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Relativistic Quantum
Information Theory

® Does this make sense?

@ If we are going to use quanfum
communication on a large scale, relativistic
effects are essential.

@ Relativistic effects in classical information
theory had already been investigated as
early as 198l.
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Early Work

® Jarrett and Cover 1981: Relativistic classical
information theory.

@ Relativistic effects on transmission rates and
energy requirements.

@ Closely related to time dilation: special
relativity.
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Our direct inspiration

@ Alsing and Milburn 2002 : Entanglement and
Lorentz invariance. How does the
entanglement of maximally enfangled states
transform under Lorentz transformation?

@ Entanglement fidelity is preserved even
though the finite dimensional Lorentz
transformations are not unitary.

@ Remarks on the effect of Unruh or Hawking
radiation.
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“It is tantalizing to contemplate whether Unruh
and /or Hawking radiation might be derived
from an information theoretic point of view.”
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“It is tantalizing to contemplate whether Unruh
and /or Hawking radiation might be derived
from an information theoretic point of view.”

Alsing and Milburn

Teleportation with a uniformly accelerated
partner : PRL Alsing and Milburn

We decided to investigate the information-
theoretic properties of the Unruh effect.
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Outline

@ Review of quantum field theory: a biased
view.

@ QFT in curved spacetimes: the Unruh effect.

@ Private capacity and quantum private
capacity.

@ Private information via the Unruh effect.
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Basic arena: phase space. Each point represents a position and momentum.
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Geometrical Classical Mechanics

Basic arena: phase space. Each point represents a position and momentum.
This is the real “state space” of classical physics. [Cotangent bundle over con-
figuration space]

0A0B 0AO0B
g Op  Op Oqg

Poisson brackets = symplectic form

{A, B} .=

dA
— ={A H
dt { Y }

Dynamics
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Quantum Mechanics
Recap

1. States are rays in a Hilbert space
2. Measurements are described by hermitian operators...
3. Evolution is given by a particular unitary operator exp(—iHt)

4. The algebra of observables is non-commutative and is given by Dirac’s
rule

{P,Qr — [PQ)
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Wave Equations

What is the precise dynamical law?

Figure out H (and get Nobel prize) then time evolution is given by:

5T
1" o
Yot
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Harmonic Oscillator
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Harmonic Oscillator

2

The Hamiltonian is H = £- A
m
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The energy levels are equally spaced: E,, = hw(n + %)
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a=C(x+iC'p), o =C(x—iC'p)
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Harmonic Oscillator

2
The Hamiltonian is H = me | %mwQ:CQ.

The energy levels are equally spaced: E,, = hw(n + %)

Some marvellous operators

a=C(x+iC'p), o =C(x—iC'p)

aln) =+/nln—1), a'ln) =vn+ 1|jn + 1)

1
a,a’| =1, H = hw(a'a+ 5)
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Possible relativistic wave equations arise from the representation theory of the
Lorentz group. Dirac guessed the right equation for the electron from physical
intuition and formal arguments.
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Relativistic QM

Possible relativistic wave equations arise from the representation theory of the
Lorentz group. Dirac guessed the right equation for the electron from physical
intuition and formal arguments.

Problem: the energy spectrum was not bounded below. What stops an elec-
tron from falling into the negative energy states and radiating away an infinite
amount of energy?

Dirac’s hack: Fill the negative energy states. The ”vacuum” is a sea of negative
energy electrons and Pauli’s exclusion principle will keep ordinary electrons from

falling into the sea.

A negative energy electron may be kicked upstairs and become an ordinar
clectron leaving a “hole”. The hole will behave just like a positively charged

clectron: a positron.

Saturday, March 13, 2010



Quantum Field Theory




Quantum Field Theory
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Quantum Field Theory

Hole theory was replaced by quantum field theory created by too many people
to name them all but a few should be mentioned: Wigner, Weisskopf, Jordan,
Heisenberg, Fermi and Dirac.

