Stone Duality for Markov Processes

Prakash Panangaden¹

¹School of Computer Science McGill University

Radboud University, Nijmegen, May 2013

Panangaden (McGill University)

Stone Duality for Markov Processes

Nijmegen May 2013 1 / 43

イロト イポト イヨト イヨト

Collaborators

- This paper (IEEE Symposium On Logic In Computer Science 2013) is joint work with Dexter Kozen, Kim G. Larsen and Radu Mardare.
- Previous work was with Josée Desharnais, Vincent Danos, François Laviolette (Info. Comp 2006) and Philippe Chaput, Vincent Danos and Gordon Plotkin (ICALP 2009).

Panangaden (McGill University)

2

イロト イロト イヨト イヨト

Introduction

2 Background on Labelled Markov Processes

э

イロト イポト イヨト イヨト

Introduction

- 2 Background on Labelled Markov Processes
- 3 Technical Background

э

イロト イポト イヨト イヨト

- 2 Background on Labelled Markov Processes
- 3 Technical Background
- 4 Markov Processes and Markovian Logic

3

- Background on Labelled Markov Processes
- 3 Technical Background
 - 4 Markov Processes and Markovian Logic
- 5 Aumann Algebras

Introduction

- Background on Labelled Markov Processes
- **Technical Background** 3
 - Markov Processes and Markovian Logic
- Aumann Algebras 5
- 6
 - Stone-Markov Processes

Introduction

- Background on Labelled Markov Processes
- Technical Background
- Markov Processes and Markovian Logic
- Aumann Algebras
- Stone-Markov Processes
 - From Aumann Algebras to SMPs

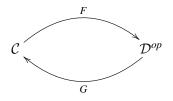
Introduction

- Background on Labelled Markov Processes
- Technical Background
- Markov Processes and Markovian Logic
- Aumann Algebras
- Stone-Markov Processes
 - From Aumann Algebras to SMPs
- 8 From SMPs to Aumann Algebras

Introduction

- Background on Labelled Markov Processes
- Technical Background
- Markov Processes and Markovian Logic
- Aumann Algebras
- Stone-Markov Processes
 - From Aumann Algebras to SMPs
- From SMPs to Aumann Algebras
 - Duality Theorem

Recap of Stone Duality



Stone Duality

We have a (contravariant) adjunction between categories C and D, which is an *equivalence* of categories.

Examples: Finite sets and finite Boolean algebras, Boolean algebras and Stone spaces, Finite-dimensional vector spaces and itself, commutative unital C^* -algebras and compact Hausdorff spaces,

We extend completeness theorems for probabilistic logics to a Stone-type duality.

- We extend completeness theorems for probabilistic logics to a Stone-type duality.
- It builds on classical Stone-type duality: we define Markov processes on top of Stone spaces. Stone-Markov processes.

- We extend completeness theorems for probabilistic logics to a Stone-type duality.
- It builds on classical Stone-type duality: we define Markov processes on top of Stone spaces. Stone-Markov processes.
- The algebraic counterpart is called Aumann algebra: an algebraic form of Aumann's probabilistic logic.

- We extend completeness theorems for probabilistic logics to a Stone-type duality.
- It builds on classical Stone-type duality: we define Markov processes on top of Stone spaces. Stone-Markov processes.
- The algebraic counterpart is called Aumann algebra: an algebraic form of Aumann's probabilistic logic.
- Previous completeness proofs are *conditional* on a logic satisfying Lindenbaum's Lemma.

• Some subtle topological issues arise that we need to confront.

э

イロト イポト イヨト イヨト

- Some subtle topological issues arise that we need to confront.
- We are going to have to use infinitary operations. No hope of completeness without it.

- Some subtle topological issues arise that we need to confront.
- We are going to have to use infinitary operations. No hope of completeness without it.
- We will use the Rasiowa-Sikorski Lemma, which is based on the Baire category theorem.

3

- Some subtle topological issues arise that we need to confront.
- We are going to have to use infinitary operations. No hope of completeness without it.
- We will use the Rasiowa-Sikorski Lemma, which is based on the Baire category theorem.
- We will RST to *prove* that every consistent set of formulas can be extended to a maximal consistent set (Lindenbaum's Lemma).

 Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- All probabilistic data is *internal* no probabilities associated with environment behaviour.

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- All probabilistic data is *internal* no probabilities associated with environment behaviour.
- We observe the interactions not the internal states.

- Labelled Markov processes are probabilistic versions of labelled transition systems. Labelled transition systems where the final state is governed by a probability distribution - no other indeterminacy.
- All probabilistic data is *internal* no probabilities associated with environment behaviour.
- We observe the interactions not the internal states.
- In general, the state space of a labelled Markov process may be a *continuum*.

Motivation

Model and reason about systems with *continuous* state spaces or continuous time evolution or both.

- hybrid control systems; e.g. flight management systems.
- telecommunication systems with spatial variation; e.g. cell phones
- performance modelling,
- continuous time systems,
- probabilistic process algebra with recursion.

3

Formal Definition of LMPs

- An LMP is a tuple $(S, \Sigma, L, \forall \alpha \in L.\tau_{\alpha})$ where
- S is the space of states, assumed to be an analytic space,
- Σ is the Borel σ -algebra of S, and
- where $\tau_{\alpha}: S \times \Sigma \longrightarrow [0,1]$ is a *transition probability* function such that
- ∀s : S.λA : Σ.τ_α(s,A) is a subprobability measure and

 $\forall A : \Sigma . \lambda s : S . \tau_{\alpha}(s, A)$ is a measurable function: the reals are equipped with the Borel σ -algebra.

