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Introduction

Recap of Stone Duality

C

F

""
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Stone Duality
We have a (contravariant) adjunction between categories C and D,
which is an equivalence of categories.

Examples: Finite sets and finite Boolean algebras, Boolean algebras
and Stone spaces, Finite-dimensional vector spaces and itself,
commutative unital C∗-algebras and compact Hausdorff spaces, .....
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Introduction

Duality for Stone-Markov Processes

1 We extend completeness theorems for probabilistic logics to a
Stone-type duality.

2 It builds on classical Stone-type duality: we define Markov
processes on top of Stone spaces. Stone-Markov processes.

3 The algebraic counterpart is called Aumann algebra: an algebraic
form of Aumann’s probabilistic logic.

4 Previous completeness proofs are conditional on a logic satisfying
Lindenbaum’s Lemma.
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Introduction

Technical Issue and Tools

Some subtle topological issues arise that we need to confront.

We are going to have to use infinitary operations. No hope of
completeness without it.
We will use the Rasiowa-Sikorski Lemma, which is based on the
Baire category theorem.
We will RST to prove that every consistent set of formulas can be
extended to a maximal consistent set (Lindenbaum’s Lemma).
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Background on Labelled Markov Processes

What are labelled Markov processes?

Labelled Markov processes are probabilistic versions of labelled
transition systems. Labelled transition systems where the final
state is governed by a probability distribution - no other
indeterminacy.

All probabilistic data is internal - no probabilities associated with
environment behaviour.
We observe the interactions - not the internal states.
In general, the state space of a labelled Markov process may
be a continuum.
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Background on Labelled Markov Processes

Motivation

Model and reason about systems with continuous state spaces or
continuous time evolution or both.

hybrid control systems; e.g. flight management systems.
telecommunication systems with spatial variation; e.g. cell phones
performance modelling,
continuous time systems,
probabilistic process algebra with recursion.
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Background on Labelled Markov Processes

Formal Definition of LMPs

An LMP is a tuple (S,Σ,L, ∀α ∈ L.τα) where
S is the space of states, assumed to be an analytic space,
Σ is the Borel σ-algebra of S, and
where τα : S× Σ −→ [0, 1] is a transition probability function such
that
∀s : S.λA : Σ.τα(s,A) is a subprobability measure
and
∀A : Σ.λs : S.τα(s,A) is a measurable function: the reals are
equipped with the Borel σ-algebra.
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Background on Labelled Markov Processes

Logical Characterization

L0 ::== T|φ1 ∧ φ2|〈a〉qφ

We say s |= 〈a〉qφ iff

∃A ∈ Σ.(∀s′ ∈ A.s′ |= φ) ∧ (τa(s,A) > q).

Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
Analyticity is crucial for proving this.
Later [DDLP 2006], we introduced a co-bisimulation
(cocongruence) and proved that the above logic characterizes
co-bisimulation for all Markov processes, not just ones defined on
analytic spaces.
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Technical Background

Polish and Analytic Spaces

Why are we talking about topology at all? It turns out that many
aspects of measure theory work much more nicely if the spaces
are metric spaces. A Polish space is the topological space
underlying a complete, separable metric space.

Separable means that there is a countable base of open sets; for
metric spaces this is the same as saying that there is a countable
dense subset.
If X,Y are Polish and f : X −→ Y is continuous then f (X) ⊂ Y is an
analytic space.
It does not matter if f is continuous or measurable (!), or if we take
a Borel subset of X.
Analytic spaces have some remarkable properties that were
crucial in the proof of the logical characterization theorem.
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Technical Background

Stone spaces

A Stone space is a compact Hausdorff space with a base of
clopen sets: zero-dimensional space.
A space is said to be totally disconnected if the only connected
sets are singletons. For (locally) compact Hausdorff spaces zero
dimensional is equivalent to totally disconnected. Ultrametric
spaces are zero-dimensional.
Many, but not all, Stone spaces are Polish.
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Technical Background

