An Actor-Critic Algorithm for Sequence Prediction

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Ryan Lowe, Joelle Pineau, Aaron Courville, Yoshua Bengio

RL Background

• Have states s, actions a, rewards r, policy $\pi = p(a|s)$

• Return:
$$R = \sum_{t=0}^{T} \gamma^t r_{t+1}$$

- Value function: $V(s_t) = E_{a \sim \pi}[R|s_t]$
- Action-value function: $Q(s_t, a_t) = E_{a \sim \pi}[R|s_t, a_t = a]$

TD learning

- Methods for policy evaluation (i.e. calculating the value function for a policy)
- Monte Carlo learning: wait until end of the episode to observe the return ${\cal R}$

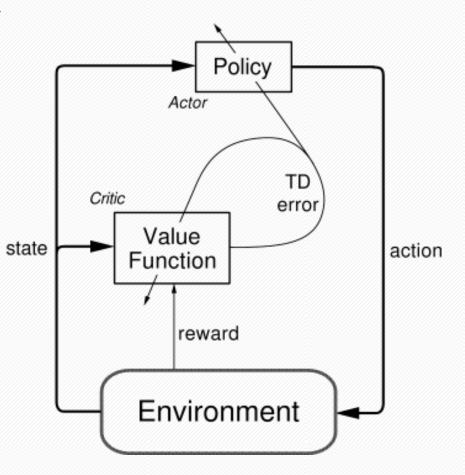
$$V(s_t) = V(s_t) + \alpha[R - V(s_t)]$$

• <u>TD(0) learning</u>: bootstrap off your previous estimate of V $V(s_t) = V(s_t) + \alpha [(r_t + \gamma V(s_{t+1})) - V(s_t)]$

•
$$\delta_t = [(r_t + \gamma V(s_{t+1})) - V(s_t)]$$
 is the TD-error

Actor-Critic

- Have a parametrized value function V (the critic) and policy π (the actor)
- Actor takes actions according to π , critic 'criticizes' them with TD error
- TD error drives learning of both actor and critic

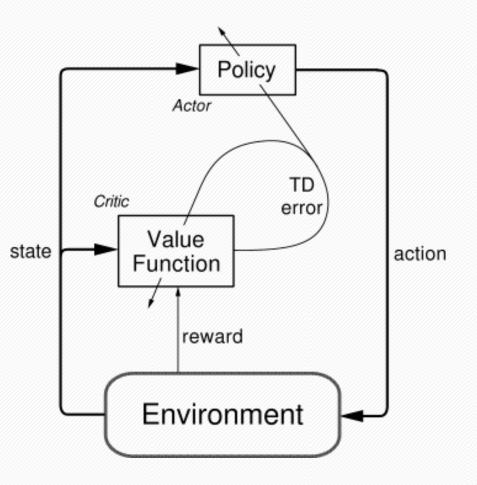


(Sutton & Barto, 1998)

Actor-Critic

- Critic learns with usual TD learning, or with LSTD
- Actor learns according to the policy gradient theorem:

$$\frac{dR}{d\theta} = \mathcal{E}_{\pi_{\theta}}[\nabla_{\theta}\log \pi_{\theta}(s,a) \ Q^{\pi_{\theta}}(s,a)]$$



Actor-Critic for Sequence Prediction

- Actor will be some function with parameters θ that predicts sequence one token at a time (i.e. generates 1 word at a time)
- Critic will be some function with parameters ϕ that computes the TD-error of decisions made by actor, which is used for learning

Why Actor-Critic?

- 1) Sequence prediction models usually trained with teacher forcing, which leads to <u>discrepancies between train and test time</u>. With actor-critic, can condition on actor's previous outputs
- 2) Allows for the direct optimization of a task-specific score, e.g. BLEU, rather than log-likelihood

Actor-Critic for Sequence Prediction

- Since we are doing supervised learning, there are a couple differences to the RL case:
- 1) We can condition the critic on the actual ground-truth answer, to give a better training signal
- 2) Since there is a train/test split, don't use critic at test time
- 3) Since there is no stochastic environment, we can sum over all candidate actions

Notation

- Let X be the input sequence, $Y = (y_1, ..., y_T)$ be the target output sequence
- Let $\hat{Y}_{1,\dots,t} = (\hat{y}_1,\dots,\hat{y}_t)$ be the sequence generated so far
- Our critic $\hat{Q}(a; \hat{Y}_{1,...,t}, Y)$ is conditioned on outputs so far $\hat{Y}_{1,...,t}$, and ground-truth output Y
- Our actor $p(a; Y_{1,...,t}, X)$ is conditioned on outputs so far $Y_{1,...,t}$, and the input X