٥

$$\mathcal{L}_0 ::== \mathsf{T} |\phi_1 \wedge \phi_2| \langle a \rangle_q \phi$$

• We say $s \models \langle a \rangle_q \phi$ iff

$$\exists A \in \Sigma. (\forall s' \in A.s' \models \phi) \land (\tau_a(s, A) > q).$$

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

 $\mathcal{L}_0 ::== \mathsf{T} |\phi_1 \wedge \phi_2| \langle a \rangle_q \phi$

• We say $s \models \langle a \rangle_q \phi$ iff

٥

$$\exists A \in \Sigma. (\forall s' \in A.s' \models \phi) \land (\tau_a(s,A) > q).$$

• Two systems are bisimilar iff they obey the same formulas of \mathcal{L} . [DEP 1998 LICS, I and C 2002]

3

イロト 不得 トイヨト イヨト

 $\mathcal{L}_0 ::== \mathsf{T} |\phi_1 \wedge \phi_2| \langle a \rangle_q \phi$

• We say $s \models \langle a \rangle_q \phi$ iff

٥

$$\exists A \in \Sigma. (\forall s' \in A.s' \models \phi) \land (\tau_a(s, A) > q).$$

- Two systems are bisimilar iff they obey the same formulas of *L*. [DEP 1998 LICS, I and C 2002]
- Analyticity is crucial for proving this.

3

イロト 不得 トイヨト イヨト

 $\mathcal{L}_0 ::== \mathsf{T} |\phi_1 \wedge \phi_2| \langle a \rangle_q \phi$

• We say $s \models \langle a \rangle_q \phi$ iff

$$\exists A \in \Sigma. (\forall s' \in A.s' \models \phi) \land (\tau_a(s, A) > q).$$

- Two systems are bisimilar iff they obey the same formulas of *L*. [DEP 1998 LICS, I and C 2002]
- Analyticity is crucial for proving this.
- Later [DDLP 2006], we introduced a co-bisimulation (cocongruence) and proved that the above logic characterizes co-bisimulation for *all* Markov processes, not just ones defined on analytic spaces.

• Why are we talking about topology at all? It turns out that many aspects of measure theory work much more nicely if the spaces are metric spaces. A *Polish* space is the topological space underlying a complete, separable metric space.

- Why are we talking about topology at all? It turns out that many aspects of measure theory work much more nicely if the spaces are metric spaces. A *Polish* space is the topological space underlying a complete, separable metric space.
- Separable means that there is a *countable* base of open sets; for metric spaces this is the same as saying that there is a countable dense subset.

- Why are we talking about topology at all? It turns out that many aspects of measure theory work much more nicely if the spaces are metric spaces. A *Polish* space is the topological space underlying a complete, separable metric space.
- Separable means that there is a *countable* base of open sets; for metric spaces this is the same as saying that there is a countable dense subset.
- If X, Y are Polish and $f : X \to Y$ is continuous then $f(X) \subset Y$ is an analytic space.

- Why are we talking about topology at all? It turns out that many aspects of measure theory work much more nicely if the spaces are metric spaces. A *Polish* space is the topological space underlying a complete, separable metric space.
- Separable means that there is a *countable* base of open sets; for metric spaces this is the same as saying that there is a countable dense subset.
- If *X*, *Y* are Polish and $f : X \to Y$ is continuous then $f(X) \subset Y$ is an analytic space.
- It does not matter if *f* is continuous or measurable (!), or if we take a Borel subset of *X*.

- Why are we talking about topology at all? It turns out that many aspects of measure theory work much more nicely if the spaces are metric spaces. A *Polish* space is the topological space underlying a complete, separable metric space.
- Separable means that there is a *countable* base of open sets; for metric spaces this is the same as saying that there is a countable dense subset.
- If X, Y are Polish and $f : X \to Y$ is continuous then $f(X) \subset Y$ is an analytic space.
- It does not matter if *f* is continuous or measurable (!), or if we take a Borel subset of *X*.
- Analytic spaces have some remarkable properties that were crucial in the proof of the logical characterization theorem.

Stone spaces

- A Stone space is a compact Hausdorff space with a base of *clopen* sets: zero-dimensional space.
- A space is said to be *totally disconnected* if the only connected sets are singletons. For (locally) compact Hausdorff spaces zero dimensional is equivalent to totally disconnected. Ultrametric spaces are zero-dimensional.
- Many, but not all, Stone spaces are Polish.

Boolean Algebras

A Boolean algebra is a set *A* equipped with two constants, 0, 1, a unary operation $(\cdot)'$ and two binary operations \vee, \wedge which obey the following axioms, *p*, *q*, *r* are arbitrary members of *A*:

$$0' = 1 \qquad 1' = 0$$

$$p \land 0 = 0 \qquad p \lor 1 = 1$$

$$p \land 1 = p \qquad p \lor 0 = p$$

$$p \land p' = 0 \qquad p \lor p' = 1$$

$$p \land p = p \qquad p \lor p = p$$

Boolean Algebras II

$$p'' = p$$

$$(p \land q)' = p' \lor q'$$

$$(p \lor q)' = p' \land q'$$

$$p \land q = q \land p$$

$$p \lor q = q \lor p$$

$$p \land (q \land r) = (p \land q) \land r$$

$$p \land (q \lor r) = (p \land q) \lor (r$$

$$p \land (q \lor r) = (p \land q) \lor (p \land r)$$

$$p \lor (q \land r) = (p \lor q) \lor (p \land r)$$

The operation \lor is called *join*, \land is called *meet* and $(\cdot)'$ is called *complement*.

Panangaden (McGill University)

э

(日)

• Given a Stone space S the clopens form a Boolean algebra: Cl(S).

3

イロト イポト イヨト イヨト

- Given a Stone space S the clopens form a Boolean algebra: Cl(S).
- Given a Boolean algebra B, a Stone space U(B) is constructed from the space U of maximal filters (ultrafilters).

- Given a Stone space S the clopens form a Boolean algebra: Cl(S).
- Given a Boolean algebra B, a Stone space U(B) is constructed from the space U of maximal filters (ultrafilters).
- Given an element *b* of the Boolean algebra, a *basic open* is defined by U_b := {u ∈ U | b ∈ u}.

- Given a Stone space S the clopens form a Boolean algebra: Cl(S).
- Given a Boolean algebra B, a Stone space U(B) is constructed from the space U of maximal filters (ultrafilters).
- Given an element *b* of the Boolean algebra, a *basic open* is defined by U_b := {u ∈ U | b ∈ u}.
- Ultrafilters correspond precisely to maps from B to 2:

- Given a Stone space S the clopens form a Boolean algebra: Cl(S).
- Given a Boolean algebra B, a Stone space U(B) is constructed from the space U of maximal filters (ultrafilters).
- Given an element *b* of the Boolean algebra, a *basic open* is defined by U_b := {u ∈ U | b ∈ u}.
- Ultrafilters correspond precisely to maps from \mathcal{B} to 2:
- $\{b \in \mathcal{B} \mid f(b) = 1\}$ is always an ultrafilter.

