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Introduction

Summary of Results

Probabilistic bisimulation can be defined for continuous
state-space systems. [LICS97]

Logical characterization. [LICS98,Info and Comp 2002]
Metric analogue of bisimulation. [CONCUR99, TCS2004]
Approximation of LMPs. [LICS00,Info and Comp 2003, QEST
2006, CONCUR 2004]
Weak bisimulation. [LICS02, CONCUR02]
Real time. [QEST 2004, JLAP 2003, LMCS 2006]
Event bisimulation. [Info and Comp 2006]
Applications to machine learning [UAI 2004-06, AAAI 2015]
Approximation by Averaging [JACM 2014]
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Discrete probabilistic transition systems

Labelled Transition System

A set of states S,

a set of labels or actions, L or A and
a transition relation ⊆ S×A× S, usually written

→a⊆ S× S.

The transitions could be indeterminate (nondeterministic).
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Discrete probabilistic transition systems

Markov Chains

A discrete-time Markov chain is a finite set S (the state space)
together with a transition probability function T : S× S −→ [0, 1].

A Markov chain is just a probabilistic automaton; if we add labels
we get a PTS.
The key property is that the transition probability from s to s′ only
depends on s and s′ and not on the past history of how it got there.
This is what allows the probabilistic data to be given as a single
matrix T.

Panangaden (McGill University) Probabilistic Bisimulation Stanford November 2016 5 / 37



Discrete probabilistic transition systems

Markov Chains

A discrete-time Markov chain is a finite set S (the state space)
together with a transition probability function T : S× S −→ [0, 1].
A Markov chain is just a probabilistic automaton; if we add labels
we get a PTS.

The key property is that the transition probability from s to s′ only
depends on s and s′ and not on the past history of how it got there.
This is what allows the probabilistic data to be given as a single
matrix T.

Panangaden (McGill University) Probabilistic Bisimulation Stanford November 2016 5 / 37



Discrete probabilistic transition systems

Markov Chains

A discrete-time Markov chain is a finite set S (the state space)
together with a transition probability function T : S× S −→ [0, 1].
A Markov chain is just a probabilistic automaton; if we add labels
we get a PTS.
The key property is that the transition probability from s to s′ only
depends on s and s′ and not on the past history of how it got there.
This is what allows the probabilistic data to be given as a single
matrix T.

Panangaden (McGill University) Probabilistic Bisimulation Stanford November 2016 5 / 37



Discrete probabilistic transition systems

Discrete probabilistic transition systems

Just like a labelled transition system with probabilities associated
with the transitions.

(S,L,∀a ∈ L Ta : S× S −→ [0, 1])

The model is reactive: All probabilistic data is internal - no
probabilities associated with environment behaviour.
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Discrete probabilistic transition systems

Examples of PTSs

s0
a[ 1

4 ]

��

a[ 3
4 ]

��
s1 s2

a[1]

��
s3

s0
a[1]

��

b[1]

��
s1

c[ 1
2 ]

��

c[ 1
2 ]

&&

s2

a[1]

��
s4 s3

A1 A2
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Discrete probabilistic transition systems

Bisimulation for PTS: Larsen and Skou

Consider

t0
a[ 1

3 ]

��

a[ 2
3 ]

��
t1 t2

b[1]

��
t3

s0
a[ 1

3 ]

��
a[ 1

3 ]

��

a[ 1
3 ]

��
s1 s2

b[1]

��

s3

b[1]��
s4

P1 P2

Should s0 and t0 be bisimilar?
Yes, but we need to add the probabilities.
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Discrete probabilistic transition systems

The Official Definition

Let S = (S,L,Ta) be a PTS. An equivalence relation R on S is a
bisimulation if whenever sRs′, with s, s′ ∈ S, we have that for all
a ∈ A and every R-equivalence class, A, Ta(s,A) = Ta(s′,A).

The notation Ta(s,A) means “the probability of starting from s and
jumping to a state in the set A.”
Two states are bisimilar if there is some bisimulation relation R
relating them.
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Labelled Markov processes

What are labelled Markov processes?

Labelled Markov processes are probabilistic versions of labelled
transition systems. Labelled transition systems where the final
state is governed by a probability distribution - no other
indeterminacy.

All probabilistic data is internal - no probabilities associated with
environment behaviour.
We observe the interactions - not the internal states.
In general, the state space of a labelled Markov process may
be a continuum.
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Labelled Markov processes

Motivation

Model and reason about systems with continuous state spaces or
continuous time evolution or both.

hybrid control systems; e.g. flight management systems.

telecommunication systems with spatial variation; e.g. cell phones
performance modelling,
continuous time systems,
probabilistic process algebra with recursion.
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Labelled Markov processes

An Example of a Continuous-State System

�
�
�
�
�
�
�
��
C
C
C
C
C
C
C
CO

@
@
@I

a - turn left

b - turn right

c - straight
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Labelled Markov processes

Actions

a - turn left, b - turn right, c - keep on course
The actions move the craft sideways with some probability distributions
on how far it moves. The craft may “drift” even with c. The action a (b)
must be disabled when the craft is too near the left (right) boundary.
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Labelled Markov processes

Schematic of Example

L

a,c !! a,c
-- M

a,b,c
==b,c

mm
a,c

-- R

b,c}}

b,c
mm

This picture is misleading: unless very special conditions hold the
process cannot be compressed into an equivalent (?) finite-state
model. In general, the transition probabilities should depend on
the position.
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Labelled Markov processes

Some remarks on the use of this model

This is a toy model but exemplifies the issues.

