,B,C) := inf
{
‖∆‖2 : G∆ 6∈ RHp×m∞ for some ∆ ∈ Cm×p

}
.

It can be shown that

rC(E,A,B,C) =

{
1/ ‖G‖H∞

if G 6≡ 0,

∞ if G ≡ 0.

The condition that G∆ 6∈ RHp×m∞ can be achieved in three ways. First, it can
happen that G∆(·) is not well-defined which is the case when the pencil λE− (A+
B∆C) is singular. Second, G∆(·) might be improper, i.e., unbounded at infinity.
These two cases are treated separately. The algorithm concentrates on the third
case, namely G∆(·) has poles on the imaginary axis. This computation is based
on structured ε-pseudospectra

Πε(E,A,B,C) =
{
s ∈ C : s is a pole of G∆(·) for a ∆ ∈ Cm×p with ‖∆‖2 < ε

}
.

To compute rC(E,A,B,C) we have to find the value of ε for which Πε(E,A,B,C)
touches the imaginary axis. This is done in a nested iteration, similarly as in [2].
In the inner iteration we compute the rightmost point of Πε(E,A,B,C) for a fixed
value of ε. This is done by computing an appropriate perturbation ∆ that moves
one of the poles of G(·) to the boundary of Πε(E,A,B,C). We exploit the fact that
an optimizing perturbation is of rank one, i.e., ∆ = εuvH with u ∈ Rm, v ∈ Rp

and ‖u‖2 = ‖v‖2 = 1. In the outer iteration, ε is varied by applying Newton’s
method. To determine the pole that should be perturbed in the inner iteration we
compute some dominant poles of G(·) [3]. This is particularly important to find
global instead of local optimizers.
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The second method goes back to [4] and has been generalized to descriptor
systems in [5]. There we consider even matrix pencils of the form

Hγ(λ) :=




0 −λET −AT −CT 0
λE −A 0 0 −B
−C 0 γIp 0
0 −BT 0 γIm


 .

If λE − A has no finite, purely imaginary eigenvalues and γ > minω∈R ‖G(iω)‖2,
then ‖G‖H∞

≥ γ if and only ifHγ(λ) has finite, purely imaginary eigenvalues. This
can be used to implement an algorithm that iterates over γ and checks in every
step whether Hγ(λ) has finite, purely imaginary eigenvalues. These eigenvalues
also determine the boundary points of the components of the level-set

Ωγ := {ω ∈ R : ‖G(iω)‖2 > γ} .

As discussed in [5], is important to find all finite, purely imaginary eigenvalues
to obtain the entire level-set and to ensure global convergence to the H∞-norm.
However, in the large-scale setting, we cannot compute all eigenvalues of Hγ(λ),
but we can only use iterative methods to determine some eigenvalues close to
a number of prespecified shifts. However, heuristically the H∞-norm is attained
close to a dominant pole. Therefore, we use the dominant poles to determine shifts
for the even eigensolver presented in [6]. In this way, we cannot ensure to find the
whole level-set Ωγ , but we can still find one of its components that contains the
optimizing frequency ω. The results of this approach and a comparison to the
pseudospectral method are discussed in [7]. Numerical examples show that both
methods work well, even for rather difficult examples.
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Inner-outer methods for large-scale two-sided eigenvalue problems

Patrick Kürschner

(joint work with Melina Freitag)

In this work we investigate the numerical solution of large-scale, two-sided, non-
Hermitian eigenvalue problems

Ax = λMx and yHA = λyHM

with A, M ∈ Cn×n, eigenvalues λ ∈ C, and right, left eigenvectors x, y ∈ Cn\{0}.
We focus on basic iterative methods such as two-sided inverse and Rayleigh quo-
tient iteration [5] for computing a single eigentriple (λ, x, y). On the one hand,
the left eigenvectors y are useful in important applications, e.g., modal truncation
of large dynamical systems. On the other hand, their incorporation can also be
beneficial for the performance of eigenvalue methods for non-normal problems.
Two-sided inverse and Rayleigh quotient iteration can be summarized as follows:

1. Choose a shift µk.
2. Solve the linear systems

(A− µkM)û =Muk and (A− µkM)H v̂ =MHvk(1)

for û, v̂.
3. Normalize the vectors via uk+1 = û/‖û‖, vk+1 = v̂/‖v̂‖.
4. Compute a new eigenvalue approximation by the two-sided Rayleigh quo-

tient θk+1 =
vHk+1Auk+1

vHk+1Muk+1
.