- Given a Stone space S the clopens form a Boolean algebra: Cl(S).
- Given a Boolean algebra B, a Stone space U(B) is constructed from the space U of maximal filters (ultrafilters).
- Given an element *b* of the Boolean algebra, a *basic open* is defined by U_b := {u ∈ U | b ∈ u}.
- Ultrafilters correspond precisely to maps from \mathcal{B} to 2:
- $\{b \in \mathcal{B} \mid f(b) = 1\}$ is always an ultrafilter.
- Continuous maps *f* : *S*₁ → *S*₂ between Stone spaces give Boolean algebra homomorphisms *f*⁻¹ : *Cl*(*S*₂) → *Cl*(*S*₁).

- Given a Stone space S the clopens form a Boolean algebra: Cl(S).
- Given a Boolean algebra B, a Stone space U(B) is constructed from the space U of maximal filters (ultrafilters).
- Given an element *b* of the Boolean algebra, a *basic open* is defined by U_b := {u ∈ U | b ∈ u}.
- Ultrafilters correspond precisely to maps from *B* to 2:
- $\{b \in \mathcal{B} \mid f(b) = 1\}$ is always an ultrafilter.
- Continuous maps $f : S_1 \to S_2$ between Stone spaces give Boolean algebra homomorphisms $f^{-1} : Cl(S_2) \to Cl(S_1)$.
- Boolean algebra homomorphisms *h* : B₁ → B₂ give rise to continuous functions (·) ∘ *f* : U(B₂) → U(B₁) between the Stone spaces.

- Given a Stone space S the clopens form a Boolean algebra: Cl(S).
- Given a Boolean algebra B, a Stone space U(B) is constructed from the space U of maximal filters (ultrafilters).
- Given an element *b* of the Boolean algebra, a *basic open* is defined by U_b := {u ∈ U | b ∈ u}.
- Ultrafilters correspond precisely to maps from *B* to 2:
- $\{b \in \mathcal{B} \mid f(b) = 1\}$ is always an ultrafilter.
- Continuous maps $f : S_1 \to S_2$ between Stone spaces give Boolean algebra homomorphisms $f^{-1} : Cl(S_2) \to Cl(S_1)$.
- Boolean algebra homomorphisms *h* : B₁ → B₂ give rise to continuous functions (·) ∘ *f* : U(B₂) → U(B₁) between the Stone spaces.
- Everything that can and should be an isomorphism is an isomorphism.

Panangaden (McGill University)

Stone Duality for Markov Processes

Niimegen May 2013 15 / 43

A set N ⊂ X is said to be nowhere dense if every open set U contains an open set V ⊂ U with V,A disjoint. A set is said to be of the *first category* or *meager* if it is the countable union of nowhere dense sets.

- A set N ⊂ X is said to be nowhere dense if every open set U contains an open set V ⊂ U with V,A disjoint. A set is said to be of the *first category* or *meager* if it is the countable union of nowhere dense sets.
- Meagre sets need not be closed.

- A set N ⊂ X is said to be nowhere dense if every open set U contains an open set V ⊂ U with V, A disjoint. A set is said to be of the first category or meager if it is the countable union of nowhere dense sets.
- 2 Meagre sets need not be closed.
- 3 Baire proved: The complement of any meager subset of ℝ is dense. This is equivalent to: no interval is meager and also to the intersection of countably many dense open sets is dense.

- A set N ⊂ X is said to be nowhere dense if every open set U contains an open set V ⊂ U with V, A disjoint. A set is said to be of the first category or meager if it is the countable union of nowhere dense sets.
- 2 Meagre sets need not be closed.
- 3 Baire proved: The complement of any meager subset of ℝ is dense. This is equivalent to: no interval is meager and also to the intersection of countably many dense open sets is dense.
- A Baire space is one in which no non-empty open set is meagre.

- A set N ⊂ X is said to be nowhere dense if every open set U contains an open set V ⊂ U with V, A disjoint. A set is said to be of the first category or meager if it is the countable union of nowhere dense sets.
- Meagre sets need not be closed.
- 3 Baire proved: The complement of any meager subset of ℝ is dense. This is equivalent to: no interval is meager and also to the intersection of countably many dense open sets is dense.
- A Baire space is one in which no non-empty open set is meagre.
- Modern BCT: (1) Every complete metric space is a Baire space.
 (2) Every (locally) compact Hausdorff space is a Baire space.

- A set N ⊂ X is said to be nowhere dense if every open set U contains an open set V ⊂ U with V, A disjoint. A set is said to be of the first category or meager if it is the countable union of nowhere dense sets.
- Meagre sets need not be closed.
- 3 Baire proved: The complement of any meager subset of ℝ is dense. This is equivalent to: no interval is meager and also to the intersection of countably many dense open sets is dense.
- A Baire space is one in which no non-empty open set is meagre.
- Modern BCT: (1) Every complete metric space is a Baire space.
 (2) Every (locally) compact Hausdorff space is a Baire space.
- The version we use: In a compact Hausdorff space the intersection of a family of dense open sets is dense.

3

- A set N ⊂ X is said to be nowhere dense if every open set U contains an open set V ⊂ U with V, A disjoint. A set is said to be of the first category or meager if it is the countable union of nowhere dense sets.
- 2 Meagre sets need not be closed.
- 3 Baire proved: The complement of any meager subset of ℝ is dense. This is equivalent to: no interval is meager and also to the intersection of countably many dense open sets is dense.
- A Baire space is one in which no non-empty open set is meagre.
- Modern BCT: (1) Every complete metric space is a Baire space.
 (2) Every (locally) compact Hausdorff space is a Baire space.
- The version we use: In a compact Hausdorff space the intersection of a family of dense open sets is dense.
- The boundary of any open set is closed and nowhere dense.