The main ideas: particles are no longer “conserved”, they can be created and
destroyed. The state space is the symmetric tensor algebra or the Grassman
algebra over the old Hilbert space. This is called Fock space.

The old “wave functions” become operator fields. They act on Fock space and
create or annihilate particles: second quantization.

The mathematical complexity rises a whole level beyond that of ordinary quan-
tum mechanics.
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Classical Field Theory: Klein-Gordon field

P9 DP9 99 09

o2 Tom Top Tz Me=0

Often written 0o — m?¢ = 0.

Let V be the real vector space of classical solutions;
it is the analogue of phase space.

Saturday, March 13, 2010



Classical Field Theory: Klein-Gordon field

(‘9% 0%°¢ 0%  0%¢

92 "o T Tam M 9=0

Often written 0o — m?¢ = 0.

Let V be the real vector space of classical solutions;
it is the analogue of phase space.

The symplectic form is:

Saturday, March 13, 2010



Classical Field Theory: Klein-Gordon field

0°¢  0°¢  0°¢  0°¢

o Tor Ttz o0

Often written 0o — m?¢ = 0.

Let V be the real vector space of classical solutions;
it is the analogue of phase space.

The symplectic form is:

Q(lea ¢2) — /E(gblﬁﬁh — §b26¢1) - do
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Traditional Quantum Field Theory

Start with ¢ — m2¢  Put it in a “box” to avoid hassles.

H(T 1) =D dp(t)e™ T k= 2m(ng,ny,n.).

Now the Hamiltonian is

1. - ‘
2{5‘%‘2 5 k\¢k|2} where w4:k2+m.
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Traditional Quantum Field Theory

Start with ¢ — m2¢  Put it in a “box” to avoid hassles.

H(T 1) =D dp(t)e™ T k= 2m(ng,ny,n.).

Now the Hamiltonian is

1 . 1
Z{§\¢E\2 ; k|¢k|2} where wa—kQ—l—m.

This looks like a collection of harmonic oscillators.

Fermi
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The a,a’ operators now destroy and create
quanta of different modes:
particles have emerged from the field!
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The a,a’ operators now destroy and create
quanta of different modes:
particles have emerged from the field!

The innocent harmonic oscillator
plays a foundational role in QFT.

The a and a' come from the positive
and negative frequencies of the field.

The vacuum is the state killed by all
the a operators.
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How do we know what is positive frequency
and what is negative frequency?
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Saturday, March 13, 2010



How do we know what is positive frequency
and what is negative frequency?

The Fourier transform tells us:
O(Z,t) =  fuld@ t)a, + fu(d, t)a]
k

Operators are in bold face.

The f;. are classical positive energy solutions:

Saturday, March 13, 2010



How do we know what is positive frequency
and what is negative frequency?

The Fourier transform tells us:
O(Z,t) =  fuld@ t)a, + fu(d, t)a]
k

Operators are in bold face.

The f;. are classical positive energy solutions:
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How do we know what is positive frequency
and what is negative frequency?

The Fourier transform tells us:
O(Z,t) =  fuld@ t)a, + fu(d, t)a]
k

Operators are in bold face.
The f;. are classical positive energy solutions:
fr = () exp(ik - ¥ — iwt)

One needs the canonical Fourier
transform that one has in a flat spacetime.
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Fock Space

A Hilbert space that accomodates multiple particles.

Suppose that H is the ordinary (1 particle)
Hilbert space.

FH)=CeH®(HRsH)® (HRsHRsH)...

C(o)W = (0,0%,V20'*¢P V3ol ek )

A(F)U = (617, V267, \V3ErPT, )

The “harmonic oscillators” give the creation and annihilation
operators of QFT.
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A critfique

@ These concepts are wrong -- or, at least,
misleading -- for QFT in curved spacetimes.

@ The notion of “particle” is not absolute.