5. Test for convergence, e.g., using the eigenvalue residuals ruk+1
= (A −

θk+1M)uk+1 and rvk+1
= (A − θk+1M)Hvk+1. Repeat steps 1-5 if the

approximations θk+1, uk+1, vk+1 are not accurate enough.

The above iteration is initialized by vectors u0 ≈ x, v0 ≈ y. Two-sided inverse
iteration (TII) uses a fixed shift µk = µ ≈ λ in step 1 which has to be specified
beforehand, whereas two-sided Rayleigh quotient iteration (TRQI) uses µk = θk.
If the iteration converges, i.e., (θk, uk, vk)→ (λ, x, y), the local rate of conver-
gence of TII and TRQI is linear and cubic, respectively, if the linear systems in
(1) are solved exactly [1, 5, 4]. Since solving these linear systems is the most ex-
pensive part of the above iteration, this is often done inexactly, e.g., by employing
Krylov subspace methods for linear systems. The iterations of this linear solver
are commonly referred to as inner iterations in contrast to the outer iterations of
the method for the eigenvalue computation. It can be shown that the convergence
rates of the exact methods can be reestablished under certain conditions [1]. In
general, it can be said that with inexact solves we obtain the same convergence rate
as for exact solves if the solve tolerance is chosen proportional to the eigenvalue
residuals [3, 2].

In this report we focus on the usage of preconditioners for the Krylov subspace
methods used within the inner iterations which is typically necessary for the large-
scale case. For the application in the considered specific eigenvalue iteration,
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specially tailored preconditioning strategies [3] can be employed which further
improve the performance of the preconditioned Krylov subspace solver. In [3]
it is shown that, when a preconditioner P satisfies, e.g., Puk = Muk for the
first linear system in (1), the number of necessary inner iterations to obtain an
approximation to û of a certain precision is notably reduced. As result one obtains
the so called tuned preconditioners which are constructed as rank-one updates of
standard preconditioners P ≈ A− µkM :

P = P + (Muk − Puk)uHk .

For the adjoint linear system in (1) one can choose

Q = PH + (MHvk − PHvk)vHk ,

which satisfies Qvk =MHvk. Another possibility is to replaceM by A which leads
to tuned preconditioners satisfying Puk = Auk and Qvk = AHvk. The application
of P and Q introduces only minor additional computations [3].
The coefficient matrices (1) are adjoint to each other such that both linear systems
can be dealt with simultaneously by certain Krylov subspace methods, e.g., BiCG
and QMR which are short-recurrence methods based on the two-sided Lanczos
process. For the use in such two-sided Krylov subspace methods, the tuned pre-
conditioners have to be adapted accordingly since a tuned preconditioner S has to
satisfy both

Suk =Muk and SHvk =MHvk

at the same time. It turns out that for these conditions to hold it is not sufficient
to modify a standard preconditioner P by a rank-one update. In [1] a rank-two
update of P is proposed as

S = P + [Muk, Puk]

[
vHk Puk + 1 −1
−1 0

]
[MHvk, P

Hvk]
H

with the normalization vHk Muk = 1. Note that M can also be replaced by A. It
is worth mentioning that the M -variant of S allows to draw novel connections [1]
between TRQI and a simplified version of the two-sided Jacobi-Davidson algorithm
[4]. The costs for applying S are about the same as for applying both P and Q

together.
As short numerical experiment we consider the matrices given by the anemo

system of the Oberwolfach model reduction benchmark collection. The dimension
is n = 29008 and we look for λ = −305.35 using TII with initial guess µ = −300.
The outer iteration is terminated when the norm of the eigenvalue residuals ruk

and rvk are smaller than 10−10. As inner solver we apply preconditioned BiCG
which is terminated when the residuals of the linear systems are smaller than
0.1·min

(
1, ‖ruk/vk‖

)
. The results in Table 2 show that using S reduces the number

of inner iterations in BiCG compared to the usage of the standard preconditioners.
Further experiments can be found in [1], where in several cases using BiCG with
S even outperforms the separate solution of (1) with GMRES using P and Q.
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Table 2. Results of inexact TII using standard and tuned pre-
conditioners for the anemo example.