Boolean Algebras

A Boolean algebra is a set A equipped with two constants, 0, 1, a unary
operation (·)′ and two binary operations ∨,∧ which obey the following
axioms, p, q, r are arbitrary members of A:

0′ = 1 1′ = 0
p ∧ 0 = 0 p ∨ 1 = 1
p ∧ 1 = p p ∨ 0 = p

p ∧ p′ = 0 p ∨ p′ = 1
p ∧ p = p p ∨ p = p
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Technical Background

Boolean Algebras II

p′′ = p

(p ∧ q)′ = p′ ∨ q′

(p ∨ q)′ = p′ ∧ q′

p ∧ q = q ∧ p

p ∨ q = q ∨ p

p ∧ (q ∧ r) = (p ∧ q) ∧ r

p ∨ (q ∨ r) = (p ∨ q) ∨ r

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)

The operation ∨ is called join, ∧ is called meet and (·)′ is called
complement.
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Technical Background

Classical Stone Duality

Given a Stone space S the clopens form a Boolean algebra: Cl(S).

Given a Boolean algebra B, a Stone space U(B) is constructed
from the space U of maximal filters (ultrafilters).
Given an element b of the Boolean algebra, a basic open is
defined by Ub := {u ∈ U | b ∈ u}.
Ultrafilters correspond precisely to maps from B to 2:
{b ∈ B | f (b) = 1} is always an ultrafilter.
Continuous maps f : S1 −→ S2 between Stone spaces give
Boolean algebra homomorphisms f−1 : Cl(S2) −→ Cl(S1).
Boolean algebra homomorphisms h : B1 −→ B2 give rise to
continuous functions (·) ◦ f : U(B2) −→ U(B1) between the Stone
spaces.
Everything that can and should be an isomorphism is an
isomorphism.
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Technical Background

Baire Category Theorem

1 A set N ⊂ X is said to be nowhere dense if every open set U
contains an open set V ⊂ U with V,A disjoint. A set is said to be of
the first category or meager if it is the countable union of nowhere
dense sets.

2 Meagre sets need not be closed.
3 Baire proved: The complement of any meager subset of R is

dense. This is equivalent to: no interval is meager and also to the
intersection of countably many dense open sets is dense.

4 A Baire space is one in which no non-empty open set is meagre.
5 Modern BCT: (1) Every complete metric space is a Baire space.

(2) Every (locally) compact Hausdorff space is a Baire space.
6 The version we use: In a compact Hausdorff space the

intersection of a family of dense open sets is dense.
7 The boundary of any open set is closed and nowhere dense.
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intersection of countably many dense open sets is dense.

4 A Baire space is one in which no non-empty open set is meagre.
5 Modern BCT: (1) Every complete metric space is a Baire space.

(2) Every (locally) compact Hausdorff space is a Baire space.
6 The version we use: In a compact Hausdorff space the

intersection of a family of dense open sets is dense.
7 The boundary of any open set is closed and nowhere dense.
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Technical Background

The Rasiowa-Sikorski Lemma

Let B be a Boolean algebra and T ⊂ B be a set with
∨

T defined. An
ultrafilter U is said to respect T if∨

T ∈ U ⇒ T ∩ U 6= ∅.

The Rasiowa-Sikorski Lemma
Let T be a countable family of subsets of B each member of which has
a join and let x 6= 0 in B. Then there is an ultrafilter which respects
each member of T and which contains x.
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Technical Background

Dualizing the lemma

We can define U dually respects S by saying that
∧

S ∈ U ⇐⇒ S ⊂ U .
Then we have that U respects T iff U dually respects S := {¬t | t ∈ T}.
We can use the RS lemma for respects or dually respects: there is no
point making a terminological distinction between the two cases.
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Markov Processes and Markovian Logic

Definition of a Markov Process

Labels are not important for the present work so we forget about them
for now.

Markov Process
Given an analytic space (M,Σ), a Markov process is a measurable
mapping τ ∈ JM −→ ∆(M,Σ)K.