The Rasiowa-Sikorski Lemma

Let \mathcal{B} be a Boolean algebra and $T \subset \mathcal{B}$ be a set with $\bigvee T$ defined. An ultrafilter U is said to *respect* T if

$$\bigvee T \in U \Rightarrow T \cap U \neq \emptyset.$$

The Rasiowa-Sikorski Lemma

Let \mathcal{T} be a countable family of subsets of \mathcal{B} each member of which has a join and let $x \neq 0$ in \mathcal{B} . Then there is an ultrafilter which respects each member of \mathcal{T} and which contains x.

Dualizing the lemma

We can define \mathcal{U} dually respects *S* by saying that $\bigwedge S \in \mathcal{U} \iff S \subset \mathcal{U}$. Then we have that \mathcal{U} respects *T* iff \mathcal{U} dually respects $S := \{\neg t \mid t \in T\}$. We can use the RS lemma for respects or dually respects: there is no point making a terminological distinction between the two cases.

Definition of a Markov Process

Labels are not important for the present work so we forget about them for now.

Markov Process

Given an analytic space (M, Σ) , a *Markov process* is a measurable mapping $\tau \in \llbracket M \to \Delta(M, \Sigma) \rrbracket$.

We have curried the definition of LMPs and eliminated the labels.

Markovian Logic

The formulas of $\mathcal L$ are defined, for a set $\mathcal P$ of atomic propositions, by the grammar

$$\phi ::= p \mid \bot \mid \phi \Rightarrow \phi \mid L_r \phi$$

where *p* can be any element of \mathcal{P} and *r* any element of \mathbb{Q}_0 . The other Boolean operators are defined in the usual way.

Notation:
$$L_{r_1...r_k}\phi := L_{r_1}...L_{r_k}\phi$$
.

Semantics

Given a Markov Process $\mathcal{M} = (M, \Sigma, \tau)$, $m \in M$ and $i : M \to 2^{\mathcal{P}}$ we have

the satisfaction relation:

•
$$\mathcal{M}, m, i \models p \text{ if } p \in i(m),$$

•
$$\mathcal{M}, m, i \models \bot$$
 never,

•
$$\mathcal{M}, m, i \models \phi \Rightarrow \psi$$
 if $\mathcal{M}, m, i \models \psi$ whenever $\mathcal{M}, m, i \models \phi$,

•
$$\mathcal{M}, m, i \models L_r \phi$$
 if $\tau(m)(\llbracket \phi \rrbracket) \ge r$,
where $\llbracket \phi \rrbracket = \{m \in M \mid \mathcal{M}, m, i \models \phi\}.$

It follows that:

•
$$\mathcal{M}, m, i \models \top$$
 always,

•
$$\mathcal{M}, m, i \models \phi \land \psi$$
 iff $\mathcal{M}, m, i \models \phi$ and $\mathcal{M}, m, i \models \psi$,

•
$$\mathcal{M}, m, i \models \phi \lor \psi$$
 iff $\mathcal{M}, m, i \models \phi$ or $\mathcal{M}, m, i \models \psi$,

•
$$\mathcal{M}, m, i \models \neg \phi$$
 iff not $\mathcal{M}, m, i \models \phi$.

э

イロト イポト イヨト イヨト

Axioms for Markovian Logic

The axioms of $\ensuremath{\mathcal{L}}$

(A1):
$$\vdash L_0\phi$$

(A2):
$$\vdash L_rT$$

(A3):
$$\vdash L_r \phi \rightarrow \neg L_s \neg \phi, r+s > 1$$

(A4):
$$\vdash L_r(\phi \land \psi) \land L_s(\phi \land \neg \psi) \longrightarrow L_{r+s}\phi, r+s \leq 1$$

(A5):
$$\vdash \neg L_r(\phi \land \psi) \land \neg L_s(\phi \land \neg \psi) \rightarrow \neg L_{r+s}\phi, r+s \leq 1$$

(R1):
$$\vdash \phi \to \psi$$

 $\vdash L_r \phi \to L_r \psi$

(R2):
$$\{L_{r_1\cdots r_n r}\psi \mid r < s\} \vdash L_{r_1\cdots r_n s}\psi$$

 Zhou proved strong completeness using a strengthened version of (R1) and assuming Lindenbaum's Lemma.

- Zhou proved strong completeness using a strengthened version of (R1) and assuming Lindenbaum's Lemma.
- Goldblatt proved strong completeness by assuming Lindenbaum's Lemma and other infinitary axioms.

- Zhou proved strong completeness using a strengthened version of (R1) and assuming Lindenbaum's Lemma.
- Goldblatt proved strong completeness by assuming Lindenbaum's Lemma and other infinitary axioms.
- Our duality theorem implies strong completeness for the above axioms without assuming Lindenbaum's Lemma.

- Zhou proved strong completeness using a strengthened version of (R1) and assuming Lindenbaum's Lemma.
- Goldblatt proved strong completeness by assuming Lindenbaum's Lemma and other infinitary axioms.
- Our duality theorem implies strong completeness for the above axioms without assuming Lindenbaum's Lemma.
- Instead we use the RSL to establish Lindenbaum's Lemma.

The Definition of Aumann Algebras

An Aumann algebra (AA) is a structure $\mathcal{A} = (A, \Rightarrow, \bot, \{F_r\}_{r \in \mathbb{Q}_0}, \sqsubseteq)$ where

- $(A, \Rightarrow, \bot, \sqsubseteq)$ is a Boolean algebra;
- for each $r \in \mathbb{Q}_0$, $F_r : A \to A$ is an unary operator; and
- the axioms below hold for all $a, b \in A, r, s, r_1, \ldots, r_n \in \mathbb{Q}_0$.

Axioms

 $(AA1) \top \sqsubseteq F_0a$

$$(\mathsf{AA2}) \ \top \sqsubseteq F_r \top$$

- (AA3) $F_r a \sqsubseteq \neg F_s \neg a, r+s > 1$
- $(\mathsf{AA4}) \ F_r(a \land b) \land F_s(a \land \neg b) \sqsubseteq F_{r+s}a, r+s \le 1$
- $(\mathsf{AA5}) \neg F_r(a \land b) \land \neg F_s(a \land \neg b) \sqsubseteq \neg F_{r+s}a, r+s \le 1$
- $(\mathsf{AA6}) \ a \sqsubseteq b \Rightarrow F_r a \sqsubseteq F_r b$

$$(\mathsf{AA7}) \ \left(\bigwedge_{r < s} F_{r_1 \cdots r_n r} a\right) = F_{r_1 \cdots r_n s} a$$

Comments on the axioms

• The operator F_r is the algebraic counterpart of the logical modality L_r . The first two axioms state tautologies, while the third captures the way F_r interacts with negation. Axioms (AA4) and (AA5) assert finite additivity, while (AA6) asserts monotonicity.

