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Introduction

Relevant papers

Canonical regular expressions and minimal state graphs for
definite events, by Jan Brzozowski in Mathematical Theory of
Automata, 1962.
Brzozowski’s algorithm co-algebraically, by Bonchi, Bonsangue,
Rutten and Silva, in Kozen Festschrift, Lecture Notes in Computer
Science 7230, 2012.
Minimization via duality: Bezahanishvili, Kupke and P.;
proceedings of WoLLIC 2012, Lecture Notes in Computer Science
7456.
Algebra-coalgebra duality in Brzozowski’s minimization algorithm:
Bonchi, Bonsangue, Hansen, P., Rutten and Silva, ACM
Transactions on Computational Logic 2013.
Longer paper with above authors plus Bezhanishvili, Kozen and
Kupke in preparation.
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Introduction

Brzozowski’s algorithm

Given a DFA M recognizing L:

reverse the arrows of M,
flip the roles of initial and final states,
determinize it,
take the reachable part of the reversed determinized machine to
obtain M′,
repeat all the steps on M′ to obtain M′′.
M′′ is the minimal automaton accepting L!
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Introduction

Examples of duality principles

“and” vs “or” in propositional logic

Linear programming
Electric and magnetic fields
Controllability and observability in control theory: Kalman
State-transformer and weakest-precondition semantics
Forward and backward dataflow analyses
Induction and co-induction
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Introduction

What is Stone-type duality?

Two types of structures: Foo and Bar.

Every Foo has an associated Bar and vice versa.
V → S, S→ V ′; V and V ′ are isomorphic.
Two – apparently – different structures are actually two different
descriptions of the same thing.
More importantly given a map: f : S1 → S2 we get a map
f̂ : V2 → V1 and vice versa;
note the reversal in the direction of the arrows.
The two mathematical universes are mirror images of each other.
Two completely different sets of theorems that one can use.
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Introduction

Examples of Stone-type dualities

Vector spaces and vector spaces.

Boolean algebras and Stone spaces. [Stone]
Modal logics and boolean algebras with operators. [Jonsson,
Tarski]
State transformer semantics and weakest precondition semantics.
[DeBakker,Plotkin,Smyth]
Logics and Transition systems. [Bonsangue, Kurz,...]
Measures and random variables. [Kozen]
Commutative unital C*-algebras and compact Hausdorff spaces.
[Gelfand, Stone]
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Vector space self-duality

Duality for high school students I

Finite-dimensional vector space V over, say R,

Dual space V∗ of linear maps from V to R.
V∗ has the same dimension as V and a (basis-dependent)
isomorphism between V and V∗.
The double dual V∗∗ is also isomorphic to V

with a “nice” canonical isomorphism: v ∈ V 7→ λσ ∈ V∗.σ(v).
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Vector space self-duality

Duality for high school students II

U θ // V

U∗ V∗
θ∗
oo

Given a linear maps θ between vector spaces U and V we get a map
θ∗ in the opposite direction between the dual spaces:

θ∗(σ ∈ V∗)(u ∈ U) = σ(θ(u)).
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Duality in semantics

State-transformer semantics

Operational semantics: states, transitions. What are the next
states?

Elegant and (almost) compositional version: Plotkin’s structured
operational semantics.
Denotational semantics: compositional, equivalent to operational
semantics.
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Duality in semantics

Predicate transformers: Dijkstra

Predicate transformers: if after the execution of a command a
property P holds, what must have been true before?

Weakest precondition (wp).
Backward flow in wp semantics.
D and E domains, viewed as topological spaces, open sets: OD

and OE. A predicate transformer is a strict, continuous and
multiplicative map p : OE → OD.
Relate predicate-transformer semantics to state-transformer
semantics: Jaco De Bakker (1978).
Duality: The category of state transformers is equivalent to the
(opposite of) the category of predicate transformers: Plotkin
(1979).
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Duality in semantics

Duality for probabilistic programs: Kozen

Probabilistic programs and expectation transformers: Kozen (1981)

Logic Probability
States s Distributions µ

Formulas P Random variables f
Satisfaction s |= P Integration

∫
f dµ
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Brzozowski’s strange algorithm

Brzozowski’s Algorithm 1962

Start with DFA.

Reverse transitions, interchange initial and final states.
Determinize the result.
Take the reachable states.
Repeat.
This gives the minimal DFA recognizing the same language!
The intermediate step can blow up the size of the automaton
exponentially before minimizing it.
But experimental results seem to indicate that it often works well
in practice.
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Thinking logically

Deterministic Automata

M = (S,A,O, δ, γ): a deterministic finite (Moore) automaton. S is
the set of states, A an input alphabet (actions), O is a set of
observations.
δ : S×A → S is the state transition function.
γ : S→ 2O or γ : S×O → 2 is a labeling function.