@ Particles may appear out of the vacuum:
Leonard Parker, Stephen Hawking and Bill
Unruh.

® Particles are a useful abstraction when

talking about detectors coupled to quantum
fields.
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Algebraic Quantum Field Theory

We need to construct:

(a) A *-algebra of observables

(b) A Hilbert space carrying a *-representation
(¢) A rule for the dynamics.
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Algebraic Quantum Field Theory

We need to construct:

(a) A *-algebra of observables

(b) A Hilbert space carrying a *-representation
(¢) A rule for the dynamics.

We will use the classical data to
oguide the construction of the QFT.
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with a product defined on A.
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What is a x-algebra?

A complex vector space A,
with a product defined on A.

The product is associative and bi-linear.

Finally an tnvolution, written *, satisfying:

A=A
(A+aB)* = A* + aB*
(AB)* = B*A*

x 1s an abstraction of {.

An abstract x-algebra can be represented as a concrete collection
of operators on a Hilbert space: *-representation.
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The x-Algebra of Observables

A x-algebra is a vector space with a
multiplication and an involution (x).
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The x-Algebra of Observables

A x-algebra is a vector space with a
multiplication and an involution (x).

Start with the real vector space V' of
classical solutions to the KG equation.

Take the free x-algebra generated by V.

Write F'|¢| for the element of the algebra
corresponding to ¢ € V.

Impose the Dirac condition:

Flo], Flyl] := Flo|Fly] — Fl)|Flo] = Q(¢,v)
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How should the the abstract x-algebra be realized
as as operators on a Hilbert space”

We should have a Fock space built out
of V', the classical solutions.

How can we make the real vector space V into
a complex vector space?

Look for a complex structure: J :V — V
J? =1

But what physical 1dea will motivate
the choice of J7?
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Polarizations and Complex Structures

b = ¢(+) 4 ¢(—)

oF) live in Ve :=V @iV

(a + ib)(u,v) = (au — bv, bu + av)
P( ) : V@ — V(:)
H(+) = ¢(—)
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Complex Structure = Polarization
Jp = i) — g
PG = —Z1T¢ + i

PO = 2[J6 —ig]

Choosing a decomposition into positive and
negative frequencies is equivalent to choosing
a complex structure.
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In curved spacetime we have have no canonical
choice of complex structure.

Hence no canonical choice of positive and
negative frequencies.

Hence, one observer’s vacuum may not be
another observer’s vacuum.

Thus there is a transformation from one observer’s
Fock space to another’s.
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Rindler spacetime.
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The accelerating observer and the inertial observer
will disagree about the vacuum.
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The accelerating observer and the inertial observer
will disagree about the vacuum.

The transtormation is given by

ar — arar + Pra,
where a is the accelerating observer’s annihilation operator.
The change of annihilation and creation operators
is called a Bogolioubov transformation

There will be modes corresponding to the inaccessible region,

so the accelerating observer’s density matrix will involve a partial trace
over the modes of the inaccessible region.
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Unruh Effect

The inertial observer’s vacuum will look like a bath
of thermal radiation to the accelerating observer.

The notion of “particle” is not absoute:

it only refers to the effects of a detector
interacting with a field.
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Channels

Message X" Channel Y

Encoder Decoder
p(y|z) the message.

Estimate of

A typical channel.

How well can we estimate the intended
message if the channel is noisy?
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Channel Capacity

® The basic measure of information
transmission.

@ Shannons coding theorem: All transmission
rates below the capacity are achievable with
asymptotically zero probability of error.
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What is a quantum channel?
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What is a quantum channel?

Must take density matrices to density matrices:
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Must take density matrices to density matrices:

pr— E(p)

Most general form for &

E(p) =X, AipA|]
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What is a quantum channel?