Comments on the axioms

- The operator F_r is the algebraic counterpart of the logical modality L_r . The first two axioms state tautologies, while the third captures the way F_r interacts with negation. Axioms (AA4) and (AA5) assert finite additivity, while (AA6) asserts monotonicity.
- ② The most interesting axiom is the infinitary axiom (AA7). It asserts that $F_{r_1 \cdots r_n s} a$ is the greatest lower bound of the set Set $F_{r_1 \cdots r_n r} ar < s$ with respect to the natural order ≤. We will use it to establish countable additivity when we prove duality.

Comments on the axioms

- The operator F_r is the algebraic counterpart of the logical modality L_r . The first two axioms state tautologies, while the third captures the way F_r interacts with negation. Axioms (AA4) and (AA5) assert finite additivity, while (AA6) asserts monotonicity.
- ② The most interesting axiom is the infinitary axiom (AA7). It asserts that $F_{r_1 \cdots r_n s} a$ is the greatest lower bound of the set Set $F_{r_1 \cdots r_n r} ar < s$ with respect to the natural order ≤. We will use it to establish countable additivity when we prove duality.
- There are only countably many instances of (AA7).

Basic Lemmas

Let $\mathcal{A} = (A, \Rightarrow, \bot, \{F_r\}_{r \in \mathbb{Q}_0}, \sqsubseteq)$ be an Aumann algebra. For all $a, b \in A$ and $r, s \in \mathbb{Q}_0$,

- $F_r \perp = \perp$ for r > 0;
- 2 if $r \leq s$, then $F_s a \sqsubseteq F_r a$;
- **③** if $a \sqsubseteq \neg b$ and r + s > 1, then $F_r a \sqsubseteq \neg F_s b$.

The logic yields an Aumann algebra

Let $[\phi]$ denote the equivalence class of ϕ modulo \equiv , and let $\mathcal{L}/\equiv \{[\phi] \mid \phi \in \mathcal{L}\}.$

Theorem

The structure

$$(\mathcal{L}/\equiv,\Rightarrow,[\perp],\{L_r\}_{r\in\mathbb{Q}_0},\leq)$$

is an Aumann algebra, where $[\phi] \leq [\psi]$ iff $\vdash \phi \Rightarrow \psi$.

Soundness for Aumann Algebras

Theorem

Let \mathcal{A} be an Aumann algebra and $a \in \mathcal{A}$. If $\top \sqsubseteq a$, then for any Markov process $\mathcal{M} = (M, \Sigma, \tau)$ and any interpretation $\llbracket \cdot \rrbracket$ of terms in the language of Aumann algebras as measurable sets in M with the properties listed above, $\llbracket a \rrbracket = M$.

Preliminary Remarks

 We need to combine an LMP with a Stone space. It is natural to use the Borel algebra from the Stone topology as the *σ*-algebra.

Preliminary Remarks

- We need to combine an LMP with a Stone space. It is natural to use the Borel algebra from the Stone topology as the *σ*-algebra.
- Thus we have Markov processes defined not on arbitrary measure spaces but on "Stone-like" spaces.

Preliminary Remarks

- We need to combine an LMP with a Stone space. It is natural to use the Borel algebra from the Stone topology as the *σ*-algebra.
- Thus we have Markov processes defined not on arbitrary measure spaces but on "Stone-like" spaces.
- However, it is not just a simple combination of the definitions of Markov processes and Stone spaces.

Preliminary Remarks

- We need to combine an LMP with a Stone space. It is natural to use the Borel algebra from the Stone topology as the *σ*-algebra.
- Thus we have Markov processes defined not on arbitrary measure spaces but on "Stone-like" spaces.
- However, it is not just a simple combination of the definitions of Markov processes and Stone spaces.
- Our spaces will not be compact and this will cause (and cure!) some headaches.

Preliminary Remarks

- We need to combine an LMP with a Stone space. It is natural to use the Borel algebra from the Stone topology as the *σ*-algebra.
- Thus we have Markov processes defined not on arbitrary measure spaces but on "Stone-like" spaces.
- However, it is not just a simple combination of the definitions of Markov processes and Stone spaces.
- Our spaces will not be compact and this will cause (and cure!) some headaches.
- We need to have spaces where the *F_r* operations of the Aumann algebra can be sensibly interpreted.

 We restrict attention to Markov processes (M, D, τ) where D is a distinguished countable base of clopen sets that is closed under the set-theoretic Bolean operations and

- We restrict attention to Markov processes (M, D, τ) where D is a distinguished countable base of clopen sets that is closed under the set-theoretic Bolean operations and
- also under the operation

$$F_r(D) = \{m \mid \tau(m)(D) \ge r\}, r \in \mathbb{Q}_0.$$

- We restrict attention to Markov processes (M, D, τ) where D is a distinguished countable base of clopen sets that is closed under the set-theoretic Bolean operations and
- also under the operation

$$F_r(D) = \{m \mid \tau(m)(D) \ge r\}, r \in \mathbb{Q}_0.$$

• The measurable sets are the Borel sets of the topology generated by \mathcal{D} .

- We restrict attention to Markov processes (M, D, τ) where D is a distinguished countable base of clopen sets that is closed under the set-theoretic Bolean operations and
- also under the operation

$$F_r(D) = \{m \mid \tau(m)(D) \ge r\}, r \in \mathbb{Q}_0.$$

- The measurable sets are the Borel sets of the topology generated by $\mathcal{D}.$
- Morphisms of such MPs are *continuous* function $f : \mathcal{M} \to \mathcal{N}$ such that

$$\forall m \in M \text{ and } B \in \Sigma_{\mathcal{N}}, \tau_{\mathcal{M}}(m)(f^{-1}(B)) = \tau_{\mathcal{N}}(f(m))(B);$$

$$\forall D \in \mathcal{D}_{\mathcal{N}}, f^{-1}(D) \in \mathcal{D}_{\mathcal{M}}.$$

Saturation

 In model theory there is a concept called "saturation" which means roughly speaking that the space is maximal in some sense; it is the semantic counterpart to the proof theoretic notion of maximally consistent.