We have curried the definition of LMPs and eliminated the labels.
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Markov Processes and Markovian Logic

Markovian Logic

The formulas of L are defined, for a set P of atomic propositions, by
the grammar

φ ::= p | ⊥ | φ⇒ φ | Lrφ

where p can be any element of P and r any element of Q0.
The other Boolean operators are defined in the usual way.

Notation: Lr1...rkφ := Lr1 . . . Lrkφ.
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Markov Processes and Markovian Logic

Semantics

Given a Markov ProcessM = (M,Σ, τ), m ∈ M and i : M −→ 2P we
have

the satisfaction relation:
M,m, i |= p if p ∈ i(m),
M,m, i |= ⊥ never,
M,m, i |= φ⇒ ψ ifM,m, i |= ψ wheneverM,m, i |= φ,
M,m, i |= Lrφ if τ(m)(JφK) ≥ r,
where JφK = {m ∈ M | M,m, i |= φ}.

It follows that:
M,m, i |= > always,
M,m, i |= φ ∧ ψ iffM,m, i |= φ andM,m, i |= ψ,
M,m, i |= φ ∨ ψ iffM,m, i |= φ orM,m, i |= ψ,
M,m, i |= ¬φ iff notM,m, i |= φ.
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Markov Processes and Markovian Logic

Axioms for Markovian Logic

The axioms of L
(A1): ` L0φ

(A2): ` LrT

(A3): ` Lrφ −→ ¬Ls¬φ, r + s > 1

(A4): ` Lr(φ ∧ ψ) ∧ Ls(φ ∧ ¬ψ) −→ Lr+sφ, r + s ≤ 1

(A5): ` ¬Lr(φ ∧ ψ) ∧ ¬Ls(φ ∧ ¬ψ) −→ ¬Lr+sφ, r + s ≤ 1

(R1):
` φ −→ ψ

` Lrφ −→ Lrψ

(R2): {Lr1···rnrψ | r < s} ` Lr1···rnsψ
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Markov Processes and Markovian Logic

Completeness

Zhou proved strong completeness using a strengthened version of
(R1) and assuming Lindenbaum’s Lemma.

Goldblatt proved strong completeness by assuming Lindenbaum’s
Lemma and other infinitary axioms.
Our duality theorem implies strong completeness for the above
axioms without assuming Lindenbaum’s Lemma.
Instead we use the RSL to establish Lindenbaum’s Lemma.
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Aumann Algebras

The Definition of Aumann Algebras

An Aumann algebra (AA) is a structure A = (A,⇒,⊥, {Fr}r∈Q0
,v)

where
(A,⇒,⊥,v) is a Boolean algebra;
for each r ∈ Q0, Fr : A −→ A is an unary operator; and
the axioms below hold for all a, b ∈ A, r, s, r1, . . . , rn ∈ Q0.

Axioms
(AA1) > v F0a

(AA2) > v Fr>
(AA3) Fra v ¬Fs¬a, r + s > 1

(AA4) Fr(a ∧ b) ∧ Fs(a ∧ ¬b) v Fr+sa, r + s ≤ 1

(AA5) ¬Fr(a ∧ b) ∧ ¬Fs(a ∧ ¬b) v ¬Fr+sa, r + s ≤ 1

(AA6) a v b⇒ Fra v Frb

(AA7)
(∧

r<s Fr1···rnra
)

= Fr1···rnsa
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Aumann Algebras

Comments on the axioms

1 The operator Fr is the algebraic counterpart of the logical modality
Lr. The first two axioms state tautologies, while the third captures
the way Fr interacts with negation. Axioms (AA4) and (AA5)
assert finite additivity, while (AA6) asserts monotonicity.

2 The most interesting axiom is the infinitary axiom (AA7). It asserts
that Fr1···rnsa is the greatest lower bound of the set SetFr1···rnrar < s
with respect to the natural order ≤. We will use it to establish
countable additivity when we prove duality.