If O = {accept} we have ordinary deterministic finite automata,
except that we do not have a start state,
which means that reachability makes no sense.
We will worry about that in a minute.
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Thinking logically

A Simple Modal Logic

View O as propositions, define a simple modal logic. A formula ϕ
is:

ϕ ::== ω ∈ O | (a)ϕ

where a ∈ A.
We say s |= ω, if ω ∈ γ(s) (or γ(s, ω) = T).
We say s |= (a)ϕ if δ(s, a) |= ϕ.

Now we define [[ϕ]]M = {s ∈ S|s |= ϕ}.

Panangaden () Minimization via Duality VMCAI, Jan 2014 14 / 39



Thinking logically

An Equivalence Relation on Formulas

We write sa as shorthand for δ(s, a).
Define ∼M between formulas as ϕ ∼M ψ if [[ϕ]]M = [[ψ]]M.

Equivalence class for ϕ same as of states [[ϕ]]M that satisfy ϕ.
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Thinking logically

A Dual Automaton

Given a finite automatonM = (S,A,O, δ, γ).
Let T be the set of ∼M-equivalence classes of formulas onM.
We defineM′ = (S′,A,O′, δ′, γ′) as follows:
S′ = T = {[[ϕ]]M}
O′ = S

δ′([[ϕ]]M, a) = [[(a)ϕ]]M

γ′([[ϕ]]M) = [[ϕ]]M or γ′([[ϕ]]A, s) = (s |= ϕ).
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Thinking logically

The intuition

Interchange states and observations.
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Thinking logically

Minimality Properties

In general, the double dual is the minimal machine with the same
behaviour!

For deterministic machines bisimulation is the same as trace
equivalence.
This gives an intuition for why Brzozowski’s algorithm works,
but it does not really address the role of reachability properly.
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Thinking logically

Probabilistic systems

In joint work with Chris Hundt, Joelle Pineau and Doina Precup
(AAAI 2006): duals for various kinds of probabilistic transition
systems like probabilistic Moore automata and partially
observable Markov decision processes.

Dual automaton from tests: probabilistic analogues of modal
formulas.
Main point: not minimization, but can learn systems from data
even when the state is not directly observable
because the double-dual serves as a substitute for the original
machine.
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Thinking logically

Application to learning

One can plan when one has the model: value iteration etc.,

but quite often one does not have the model.
In the absence of a model, one is forced to learn from data.
Learning is hopeless when one has no idea what the state space
is.
There should be no such thing as absolute state!
State is just a summary of past observations that can be used to
make predictions.
Double dual: state can be regarded as the summary of the
outcomes of experiments.
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Duality of reachability and observability

An automaton in diagrams

1
i

""

2

S

f
<<

δ��
SA

Here S is the state space, A is the set of actions, 1 is the
one-element set and 2 is a two-element set.
The map i defines an initial state and f defines a set of final
states. I will write i for the map and for the initial state itself.
the transition function δ : S× A→ S has been written as δ : S→ SA.
There is a natural extension δ∗ : S→ SA∗

.

Panangaden () Minimization via Duality VMCAI, Jan 2014 21 / 39



Duality of reachability and observability

A very special (infinite) automaton

1

ε
��

A∗

α
��

(A∗)A

This automaton has all words as its state space.
The initial state is the empty word ε.
The transition function α acts by α(w) = λa : A.w · a.
We do not bother to define “final” states in this machine.
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Duality of reachability and observability

Reachability

1

ε
��

i

##
A∗

α
��

r // S

δ
��

(A∗)A rA
// SA

Given any function between sets f : V → W, we have a map
f A : VA → WA, given by f A(φ) = λa : A.f (φ(a)) = f ◦ φ.

There is a unique map r : A∗ → S such that r(ε) = i and
δ(r(w))(a) = r(w · a), which can easily be defined inductively.
The image of A∗ under r is exactly the reachable subset of S.
The entire state space is reachable exactly when r is a surjection.
Note, final states play no role.
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Duality of reachability and observability

Another very special infinite automaton

2

2A∗

ε?

OO

β
��

(2A∗
)A

This automaton has all languages as its state space.

The final states contain the empty word ε.
The transition function β acts by β(L)(a) = {w ∈ A∗ | a · w ∈ L};
the (left) a-derivative of L.
We do not bother to define an “initial” state in this machine.
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Duality of reachability and observability

Observability

2

S

f
;;

o //

δ
��

2A∗

β
��

ε?

OO

SA
oA
// (2A∗

)A

Here o is the map that takes a state to the language recognized
starting from that state.