Saturation

- In model theory there is a concept called "saturation" which means roughly speaking that the space is maximal in some sense; it is the semantic counterpart to the proof theoretic notion of maximally consistent.
- We introduce a similar concept for our Markov processes.

4 D K 4 B K 4 B K 4 B K

Saturation

- In model theory there is a concept called "saturation" which means roughly speaking that the space is maximal in some sense; it is the semantic counterpart to the proof theoretic notion of maximally consistent.
- We introduce a similar concept for our Markov processes.
- Intuitively, one adds points to the structure without changing the represented algebra. An MP is *saturated* if it is maximal with respect to this operation.

- Formally, consider MP morphisms $f : \mathcal{M} \to \mathcal{N}$ such that
 - f is a homeomorphism between \mathcal{M} and its image in \mathcal{N} ;
 - the image f(M) is dense in N; and
 - *f* preserves the distinguished base in the forward direction as well as the backward; that is, if $D \in \mathcal{D}_M$, then there exists $B \in \mathcal{D}_N$ such that $A = f^{-1}(B)$.

- Formally, consider MP morphisms $f : \mathcal{M} \to \mathcal{N}$ such that
 - f is a homeomorphism between \mathcal{M} and its image in \mathcal{N} ;
 - the image f(M) is dense in N; and
 - *f* preserves the distinguished base in the forward direction as well as the backward; that is, if $D \in \mathcal{D}_M$, then there exists $B \in \mathcal{D}_N$ such that $A = f^{-1}(B)$.
- Call such a morphism a *strict embedding*. The collection of all N such that there exists a strict embedding M → N contains a final object, which is the colimit of the strict embeddings M → N. This is the saturation of M.

- Formally, consider MP morphisms $f : \mathcal{M} \to \mathcal{N}$ such that
 - f is a homeomorphism between \mathcal{M} and its image in \mathcal{N} ;
 - the image f(M) is dense in N; and
 - *f* preserves the distinguished base in the forward direction as well as the backward; that is, if $D \in \mathcal{D}_M$, then there exists $B \in \mathcal{D}_N$ such that $A = f^{-1}(B)$.
- Call such a morphism a *strict embedding*. The collection of all N such that there exists a strict embedding M → N contains a final object, which is the colimit of the strict embeddings M → N. This is the saturation of M.
- The collection of *all* such N might be too big for the colimit to exist. But we can take the collection of all the embeddings of M into a suitably large space (e.g. the Stone-Cech compactification of M).

- Formally, consider MP morphisms $f : \mathcal{M} \to \mathcal{N}$ such that
 - f is a homeomorphism between \mathcal{M} and its image in \mathcal{N} ;
 - the image f(M) is dense in N; and
 - *f* preserves the distinguished base in the forward direction as well as the backward; that is, if $D \in \mathcal{D}_M$, then there exists $B \in \mathcal{D}_N$ such that $A = f^{-1}(B)$.
- Call such a morphism a *strict embedding*. The collection of all N such that there exists a strict embedding M → N contains a final object, which is the colimit of the strict embeddings M → N. This is the saturation of M.
- The collection of *all* such N might be too big for the colimit to exist. But we can take the collection of all the embeddings of M into a suitably large space (e.g. the Stone-Cech compactification of M).
- One can construct the saturation by adding suitable ultrafilters.

イロト 不得 トイヨト イヨト 二日

Formal Definition of Stone-Markov Process

Stone-Markov Processes

- A Markov process $\mathcal{M} = (M, \mathcal{D}, \tau)$ with distinguished base is a *Stone–Markov process (SMP)* if it is saturated.
- The morphisms of SMPs are just the morphisms of MPs with distinguished base as defined above.
- The category of SMPs and SMP morphisms is denoted SMP.

Recall that we are not requiring the spaces to be compact, they are just zero-dimensional Hausdorff spaces.

• Fix an arbitrary countable Aumann algebra

$$\mathcal{A} = (A, \Rightarrow, \bot, \{F_r\}_{r \in \mathbb{Q}_0}, \sqsubseteq).$$

э

イロト イポト イヨト イヨト

• Fix an arbitrary countable Aumann algebra

$$\mathcal{A} = (A, \Rightarrow, \bot, \{F_r\}_{r \in \mathbb{Q}_0}, \sqsubseteq).$$

 Let U^{*} be the set of all ultrafilters of A. The classical Stone construction gives a Boolean algebra of sets isomorphic to A with elements

< ロ > < 同 > < 回 > < 回 >

• Fix an arbitrary countable Aumann algebra

$$\mathcal{A} = (A, \Rightarrow, \bot, \{F_r\}_{r \in \mathbb{Q}_0}, \sqsubseteq).$$

 Let U^{*} be the set of all ultrafilters of A. The classical Stone construction gives a Boolean algebra of sets isomorphic to A with elements

۲

< ロ > < 同 > < 回 > < 回 >

• Fix an arbitrary countable Aumann algebra

$$\mathcal{A} = (A, \Rightarrow, \bot, \{F_r\}_{r \in \mathbb{Q}_0}, \sqsubseteq).$$

 Let U^{*} be the set of all ultrafilters of A. The classical Stone construction gives a Boolean algebra of sets isomorphic to A with elements

۲

$$(a)^* = \{ u \in \mathcal{U}^* \mid a \in u \}, \ a \in \mathcal{A}$$
$$(\mathcal{A})^* = \{ (a)^* \mid a \in A \}.$$

The sets (*a*)^{*} generate a Stone topology τ^{*} on U^{*},

4 D K 4 B K 4 B K 4 B K

• Fix an arbitrary countable Aumann algebra

$$\mathcal{A} = (A, \Rightarrow, \bot, \{F_r\}_{r \in \mathbb{Q}_0}, \sqsubseteq).$$

 Let U^{*} be the set of all ultrafilters of A. The classical Stone construction gives a Boolean algebra of sets isomorphic to A with elements

۲

$$(a)^* = \{ u \in \mathcal{U}^* \mid a \in u \}, \ a \in \mathcal{A}$$
$$(\mathcal{A})^* = \{ (a)^* \mid a \in A \}.$$

The sets (|a|)* generate a Stone topology τ* on U*,
and the (|a|)* are exactly the clopen sets of the topology.