Preconditioner outer inner avg. #precs time

standard 6 1530 306 1530 15.8
tuned, Sx =Mx 6 1116 223 1126 9.9
tuned, Sx = Ax 7 1120 187 1132 10.4

One further, currently investigated research perspective is the generalization of
the concept of tuned preconditioners to inexact, one- and two-sided Newton-type
eigenvalue algorithms for nonlinear eigenvalue problems, e.g., nonlinear inverse
iteration and Rayleigh functional iteration [6, 7]. Preliminary experiments confirm
that tuned preconditioners can also be applied there and lead again to a reduction
of inner iterations.
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Computer-assisted existence and multiplicity proofs for semilinear
elliptic boundary value problems via numerical eigenvalue bounds

Michael Plum

Many boundary value problems for semilinear elliptic partial differential equa-
tions allow very stable numerical computations of approximate solutions, but are
still lacking analytical existence proofs. We propose a method which exploits the
knowledge of a ”good” numerical solution, in order to provide a rigorous proof of
existence of an exact solution close to the approximate one. This goal is achieved by
a fixed-point argument (similar to the Newton-Cantorovich Theorem) which takes
all numerical errors into account, and thus gives a mathematical proof which is not
”worse” than any purely analytical one. The main tool in the proof are bounds
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for eigenvalues of the elliptic operator generated by linearization of the nonlin-
ear problem at the computed approximate solution. These eigenvalue bounds are
again obtained by computer-assisted means, by first computing ”good” approxi-
mate eigenpairs and then using variational arguments to get error bounds (and
thus safe enclosures) for the crucial eigenvalues.

The method is used to prove existence and multiplicity statements for some
examples, including cases where purely analytical methods had not been successful.

Accurate Computations of Eigenvalues of Differential Operators

Qiang Ye

We are concerned with accurate computations of a few eigenvalues/eigenvectors
of a large symmetric positive definite matrix arising in discretization of differen-
tial operators. When a fine discretization is used, the matrix may be extremely
ill-conditioned. In that case, the accuracy of the smaller eigenvalues that are
computed for the matrix may be low.

Consider a general symmetric positive definite matrix A and let 0 < λ1 ≤ λ2 ≤
· · · ≤ λn be its eigenvalues. Conventional dense matrix eigenvalue algorithms
(such as the QR algorithm) are normwise backward stable, i.e., the computed

eigenvalues λ̂i are the exact eigenvalues of A+E with ‖E‖2 = O(u)‖A‖2, where u
is the machine roundoff unit. Eigenvalues of large (sparse) matrices are typically
computed by an iterative method (such as the Lanczos algorithm), which produces

an approximate eigenvalue λ̂i and an approximate eigenvector x̂i whose residual

‖Ax̂i − λ̂ix̂i‖2 converges in a floating point arithmetic is at best (at convergence)

O(u)‖A‖2‖x̂i‖2. In both cases, we have |λ̂i − λi| ≤ O(u)‖A‖2. This is sufficient
to guarantee good relative accuracy for larger eigenvalues (i.e. for λi ≈ λn), but
for smaller eigenvalue (i.e. for λi ≈ λ1), we have

(1)
|λ̂i − λi|

λi
≤ ‖E‖2

λi
≤ O(u)λn

λi
≈ O(u)κ2(A)

where κ2(A) = ‖A‖2‖A−1‖2. is the condition number in 2-norm. Therefore, the
best relative accuracy of the smaller eigenvalues that one can compute depends on
the condition number of A.