3 There are only countably many instances of (AA7).
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Aumann Algebras

Basic Lemmas

Let A = (A,⇒,⊥, {Fr}r∈Q0
,v) be an Aumann algebra. For all a, b ∈ A

and r, s ∈ Q0,
1 Fr⊥ = ⊥ for r > 0;
2 if r ≤ s, then Fsa v Fra;
3 if a v ¬b and r + s > 1, then Fra v ¬Fsb.
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Aumann Algebras

The logic yields an Aumann algebra

Let [φ] denote the equivalence class of φ modulo ≡, and let
L/≡ = {[φ] | φ ∈ L}.

Theorem
The structure

(L/≡,⇒, [⊥], {Lr}r∈Q0
,≤)

is an Aumann algebra, where [φ] ≤ [ψ] iff ` φ⇒ ψ.
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Aumann Algebras

Soundness for Aumann Algebras

Theorem
Let A be an Aumann algebra and a ∈ A. If > v a, then for any Markov
processM = (M,Σ, τ) and any interpretation J·K of terms in the
language of Aumann algebras as measurable sets in M with the
properties listed above, JaK = M.
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Stone-Markov Processes

Preliminary Remarks

We need to combine an LMP with a Stone space. It is natural to
use the Borel algebra from the Stone topology as the σ-algebra.

Thus we have Markov processes defined not on arbitrary measure
spaces but on “Stone-like” spaces.
However, it is not just a simple combination of the definitions of
Markov processes and Stone spaces.
Our spaces will not be compact and this will cause (and cure!)
some headaches.
We need to have spaces where the Fr operations of the Aumann
algebra can be sensibly interpreted.
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Stone-Markov Processes

Distinguished Base

We restrict attention to Markov processes (M,D, τ) where D is a
distinguished countable base of clopen sets that is closed under
the set-theoretic Bolean operations and

also under the operation

Fr(D) = {m | τ(m)(D) ≥ r}, r ∈ Q0.

The measurable sets are the Borel sets of the topology generated
by D.
Morphisms of such MPs are continuous function f :M−→ N such
that

1 ∀m ∈ M and B ∈ ΣN , τM(m)(f−1(B)) = τN (f (m))(B);
2 ∀D ∈ DN , f−1(D) ∈ DM.
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Stone-Markov Processes

Saturation

In model theory there is a concept called “saturation” which
means roughly speaking that the space is maximal in some
sense; it is the semantic counterpart to the proof theoretic notion
of maximally consistent.

We introduce a similar concept for our Markov processes.
Intuitively, one adds points to the structure without changing the
represented algebra. An MP is saturated if it is maximal with
respect to this operation.
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Stone-Markov Processes

Saturation definition

Formally, consider MP morphisms f :M−→ N such that
f is a homeomorphism betweenM and its image in N ;
the image f (M) is dense in N; and
f preserves the distinguished base in the forward direction as well
as the backward; that is, if D ∈ DM, then there exists B ∈ DN such
that A = f−1(B).

Call such a morphism a strict embedding. The collection of all N
such that there exists a strict embeddingM−→ N contains a final
object, which is the colimit of the strict embeddingsM−→ N . This
is the saturation ofM.
The collection of all such N might be too big for the colimit to exist.
But we can take the collection of all the embeddings ofM into a
suitably large space (e.g. the Stone-Cech compactification ofM).
One can construct the saturation by adding suitable ultrafilters.
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Stone-Markov Processes

Formal Definition of Stone-Markov Process

Stone-Markov Processes
A Markov processM = (M,D, τ) with distinguished base is a
Stone–Markov process (SMP) if it is saturated.
The morphisms of SMPs are just the morphisms of MPs with
distinguished base as defined above.
The category of SMPs and SMP morphisms is denoted SMP.

Recall that we are not requiring the spaces to be compact, they are
just zero-dimensional Hausdorff spaces.
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From Aumann Algebras to SMPs

Where we start

Fix an arbitrary countable Aumann algebra

A = (A,⇒,⊥, {Fr}r∈Q0
,v).

Let U * be the set of all ultrafilters of A. The classical Stone
construction gives a Boolean algebra of sets isomorphic to A with
elements

LaM* = {u ∈ U * | a ∈ u}, a ∈ A
LAM* = {LaM* | a ∈ A}.