Panangaden (McGill University)

Stone Duality for Markov Processes

Nijmegen May 2013 34 / 43

• Let \mathcal{F} be the set of elements of the form $\alpha^r = F_{t_1 \cdots t_n r} a$ for $a \in A$ and $t_1, \ldots, t_n, r \in \mathbb{Q}_0$.

イロト 不得 トイヨト イヨト 二日

- Let \mathcal{F} be the set of elements of the form $\alpha^r = F_{t_1 \cdots t_n r} a$ for $a \in A$ and $t_1, \ldots, t_n, r \in \mathbb{Q}_0$.
- Notation: we view the term $F_{t_1 \cdots t_n r}a$ as parametrized by r, so, *e.g.* α^s means $F_{t_1 \cdots t_n s}a$.

- Let \mathcal{F} be the set of elements of the form $\alpha^r = F_{t_1 \cdots t_n r} a$ for $a \in A$ and $t_1, \ldots, t_n, r \in \mathbb{Q}_0$.
- Notation: we view the term $F_{t_1\cdots t_n r}a$ as parametrized by r, so, *e.g.* α^s means $F_{t_1\cdots t_n s}a$.
- The set \mathcal{F} is countable since A is.

- Let \mathcal{F} be the set of elements of the form $\alpha^r = F_{t_1 \cdots t_n r} a$ for $a \in A$ and $t_1, \ldots, t_n, r \in \mathbb{Q}_0$.
- Notation: we view the term $F_{t_1 \cdots t_n r}a$ as parametrized by r, so, *e.g.* α^s means $F_{t_1 \cdots t_n s}a$.
- The set \mathcal{F} is countable since A is.
- Axiom (AA7) asserts all infinitary equations of the form

$$\alpha^s = \bigwedge_{r < s} \alpha^r. \tag{1}$$

for $\alpha^s \in \mathcal{F}$.

- Let \mathcal{F} be the set of elements of the form $\alpha^r = F_{t_1 \cdots t_n r} a$ for $a \in A$ and $t_1, \ldots, t_n, r \in \mathbb{Q}_0$.
- Notation: we view the term $F_{t_1 \cdots t_n r}a$ as parametrized by r, so, *e.g.* α^s means $F_{t_1 \cdots t_n s}a$.
- The set \mathcal{F} is countable since A is.
- Axiom (AA7) asserts all infinitary equations of the form

$$\alpha^s = \bigwedge_{r < s} \alpha^r. \tag{1}$$

for $\alpha^s \in \mathcal{F}$.

Let us call an ultrafilter *u* bad if it violates one or more of these equations, *i.e.* for some α^s ∈ F, α^r ∈ u for all r < s but α^s ∉ u.

- Let \mathcal{F} be the set of elements of the form $\alpha^r = F_{t_1 \cdots t_n r} a$ for $a \in A$ and $t_1, \ldots, t_n, r \in \mathbb{Q}_0$.
- Notation: we view the term $F_{t_1 \cdots t_n r}a$ as parametrized by r, so, *e.g.* α^s means $F_{t_1 \cdots t_n s}a$.
- The set \mathcal{F} is countable since A is.
- Axiom (AA7) asserts all infinitary equations of the form

$$\alpha^s = \bigwedge_{r < s} \alpha^r. \tag{1}$$

for $\alpha^s \in \mathcal{F}$.

- Let us call an ultrafilter *u* bad if it violates one or more of these equations, *i.e.* for some α^s ∈ F, α^r ∈ u for all r < s but α^s ∉ u.
- Otherwise, *u* is called *good*. Let *U* be the set of good ultrafilters of *A*.

The set of bad ultrafilters is meager in the Stone topology.

3

- The set of bad ultrafilters is meager in the Stone topology.
- 2 The set of good ultrafilters is a zero-dimensional Hausdorff space.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The set of bad ultrafilters is meager in the Stone topology.
- Interset of good ultrafilters is a zero-dimensional Hausdorff space.
- By removing the bad ultrafilters we have a space that is not compact any more.

3

- The set of bad ultrafilters is meager in the Stone topology.
- Interset of good ultrafilters is a zero-dimensional Hausdorff space.
- By removing the bad ultrafilters we have a space that is not compact any more.
- The good ultrafilters are dense in the set of all ultrafilters.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We are going to build an SMP on the space of good ultrafilters.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We are going to build an SMP on the space of good ultrafilters.
- So For any ultrafilter *u* and any *a* in the Aumann Algebra, the set $\{r \in \mathbb{Q}_0 \mid F_r a \in u\}$ is non-empty and downward closed.

- We are going to build an SMP on the space of good ultrafilters.
- So For any ultrafilter *u* and any *a* in the Aumann Algebra, the set $\{r \in \mathbb{Q}_0 \mid F_r a \in u\}$ is non-empty and downward closed.
- Using the axioms one can show that

$$\sup \{r \mid F_r a \in u\} = \inf \{r \mid \neg F_r a \in u\}.$$

- We are going to build an SMP on the space of good ultrafilters.
- So For any ultrafilter *u* and any *a* in the Aumann Algebra, the set $\{r \in \mathbb{Q}_0 \mid F_r a \in u\}$ is non-empty and downward closed.
- Using the axioms one can show that

$$\sup \{r \mid F_r a \in u\} = \inf \{r \mid \neg F_r a \in u\}.$$

• Thus one can define
$$\tau(u)((a)) = \sup \{\ldots\} = \inf \{\ldots\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The collection (\mathcal{A}) is a field of sets.

э.

- The collection (\mathcal{A}) is a field of sets.
- 2 The function $\tau(u)$ is finitely additive on the field of sets (\mathcal{A}) .

3

- The collection (\mathcal{A}) is a field of sets.
- 2 The function $\tau(u)$ is finitely additive on the field of sets (\mathcal{A}) .
- Sor all u, τ(u) is continuous from above at Ø: Hardest part of the paper!