Consider discretizations of differential operators. The finite difference or the
finite element methods lead to a large and sparse matrix eigenvalue problem. Here
it is usually the smaller eigenvalues that are of interest and are well approximated
by the discretization. However, as the discretization mesh size h decreases, the
condition number increases and then the relative accuracy of smaller eigenvalues
as computed by existing algorithms deteriorates. For a majority of problems,
this deterioration in relative accuracy may be mild and harmless as it may be
within the discretization error. Specifically, the condition numbers are typically
of order O(h−2) for second order differential operators and of order O(h−4) for
fourth order differential operators. However, for some important problems such
as fourth order differential operators which arise in vibrational analysis of elastic
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plates or beams, even for modestly small mesh size, the condition number of
its discretization increases very rapidly in the order O(h−4). Hence, even for
a modestly small value of h, smaller eigenvalues computed might have very low
relative accuracy resulting an inaccurate final approximate eigenvalue.

In this work, we present algorithms that accurately compute the smaller eigen-
values of a differential operator. For second order differential operators, the finite
difference discretization typically leads to a diagonally dominant matrix. We then
use an accurate LDU factorization algorithm recently developed for diagonally
dominant matrices to invert the matrix accurately in the shift-and-invert trans-
formation, for which the larger eigenvalues and hence the corresponding smaller
eigenvalues of the original problem are computed accurately. For fourth order dif-
ferential operators, we consider some special finite difference discretizations that
can be expressed as a product of two diagonally dominant matrices. This has
been developed for 1 dimensional biharmonic operator with the clamped bound-
ary condition. Then each diagonally dominant factor of the discretization can
be factorized accurately and the discretization matrix can be accurately inverted.
Again, in this way, the smaller eigenvalues are accurately computed. Numerical
examples are presented to illustrate the effectiveness of the new algorithms.

Low-rank tensor methods with subspace correction for symmetric
eigenvalue problems

André Uschmajew

(joint work with Daniel Kressner, Michael Steinlechner)

Low-rank tensor methods provide a possible way to solve, under some assumptions,
even extremely high-dimensional PDEs or PDE eigenvalue problems, as they can
occur, e.g., in electronic structure calculations, quantum spin systems, or stochas-
tic PDEs, without having to face the curse of dimensionality. A recent overview
over the expanding field of low-rank tensor methods is given in [3].

Consider the model problem

(1)
−∆u(x) + V (x)u(x) = λu(x) for x ∈ Ω = (a, b)d,

u(x) = 0 for x ∈ ∂Ω,
on an appropriate function space with a given potential V . We seek for the p
smallest eigenvalues. After discretization on a tensor product grid using nµ grid
points for variable xµ we get a huge trace minimization problem,

(2) min{trace(UTAU) : UTU = Ip},
with the discretized operator A being of size n1n2 · · ·nd × n1n2 · · ·nd. It is clear
that this problem cannot be attacked using standard linear algebra algorithms
when d is very large, say d = 20. In fact, one is then faced with the fundamental
problem of storing and accessing the discrete eigenvectors uα, α = 1, 2, . . . , p, not
even speaking of matrix-vector operations.



Numerical Solution of PDE Eigenvalue Problems 3297

The situation changes if we regard the discrete eigenvectors uµ as d-dimensional
tensors of size n1 × n2 × · · · × nd, and assume that they have a low tensor rank,
or are at least very well approximable by tensors of low rank. As there are several
notions of tensor rank for tensors of order higher than two (matrices), the precise
meaning of this statement depends on the tensor decomposition (or format) one
aims at. We assume the sought p eigenvectors being well approximable by tensors
in the block TT format [1] with low rank. In this tensor format, which is related
to Wilson’s numerical renormalization group for one-dimensional quantum many-
body systems [5], the eigenvectors uα (the columns of U) are represented point-
wise as matrix products

(uα)i1,i2,...,id = U1(i1) · · ·Uµ−1(iµ−1)Uµ,α(iµ)Uµ+1(iµ+1) · · ·Ud(id), 1 ≤ α ≤ p,

with matrices Uν(iν) ∈ Rrν−1×rν , ν 6= µ, and Uµ,α(iµ) ∈ Rrµ−1×rµ , α = 1, 2, . . . , p
(called TT cores). One fixes r0 = rd = 1 so that the product indeed results in a
scalar for every multi-index (i1, i2, . . . , id). The other ranks rν one would like to
keep as small as possible.