Must take density matrices to density matrices:

pr— E(p)

Most general form for &

E(p) =2, AipA;.f

where the A; are linear maps

and S ATA; =1
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von Neumann Entropy
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von Neumann Entropy
H(p) = —tr(plogy p) = —>_; Ailogy A;

Holevo vy quantity

If p =) . pip; then define
x(p) = H(p) — ZP@H(M)

Holevo bound: y is an upper bound
on accessible information in p.
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@ We want to send quantum data from Alice to
Bob.
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Quantum Channels 1

@ We want to send quantum data from Alice to
Bob.

@ Sending classical data: choose a basis to
represent classical data and encode classical
data in a quantum state. Bob has to extract
the classical data from the quantum state.

@ Sending quantum data: Alice wants to send
the whole quantum state.
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Quantum Channels 2

@ New possibility: If Alice uses multiple copies
of the channel she could entangle the
quantum states across multiple uses of the
channel.

® We do not know how to compute the capacity
in This case!
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Restriction: Alice can only prepare product states:

Saturday, March 13, 2010



Quantum Channels 3

Restriction: Alice can only prepare product states:

01X PR as. X POy

Saturday, March 13, 2010



Quantum Channels 3

Restriction: Alice can only prepare product states:
P1 QP2 X ... Pn

One for each use of the channel

Saturday, March 13, 2010



Quantum Channels 3

Restriction: Alice can only prepare product states:
P1 QP2 X ... Pn

One for each use of the channel

ct(g)

Saturday, March 13, 2010



Quantum Channels 3

Restriction: Alice can only prepare product states:
P1 QP2 X ... Pn

One for each use of the channel

Ghl i the one-shot capacity

Saturday, March 13, 2010



Quantum Channels 3

Restriction: Alice can only prepare product states:
P1 QP2 X ... Pn

One for each use of the channel

Ghl i the one-shot capacity

In this case we have the Holevo-Schumacher-Westmoreland
theorem, which gives us a ”"formula” for the capacity.
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The Holevo-Schumacher-Westmoreland Theorem

CM(€) = max [H(ED pip;) — > _piH(E(p;))

J J J 7

p; are the possible input states.

Pure state ensembles suffice.

I will spare you hideous formulas in what follows!
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Private Capacity

Quantum communication can be used
for establishing secret correlations. [BB&84

What is the capacity for sending private data?
Purely classical: Maurer (1994) and Ahlswede & Csiszar (1993)

What is the private capacity of a quantum channel for
communicating classical data? [Devetak 2005]

What is the private capacity of a quantum channel for
communicating quantum data? [Hayden et al. in progress]
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S/
N,

Quantum state is a density matrix on B ® E

Alice wants to send a message to Bob
so that with high probability Bob can decode it
and Eve is very unlikely to be able to decode it.

An (n,€) private channel code

of rate R allows Alice to send one of
messages,Bob can decode with error less than e
and Eve cannot find out more than € bits.

2nR
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Private Quantum Communication

) |P)

A ~ N >~ B

Y

D

Noisy channel Decoder

Saturday, March 13, 2010



Private Quantum Communication

)

A ~ N

Noisy channel
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Decoder
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Private Quantum Communication

( — — ¢
A——{N] {D—"—~5
Noisy channel Decoder
A |¢>> Un >§| |9) . B

- > Kive

Eve cannot get a copy of ¢: automatic privacy.
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quantum data fo Bob, and Eve intercepts.

Saturday, March 13, 2010



Our Setting Today

® Quantum communication: Alice sending
quantum data fo Bob, and Eve intercepts.

@ However, Eve is accelerating so gets Unruh
noise.

Saturday, March 13, 2010



Our Setting Today

® Quantum communication: Alice sending
quantum data fo Bob, and Eve intercepts.

@ However, Eve is accelerating so gets Unruh
noise.

@ What is the private capacity for Alice to Bob?
Can we use the Unruh noise?
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Eve intercepts.

Eve

Alice —— - ———> - —> - —> Bob
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Eve intercepts.

Eve

Alice —— - ———> - —> - —> Bob

Eve

Alice > - — > - > Bob
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Eve intercepts.