- The collection (\mathcal{A}) is a field of sets.
- 2 The function $\tau(u)$ is finitely additive on the field of sets (\mathcal{A}) .
- Sor all u, τ(u) is continuous from above at Ø: Hardest part of the paper!
- This argument uses in a crucial way the fact that the bad ultrafilters have been removed.

- The collection (\mathcal{A}) is a field of sets.
- 2 The function $\tau(u)$ is finitely additive on the field of sets (\mathcal{A}) .
- Sor all u, τ(u) is continuous from above at Ø: Hardest part of the paper!
- This argument uses in a crucial way the fact that the bad ultrafilters have been removed.
- One can use standard measure extension theorems to define τ as a measure on the space of good ultrafilters.

- The collection (\mathcal{A}) is a field of sets.
- 2 The function $\tau(u)$ is finitely additive on the field of sets (\mathcal{A}) .
- Sor all u, τ(u) is continuous from above at Ø: Hardest part of the paper!
- This argument uses in a crucial way the fact that the bad ultrafilters have been removed.
- One can use standard measure extension theorems to define τ as a measure on the space of good ultrafilters.
- Basic result: If A is a countable Aumann algebra then we can construct a countably-generated SMP, M(A), on the space of good ultrafilters.

- The collection (\mathcal{A}) is a field of sets.
- 2 The function $\tau(u)$ is finitely additive on the field of sets (\mathcal{A}) .
- Sor all u, τ(u) is continuous from above at Ø: Hardest part of the paper!
- This argument uses in a crucial way the fact that the bad ultrafilters have been removed.
- One can use standard measure extension theorems to define τ as a measure on the space of good ultrafilters.
- Sasic result: If A is a countable Aumann algebra then we can construct a countably-generated SMP, M(A), on the space of good ultrafilters.
- **(2)** It is straighforward to extend $\mathbb{M}(\cdot)$ to a functor.

Let *M* = (*M*, *B*, *τ*) be a Stone Markov process with distinguished base *B*. By definition, *B* is a field of clopen sets closed under the operations

$$F_r(A) = \{m \in M \mid \tau(m)(A) \ge r\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *M* = (*M*, *B*, *τ*) be a Stone Markov process with distinguished base *B*. By definition, *B* is a field of clopen sets closed under the operations

$$F_r(A) = \{m \in M \mid \tau(m)(A) \ge r\}.$$

2 The structure \mathcal{B} with the set-theoretic Boolean operations and the operations F_r , $r \in \mathbb{Q}_0$ is a countable Aumann algebra.

Let *M* = (*M*, *B*, *τ*) be a Stone Markov process with distinguished base *B*. By definition, *B* is a field of clopen sets closed under the operations

$$F_r(A) = \{ m \in M \mid \tau(m)(A) \ge r \}.$$

- 2 The structure \mathcal{B} with the set-theoretic Boolean operations and the operations F_r , $r \in \mathbb{Q}_0$ is a countable Aumann algebra.
- The verification is routine.

Let *M* = (*M*, *B*, *τ*) be a Stone Markov process with distinguished base *B*. By definition, *B* is a field of clopen sets closed under the operations

$$F_r(A) = \{ m \in M \mid \tau(m)(A) \ge r \}.$$

- 2 The structure \mathcal{B} with the set-theoretic Boolean operations and the operations F_r , $r \in \mathbb{Q}_0$ is a countable Aumann algebra.
- The verification is routine.
- We denote this algebra by $\mathbb{A}(\mathcal{M})$.

Let *M* = (*M*, *B*, *τ*) be a Stone Markov process with distinguished base *B*. By definition, *B* is a field of clopen sets closed under the operations

$$F_r(A) = \{ m \in M \mid \tau(m)(A) \ge r \}.$$

- 2 The structure \mathcal{B} with the set-theoretic Boolean operations and the operations F_r , $r \in \mathbb{Q}_0$ is a countable Aumann algebra.
- The verification is routine.
- We denote this algebra by $\mathbb{A}(\mathcal{M})$.
- **Once** again, we can make $\mathbb{A}(\cdot)$ a functor.

The non-categorical version

• Any countable Aumann algebra \mathcal{A} $\mathcal{A} = (A, \top, \bot, \neg, \lor, \land, \{F_r\}_{r \in \mathbb{Q}^+}, \sqsubseteq)$ is isomorphic to $\mathbb{A}(\mathbb{M}(\mathcal{A}))$ via the map $\beta : \mathcal{A} \to \mathbb{A}(\mathbb{M}(\mathcal{A}))$ defined by

$$\beta(a) = \{ u \in \operatorname{supp}(\mathbb{M}(\mathcal{A})) \mid a \in u \} = (a).$$

Any Stone Markov process *M* = (*M*, *A*, *θ*) is homeomorphic to M(A(*M*)) via the map *α* : *M* → M(A(*M*)) defined by

$$\alpha(m) = \{A \in \mathcal{A} \mid m \in A\}.$$

Defining the arrow part of $\mathbb{A}(\cdot)$

We define a contravariant functor $\mathbb{A}:SMP \rightarrow AA^{\text{op}}:$

 $\mathbb{A}(\cdot)$

On arrows $f: \mathcal{M} \to \mathcal{N}$ we define $\mathbb{A}(f) = f^{-1}: \mathbb{A}(\mathcal{N}) \to \mathbb{A}(\mathcal{M}).$

It is well known that this is a Boolean algebra homomorphism. It is also easy to verify that it is an Aumann algebra homomorphism.

Defining the arrow part of $\mathbb{M}(\cdot)$

We define the arrow part of $\mathbb{M}: AA \to SMP^{\text{op}}.$

$\mathbb{M}(\cdot)$

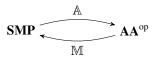
On morphisms $h : \mathcal{A} \to \mathcal{B}$, $\mathbb{M}(h) = h^{-1} : \mathbb{M}(\mathcal{B}) \to \mathbb{M}(\mathcal{A})$, explicitly

$$\mathbb{M}(h)(u) = h^{-1}(u) = \{A \in \mathcal{A}_{\mathcal{N}} \mid h(A) \in u\}.$$

イロト 不得 トイヨト イヨト 二日

Duality: categorical form

The functors $\mathbb M$ and $\mathbb A$ define a dual equivalence of categories.



< ロ > < 同 > < 回 > < 回 >