The position µ of the index α enumerating the eigenvectors is arbitrary, and can
be changed. It can be moved to the right or left using singular value decomposition.
Such a shift will change the involved TT cores, as well as the involved rank (e.g.,
rµ when shifting from µ to µ+ 1). Having this tool at hand one can optimize the
TT cores by sweeping: one fixes all cores except at position µ, minimizes (2) as a
function of the Uµ,α(iµ), shifts the index α to a neighboring core, and repeats the
process [1, 5]. The minimization with respect to the Uµ,α(iµ) is a projection of
the huge trace minimization of (2) on an (rµ−1nµrµ)-dimensional subspace only,
and hence can be in principal addressed using a standard solver like LOPBCG as
long as the ranks are kept moderate.

When p ≥ 2, a surprising feature of the outlined alternating block optimization
algorithm is rank adaptivity. Consequently, the final target ranks do not have to be
fixed in advance, which would be a nontrivial task. However, the procedure is not
rank adaptive when p = 1, i.e. when only an eigenvector for the minimal eigenvalue
is sought, since there is no index to shift. In a recent work [2] on solving high-
dimensional linear equations in TT format, Dolgov and Savostyanov presented the
alternating minimal energy (AMEn) idea, which can be of use in this situation. It
aims at accelerating the alternating core optimization by steepest descent steps. In
such a step, a low-rank approximation of the DMRG residual (the residual with
respect to two neighboring cores) is added to the current approximation. This
addition increases the used ranks, and thus may also serve for rank adaption.

In our work [4] we transfer the AMEn idea to eigenvalue problems of the
form (2). In this context it can be interpreted as a local subspace correction
procedure which mimics the two-site DMRG algorithm [6] at least to first order.
Additionally, the benefit and implementation of using preconditioned residuals
is discussed. We test the algorithms for the Henon-Heiles potential and for the
Newton potential.
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For the named potentials, astonishingly high-dimensional eigenvalue problems
can be solved by the outlined techniques. The theoretical proof of the approxima-
bility of eigenfunctions by low-rank tensors is usually difficult and an important
research topic. Also the convergence properties of these successful algorithms are
poorly understood so far, and deserve a closer look in the future.
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Hierarchical Multilevel Substructuring for PDE Eigenvalue Problems

Lars Grasedyck

(joint work with Peter Gerds)

In our paper we introduce a new method, called H-AMLS, which computes eigen-
pair approximations for an elliptic eigenvalue problem. The new method combines
the automated multi-level substructuring (AMLS) method [2, 3, 4] with the con-
cept of hierarchical matrices (H-matrices) [5, 6], and it allows us to compute a
large amount of eigenvalue approximations at once in almost linear complexity.

AMLS is a substructuring method projecting the discretized eigenvalue problem
onto a small subspace. A reduced eigenvalue problem is computed which deliv-
ers approximate solutions of the original problem. Whereas the AMLS method
is very effective in the two-dimensional case, it is getting very expensive in the
three-dimensional case, due to the fact that it computes the reduced eigenvalue
problem via dense matrix operations. In the new method these dense matrices are
approximated by data-sparse H-matrices and the corresponding matrix operations
can be performed in almost linear complexity. Under certain assumptions based
on the approximability of eigenfunctions in a finite element space of size N [1, 7]
we provide computational bounds of the order O(N logN) for the new method.
Beside the discretisation error two additional errors occur; the projection error of
the AMLS method, and the error caused by the use of the H-matrix approximation
which are controlled by several parameters. We investigate the influence of these
parameters for the Laplace eigenvalue problem defined on a three-dimensional do-
main.
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Whereas the computational cost of a classical shift-invert subspace solver de-
pends at least linearly on the numberM of sought eigenpairs, the H-AMLS method
computesM eigenpairs at once in almost linear complexity O((M+N) logN). Fur-
thermore, we note that the benchmarked large-scale three-dimensional problems
could be easily solved with H-AMLS whereas the solution of these problems with
classical AMLS is very expensive because of the O(N2) scaling of AMLS in the
three-dimensional case.
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Institut für Mathematik
Technische Universität Berlin
Sekr. MA 4-5
Strasse des 17. Juni 136
10623 Berlin
GERMANY

Prof. Dr. Valeria Simoncini

Dipartimento di Matematica
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