Eve

Alice —— - ———> - —> - —> Bob

Eve

Alice > - — > - > Bob

Eve intercepts while accelerating.
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Alice — N — Bob
Alice > & > Eve

Eve is not a “part” of the environment |Fve € Env]
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Alice — N — Bob
Alice > & > Eve

Eve is not a “part” of the environment |Fve € Env]

Does the Unruh effect give a channel
from Alice to Bob with nonzero
quantum and classical private capacity’
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p) — r n copis Output ~ indep of ¢

Saturday, March 13, 2010



Regularization

Quantum informatic quantities are usually computed by:

allowing n uses of the channel and computing
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where () is the quantity of interest.
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Regularization

Quantum informatic quantities are usually computed by:

allowing n uses of the channel and computing

lim ~Q(n)

n—oo N

where () is the quantity of interest.

1. Easier to compute

2. Essentially using the law of large numbers
to get better behaviour
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of a quantum channel.
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Private classical capacity

of a quantum channel.

Alice sends to Bob on id a noiseless channel

Eve receives on a noisy channel NC

We allow n uses of the channel and measure the optimal rate,
in bits per channel use, that Alice can send to Bob in such
a way that Eve cannot read the messages,
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Private classical capacity

of a quantum channel.

Alice sends to Bob on id a noiseless channel

Eve receives on a noisy channel NC

We allow n uses of the channel and measure the optimal rate,
in bits per channel use, that Alice can send to Bob in such
a way that Eve cannot read the messages,

1
Cp(id, NC) = lim —C{V(id®", NC®™)

n—oo M
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Private classical capacity

of a quantum channel.

Alice sends to Bob on id a noiseless channel

Eve receives on a noisy channel NC

We allow n uses of the channel and measure the optimal rate,
in bits per channel use, that Alice can send to Bob in such
a way that Eve cannot read the messages,

1
Cp(id, NC) = lim —C{V(id®", NC®™)

n—oo M

C§Y (1", NC®") = max[x(Q) — x(NC"(Q)).
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Private classical capacity

of a quantum channel.

Alice sends to Bob on id a noiseless channel

Eve receives on a noisy channel NC

We allow n uses of the channel and measure the optimal rate,
in bits per channel use, that Alice can send to Bob in such
a way that Eve cannot read the messages,

1
Cp(id, NC) = lim —C{V(id®", NC®™)

n—oo M

C§Y (1", NC®") = max[x(Q) — x(NC"(Q)).

where Q in an ensemble of pure states on n copies of the channel.
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Formalizing Private Quantum Capacity

Given N7 from Alice to Bob
Given N5 from Alice to Eve.
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Formalizing Private Quantum Capacity

Given N7 from Alice to Bob
Given N5 from Alice to Eve.

An (n, k, 9, €) private code is an encoding channel T
taking k qubits to the input of N "

and a decoding channel D taking Bob’s output back
to k£ qubits, such that:
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® is the maximally entangled state
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Formalizing Private Quantum Capacity

Given N7 from Alice to Bob
Given N5 from Alice to Eve.

An (n, k, 9, €) private code is an encoding channel T
taking k qubits to the input of N "

and a decoding channel D taking Bob’s output back
to k£ qubits, such that:

|(id @ Do N o T)(®) — @[|1 <0

® is the maximally entangled state

... ][1 <€

Uses Ny and compares the output with the maximally mized state.
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A rate () is achievable if for all 9, € and sufficiently large n
there exists an (n, |[nQ],d, €) code.

The private quantum capacity is the sup over all achievable rates.
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A rate () is achievable if for all 9, € and sufficiently large n
there exists an (n, |[nQ],d, €) code.

The private quantum capacity is the sup over all achievable rates.