The sets LaM* generate a Stone topology τ * on U *,
and the LaM* are exactly the clopen sets of the topology.
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From Aumann Algebras to SMPs

Ultrafilters: Good and Bad

Let F be the set of elements of the form αr = Ft1···tnra for a ∈ A and
t1, . . . , tn, r ∈ Q0.

Notation: we view the term Ft1···tnra as parametrized by r, so, e.g.
αs means Ft1···tnsa.
The set F is countable since A is.
Axiom (AA7) asserts all infinitary equations of the form

αs =
∧
r<s

αr. (1)

for αs ∈ F .
Let us call an ultrafilter u bad if it violates one or more of these
equations, i.e. for some αs ∈ F , αr ∈ u for all r < s but αs 6∈ u.
Otherwise, u is called good. Let U be the set of good ultrafilters of
A.
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From Aumann Algebras to SMPs

The space of good ultrafilters

1 The set of bad ultrafilters is meager in the Stone topology.

2 The set of good ultrafilters is a zero-dimensional Hausdorff space.
3 By removing the bad ultrafilters we have a space that is not

compact any more.
4 The good ultrafilters are dense in the set of all ultrafilters.
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From Aumann Algebras to SMPs

Construction of the Markov process - I

1 We are going to build an SMP on the space of good ultrafilters.

2 For any ultrafilter u and any a in the Aumann Algebra, the set
{r ∈ Q0 | Fra ∈ u} is non-empty and downward closed.

3 Using the axioms one can show that

sup {r | Fra ∈ u} = inf {r | ¬Fra ∈ u}.

4 Thus one can define τ(u)(LaM) = sup {. . .} = inf {. . .}.
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From Aumann Algebras to SMPs

Construction of the Markov process - II

1 The collection LAM is a field of sets.

2 The function τ(u) is finitely additive on the field of sets LAM.
3 For all u, τ(u) is continuous from above at ∅: – Hardest part of the

paper!
4 This argument uses – in a crucial way – the fact that the bad

ultrafilters have been removed.
5 One can use standard measure extension theorems to define τ as

a measure on the space of good ultrafilters.
6 Basic result: If A is a countable Aumann algebra then we can

construct a countably-generated SMP, M(A), on the space of
good ultrafilters.

7 It is straighforward to extend M(·) to a functor.
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From SMPs to Aumann Algebras

No difficulties in the reverse direction

1 LetM = (M,B, τ) be a Stone Markov process with distinguished
base B. By definition, B is a field of clopen sets closed under the
operations

Fr(A) = {m ∈ M | τ(m)(A) ≥ r}.

2 The structure B with the set-theoretic Boolean operations and the
operations Fr, r ∈ Q0 is a countable Aumann algebra.

3 The verification is routine.
4 We denote this algebra by A(M).
5 Once again, we can make A(·) a functor.
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Duality Theorem

The non-categorical version

1 Any countable Aumann algebra A
A = (A,>,⊥,¬,∨,∧, {Fr}r∈Q+ ,v) is isomorphic to A(M(A)) via
the map β : A → A(M(A)) defined by

β(a) = {u ∈ supp(M(A)) | a ∈ u} = LaM.

2 Any Stone Markov processM = (M,A, θ) is homeomorphic to
M(A(M)) via the map α :M→M(A(M)) defined by

α(m) = {A ∈ A | m ∈ A}.
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Duality Theorem

Defining the arrow part of A(·)

We define a contravariant functor A : SMP −→ AAop:

A(·)
On arrows f :M−→ N we define A(f ) = f−1 : A(N ) −→ A(M).

It is well known that this is a Boolean algebra homomorphism. It is also
easy to verify that it is an Aumann algebra homomorphism.
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Duality Theorem

Defining the arrow part of M(·)

We define the arrow part of M : AA −→ SMPop.

M(·)
On morphisms h : A → B, M(h) = h−1 : M(B)→M(A), explicitly

M(h)(u) = h−1(u) = {A ∈ AN | h(A) ∈ u}.
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Duality Theorem

Duality: categorical form

The functors M and A define a dual equivalence of categories.

SMP AAop

A

M
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