Policy Gradient for Sequence Prediction

• Denote V as the expected reward under π_{θ}

Proposition 1 The gradient $\frac{dV}{d\theta}$ can be expressed using Q values of intermediate actions: $\frac{dV}{d\theta} = \mathbb{E}_{\hat{Y} \sim p(\hat{Y})} \sum_{t=1}^{T} \sum_{a \in \mathcal{A}} \frac{dp(a|\hat{Y}_{1...t-1})}{d\theta} Q(a; \hat{Y}_{1...t-1})$

Algorithm

- 2: while Not Converged do
- 3: Receive a random example (X, Y).
- 4: Generate a sequence of actions \hat{Y} from p'.
- 5: Compute targets for the critic

$$q_{t} = r_{t}(\hat{y}_{t}; \hat{Y}_{1...t-1}, Y) + \sum_{a \in \mathcal{A}} p'(a | \hat{Y}_{1...t}, X) \hat{Q}'(a; \hat{Y}_{1...t}, Y)$$

Algorithm

6: Update the critic weights ϕ using the gradient

$$\frac{d}{d\phi} \left(\sum_{t=1}^{T} \left(\hat{Q}(\hat{y}_t; \hat{Y}_{1\dots t-1}, Y) - q_t \right)^2 + \lambda C \right)$$

Algorithm

7: Update actor weights θ using the following gradient estimate

$$\begin{split} \frac{dV(X,Y)}{d\theta} = \\ \sum_{t=1}^{T} \sum_{a \in \mathcal{A}} \frac{dp(a|\hat{Y}_{1...t-1},X)}{d\theta} \hat{Q}(a;\hat{Y}_{1...t-1},Y) \end{split}$$

Deep implementation

- For the actor, use an RNN with 'softattention' (Bahdanau et al., 2015)
- Encode source sentence X with bidirectional GRU
- Compute weighted sum over x's at each time step using weights α

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j.$$

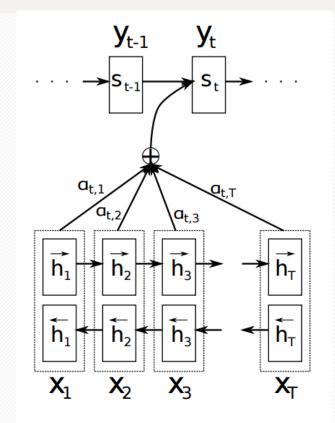


Figure 1: The graphical illustration of the proposed model trying to generate the *t*-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

Deep implementation

- For critic use the same architecture, except conditioned on Y instead of X
- Input: the sequence generated so far $\hat{Y}_{1...t}$, and the ground-truth sequence Y
- <u>Output</u>: Q-value prediction

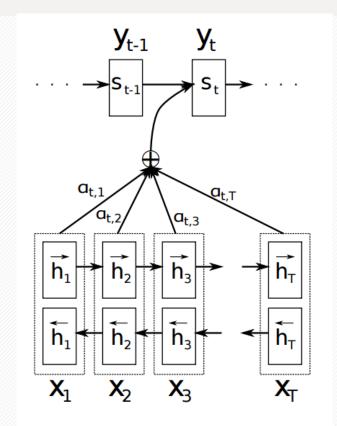


Figure 1: The graphical illustration of the proposed model trying to generate the *t*-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

Tricks: target network

- Similarly to DQN, use a target network
- In particular, have both delayed actor p' and a delayed critic Q', with params θ' and ϕ' , respectively
- Use this delayed values to compute target for critic:

$$q_t = r_t(\hat{y}_t; \hat{Y}_{1...t-1}, Y) + \sum_{a \in \mathcal{A}} p'(a | \hat{Y}_{1...t}, X) \hat{Q}'(a; \hat{Y}_{1...t}, Y)$$

Tricks: target network

- After updating actor and critic, update delayed actor and critic using a linear interpolation:
 - 8: Update delayed actor and target critic, with a constant $\tau \ll 1$:

$$\theta' = \tau \theta + (1 - \tau)\theta'$$
$$\phi' = \tau \phi + (1 - \tau)\phi'$$