Achievable rates: Given any pure state |gp>AA,, the

rate min(l(A)B),, H(A|E),) is achievable, where p =
H(AB), is the coherent information and H(A|E), =
H(AFE), — H(E), the conditional entropy.
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A rate () is achievable if for all 9, € and sufficiently large n
there exists an (n, |[nQ],d, €) code.

The private quantum capacity is the sup over all achievable rates.

Achievable rates: Given any pure state |gp>AA,, the

rate min(l(A)B),, H(A|E),) is achievable, where p =
H(AB), is the coherent information and H(A|E), =
H(AFE), — H(E), the conditional entropy.

So calculating the private capacity involves
computing conditional entropies and then minimzing.
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The Unruh Channel

Alice and Bob have the same Fock space.
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The Unruh Channel

Alice and Bob have the same Fock space.

Alice uses two different modes of the quantum field to encode qubits.

Let the annihilation operators for the two modes be a and b.

A Bogolioubov transformation will change the modes to Eve’s Fock space.

Uabcd(T) = Uac(T) ® Ubd(r) = 87'(aTCT+deT)_T(aC+bd)

_ 1 etanh r(aTcTerTdT)
~ cosh?r

% e In cosh r(ata+bTb4cle+dl d) e~ tanh r(ac+bd)
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The Unruh Channel

Alice and Bob have the same Fock space.

Alice uses two different modes of the quantum field to encode qubits.

Let the annihilation operators for the two modes be a and b.

A Bogolioubov transformation will change the modes to Eve’s Fock space.

Uabcd(T) = Uac(T) ® Ubd(r) = 87'(aTCT+deT)_T(aC+bd)

_ 1 etanh r(aTcTerTdT)
~ cosh?r

% e In cosh r(ata+bTb4cle+dl d) e~ tanh r(ac+bd)

The output density matrix is infinite dimensional and block diagonal.

Saturday, March 13, 2010



The Unruh Channel

Alice and Bob have the same Fock space.

Alice uses two different modes of the quantum field to encode qubits.

Let the annihilation operators for the two modes be a and b.

A Bogolioubov transformation will change the modes to Eve’s Fock space.

Uabcd(T) = Uac(T) ® Ubd(r) = 87'(aTCT+deT)_T(aC+bd)

1 etanh r(atct+btdh)
cosh? r

e~ In cosh r(ata+bTb4cle+dl d) e~ tanh r(ac+bd)

X

The output density matrix is infinite dimensional and block diagonal.

The only hope: deal with it block by block.
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Hayden’s black magic

Aha!
The blocks are irreducible representations of

SU(2)!!

So we can use some simple Lie theory to diagonalize all the blocks at once!

o=N(p) with p=1/2+ 7 - J?) arbitrary, then
or = L(k+1)/2+ng JFT? 40y JEF2) 4 gEH2),

Now we can calculate the entropies and with a bit of work
the private capacities.
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The classical private capacitiy is not zero
and depends on the acceleration.

0.7
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The quantum private capacitiy is zero!?

Only if we assume isometric encodings.

D)

\%

A non-isometric encoding.
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The quantum private capacitiy is zero!?

Only if we assume isometric encodings.

=]

P) |

N

B

A non-isometric encoding.
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The quantum private capacitiy is zero!?

=]

N

B

Part of the output is discarded

A non-isometric encoding.
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Conclusions

Quantum information theory is affected in non-trivial ways by
relativistic effects.

The eftfect of horizons is particularly interesting.
First nontrivial example where quantum private capacity has been calculated

Calculations used symmetry (representation theory of SU(2)).

We can deal with n-ary states (are they really called “nits?”)
using representation theory of SU(N).
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Conclusions

Quantum information theory is affected in non-trivial ways by
relativistic effects.

The eftfect of horizons is particularly interesting.

First nontrivial example where quantum private capacity has been calculated

Calculations used symmetry (representation theory of SU(2)).

We can deal with n-ary states (are they really called “nits?”)
using representation theory of SU(N).

Next stop: Hawking radiation from black holes.
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