It is the unique map making the upper triangle and the lower
square commute.
Think of o as giving the observable behaviour of a state.
A machine is observable exactly when distinct states recognize
different languages, i.e. when o is an injection.
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Duality of reachability and observability

The butterfly

1
ε
��

i

$$

2

A∗ r //

α
��

S

f
99

δ��

o // 2A∗

β��

ε?

OO

(A∗)A
rA
// SA

oA
// (2A∗

)A

A deterministic automaton (S, δ, i, f ) is minimal if it is both reachable
and observable.
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Duality of reachability and observability

The power-set construction

Given sets U,V and a function f : U → V we define

P(f ) : P(V)→ P(U)

by
P(f )(P ⊆ V) = f−1(P).
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Duality of reachability and observability

Reverse in terms of power-set

S

δ
��

SA

S× A

��
S

2S×A

2S

OO (2S)A

2S

2δ
OO

The power-set construction produces the reversed determinized
automaton.

Initial becomes final under power-set. The final state S→ 2
becomes the new initial state by observing that such a function is
the same thing as a subset.
It makes reachable into observable, but not vice versa.
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Duality of reachability and observability

Why Brzozowski’s algorithm works

Theorem
If (S, δ, i, f ) is a reachable deterministic automaton accepting L, then
(2S, 2δ, f , 2i) is an observable deterministic automaton accepting rev(L).

If, we take its reachable part again and reverse it again we again get
an observable automaton this time recognizing L. If we take the
reachable part we get a minimal automaton recognizing L.
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Duality of reachability and observability

Abstract nonsense?

A standard reaction:

“Surely, this is abstract nonsense; categorical mumbo-jumbo for
something that can be explained simply!”
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Duality of reachability and observability

No, it is generalized abstract nonsense!

Exactly the same construction can be used in other settings by
just changing the duality at work.

Moore automata work by changing the functor slightly.
Kleene algebra with tests.
Weighted automata (i.e. automata over vector spaces) can be
minimized by using the same idea with the self duality of vector
spaces.
Belief automata can be minimized using Gelfand duality.
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Duality of reachability and observability

Weighted automata

These are essentially automata over vector spaces.

There are n states but the automaton can be in any linear
combination of states:

∑
risi, where r’s are real numbers and s’s

are states. Transitions are matrices.
(V, α, {Ta}a∈Σ, η): V an n-dimensional vector space, Ta is a
transition matrix for each a ∈ Σ, the alphabet.
α ∈ Rn is an initial “state” and
η is an observation function: an element of V∗, the dual space.
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Duality of reachability and observability

Weighted languages

Given a string w = ab . . . c the final state is β = Tc(. . . Tb(Taα) . . .).

The automaton associates the number η(β) with the string w.
L(w) = η(β).
What is the minimal automaton recognizing the same language?
Computed in exactly the same way except that reversal here
means, “take the dual automaton”.
Natural matrix: H[x, y] = L(xy): a Hankel matrix.
The minimal automaton has size equal to the rank of the Hankel
matrix.
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Duality of reachability and observability

Dualizing a weighted automaton

Given a weighted automaton A = (V = Rn, α, {Ta}, η),

We construct the dual automaton A∗ by using linear algebra
duality.
A∗ = (V∗, η, {T∗a}, α).
What about reachability?
we define the forward space as the span of {Tw(α) | w ∈ Σ∗}: a
subspace of V.
We define the backward space as the span of {T∗w(η) | w ∈ Σ∗}: a
subspace of V∗.
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Duality of reachability and observability

Forward and backward reduction

Define ~A as A projected onto the forward space.

Define
←−
A as A∗ projected onto the backward space.

One can show LA = L ~A = L←−A .

One can also show that
←−
~A is the minimal automaton with the

same (weighted) language as A by using the rank criterion.
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Duality of reachability and observability

Belief automata

A probabilistic automaton with observations is

F = (S,A,O, δ : S×A× S→ [0, 1], γ : S×O → [0, 1]).

Given such an automaton one often works with an automaton
whose state space is the set of distributions over S: the so-called
belief automaton.
It is a deterministic automaton with probabilistic observations.
If S is finite then the space is distributions is compact Hausdorff.
So we are dealing with automata over compact Hausdorff spaces.
Minimization via Stone duality −→ minimization via Gelfand
duality.
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Conclusions

Conclusions

Duality tells one how to move between logics and transition
systems.

Completeness theorems, which typically work by constructing
transition systems from consistent sets of formulas embody a key
aspect of duality results but,
the arrow part of the duality is crucial for proving our minimization
results.
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Conclusions

Ongoing and Future Work

Metric analogue of Stone duality: Mardare and Kozen.

Understand why the Brzozowski algorithm is often efficient.
Convex automata: exploit convex duality.
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Conclusions

Thank you!
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