Tricks: variance penalty

- <u>Problem</u>: critic can have high variance for words that are rarely sampled
- <u>Solution</u>: artificially reduce values of rare actions by introducing a variance regularization term:

$$C = \sum_{a} \left(\hat{Q}(a; \hat{Y}_{1...t-1}) - \frac{1}{|\mathcal{A}|} \sum_{b} \hat{Q}(b; \hat{Y}_{1...t-1}) \right)^{2},$$

Tricks: reward decomposition

- Could train critic using all the score at the last step, but this signal is sparse
- Want to improve learning of critic (and thus the actor) by providing rewards at each time step
- If final reward is $R(\hat{Y})$, decompose the reward into scores for all prefixes: $(R(\hat{Y}_{1,...,1}), R(\hat{Y}_{1,...,2}), ..., R(\hat{Y}_{1,...,T}))$
- Then the reward at time step *t* is:

$$r_t(\hat{y}_t) = R(\hat{Y}_{1...t}) - R(\hat{Y}_{1...t-1})$$

Tricks: pre-training

- If you start off with a random actor and critic, it will take forever to learn, since the training signals would be terrible
- Instead, use pre-training: first train actor to maximize loglikelihood of correct answer
- Then, train critic by feeding samples from the (fixed) actor
- Similar to pre-training used in AlphaGo

- First test on a synthetic spelling correction task
- Consider very large natural language corpus, and randomly replace characters with a random character.
- Desired output: sentences spelled correctly
- Use One Billion Word dataset (no chance of overfitting)
- Use character error rate (CER) as reward

- Also test on real-world German-English machine translation task
- 153,000 aligned sentence pairs in training set
- Use convolutional encoder rather than bi-directional GRU (for comparison to other works)
- Use BLEU score as reward

Setup	Character Error Rate		
	Log-likelihood	Actor-Critic	
$L = 10, \eta = 0.3$	18.6	17.3	
$L = 30, \eta = 0.3$	18.5	17.1	
$L = 10, \eta = 0.5$	38.2	35.7	
$L=30, \eta=0.5$	41.3	37.1	

Table 1: Character error rate of different models on the spelling correction task. In the four setups described, L is the length of input strings, η is the probability of replacing a character with a random one.

Paper	BLEU		
	Log-likelihood	RL training	
Ranzato et al.	$17.74 \ (\leq 20.3)$	$20.73~(\leq 21.9~)$	
This work	19.23 (21.33)	21.59 (22.34)	
Table 2: Our machine translation results compared to the previ-			
ous work by Ranzato et al. "RL training" stands for the MIXER			
approach for Ranzato et al. and actor-critic training for this pa-			

per. The results with the beam search are reported in the parentheses.

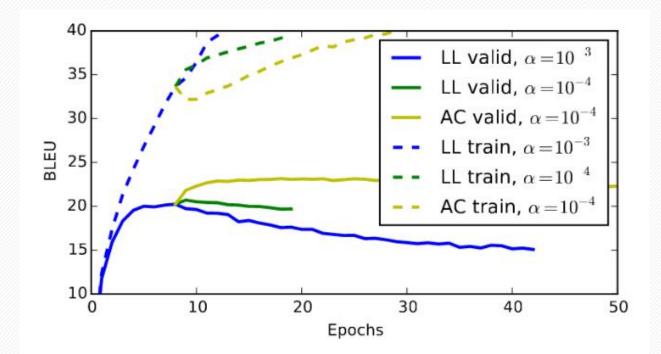


Figure 1: Progress of log-likelihood (LL) and actor-critic (AC) training in terms of BLEU score. Behaviour is reported for training (train) and validation (valid) datasets. The curves start from the epoch of log-likelihood pretraining from which the parameters were initialized.

Word	Words with largest \hat{Q}
one	and(6.623) there(6.200) but(5.967)
of	that(6.197) one(5.668) 's(5.467)
them	that(5.408) one(5.118) i(5.002)
i	that(4.796) i(4.629) ,(4.139)
want	want(5.008) i(4.160) & apos;t(3.361)
to	to(4.729) want(3.497) going(3.396)
tell	talk(3.717) you(2.407) to(2.133)
you	about(1.209) that(0.989) talk(0.924)
about	about(0.706) .(0.660) right(0.653)
here	.(0.498) ?(0.291) -(0.285)
	.(0.195) there(0.175) know(0.087)
Ø	.(0.168) Ø (-0.093) ?(-0.173)
	1

Table 3: The best 3 words according to the critic at intermediate steps of generating a translation. The numbers in parentheses are the value predictions \hat{Q} . The German original is "über eine davon will ich hier erzählen ." The reference translation is "and there's one I want to talk about".

Questions?