Can be used for reasoning - much better if we could have a
finite-state version.
Why not discretize right away and never worry about the
continuous case? Because we lose the ability to refine the model
later.
A better model would be to base it on rewards and think about
finiding optimal policies as in AI literature.
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Labelled Markov processes

Recap of Markov Kernels

A Markov kernel is a function h : S× Σ −→ [0, 1] with (a) h(s, ·) : Σ
−→ [0, 1] a (sub)probability measure and (b) h(·,A) : S −→ [0, 1] a
measurable function.

Though apparantly asymmetric, these are the stochastic
analogues of binary relations
and the uncountable generalization of a matrix.
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Labelled Markov processes

Formal Definition of LMPs

An LMP is a tuple (S,Σ,L,∀α ∈ L.τα) where τα : S×Σ −→ [0, 1] is a
transition probability function such that

∀s : S.λA : Σ.τα(s,A) is a subprobability measure
and
∀A : Σ.λs : S.τα(s,A) is a measurable function.
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Probabilistic bisimulation

Larsen-Skou Bisimulation

Let S = (S, i,Σ, τ) be a labelled Markov process. An equivalence
relation R on S is a bisimulation if whenever sRs′, with s, s′ ∈ S, we
have that for all a ∈ A and every R-closed measurable set A ∈ Σ,
τa(s,A) = τa(s′,A).
Two states are bisimilar if they are related by a bisimulation
relation.

Can be extended to bisimulation between two different LMPs.
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Probabilistic bisimulation

Logical Characterization

L ::== T|φ1 ∧ φ2|〈a〉qφ

We say s |= 〈a〉qφ iff

∃A ∈ Σ.(∀s′ ∈ A.s′ |= φ) ∧ (τa(s,A) > q).

Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
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Probabilistic bisimulation

That cannot be right?

s0
a

��

a

��
s1 s2

b
��

s3

t0
a
��

t1

b
��

t2

Two processes that cannot be distinguished without negation.
The formula that distinguishes them is 〈a〉(¬〈b〉>).
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Probabilistic bisimulation

But it is!

s0
a[p]

��

a[q]

��
s1 s2

b
��

s3

t0

a[r]
��

t1

b
��

t2

We add probabilities to the transitions.

If p + q < r or p + q > r we can easily distinguish them.
If p + q = r and p > 0 then q < r so 〈a〉r〈b〉1> distinguishes them.
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Probabilistic bisimulation

Proof idea

Show that the relation “s and s′ satisfy exactly the same formulas”
is a bisimulation.

Can easily show that τa(s,A) = τa(s′,A) for A of the form [[φ]].
Use Dynkin’s lemma to show that we get a well defined measure
on the σ-algebra generated by such sets and the above equality
holds.
Use special properties of analytic spaces to show that this
σ-algebra is the same as the original σ-algebra.
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Bisimulation implies logical agreement

The Easy Direction

Let R be a bisimulation relation on an LMP (S,Σ, τa). We prove by
induction on φ that ∀φ ∈ L

∀s, s′ ∈ S.sRs′ ⇒ s |= φ⇔ s′ |= φ.

Base case trivial.
∧ is obvious from Inductive Hypothesis.
For φ = 〈a〉qψ we have that [[ψ]] is R-closed from inductive
hypothesis. Thus

τa(s, [[ψ]]) = τa(s′, [[ψ]])

and thus sRs′ ⇒ s |= φ⇔ s′ |= φ.
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More advanced measure theory

Digression on Analytic Spaces

An analytic set A is the image of a Polish space X (or a Borel
subset of X) under a continuous (or measurable) function f : X
−→ Y, where Y is Polish. If (S,Σ) is a measurable space where S is
an analytic set in some ambient topological space and Σ is the
Borel σ-algebra on S.

Analytic sets do not form a σ-algebra but they are in the
completion of the Borel algebra under any measure. [Universally
measurable.]
Regular conditional probability densities can be defined on
analytic spaces.
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More advanced measure theory

Amazing Facts about Analytic Spaces

Given A an analytic space and ∼ an equivalence relation such that
there is a countable family of real-valued measurable functions
fi : S −→ R such that

∀s, s′ ∈ S.s ∼ s′ ⇐⇒ ∀fi.fi(s) = fi(s′)

then the quotient space (Q,Ω) - where Q = S/ ∼ and Ω is the
finest σ-algebra making the canonical surjection q : S −→ Q
measurable - is also analytic.

If an analytic space (S,Σ) has a sub-σ-algebra Σ0 of Σ which
separates points and is countably generated then Σ0 is Σ! The
Unique Structure Theorem (UST).

Panangaden (McGill University) Probabilistic Bisimulation Stanford November 2016 25 / 37



More advanced measure theory

Amazing Facts about Analytic Spaces

Given A an analytic space and ∼ an equivalence relation such that
there is a countable family of real-valued measurable functions
fi : S −→ R such that

∀s, s′ ∈ S.s ∼ s′ ⇐⇒ ∀fi.fi(s) = fi(s′)

then the quotient space (Q,Ω) - where Q = S/ ∼ and Ω is the
finest σ-algebra making the canonical surjection q : S −→ Q
measurable - is also analytic.
If an analytic space (S,Σ) has a sub-σ-algebra Σ0 of Σ which
separates points and is countably generated then Σ0 is Σ! The
Unique Structure Theorem (UST).

Panangaden (McGill University) Probabilistic Bisimulation Stanford November 2016 25 / 37



Back to the proof

The big picture

1 We have LMP (S,Σ,L, τa) and we want to quotient by ' where
s ' s′ if they agree on all formulas of the logic.

(S,Σ,L, τa)

q
��

(S/ ',Σ/ ',L, ρa)

2 We want to define ρa in such a way that

ρa(q(s),B) = τa(s, q−1(B)).

3 Why?
4 In lieu of an answer: maps between LMP’s satisfying the above

condition are called “zigzags” and bisimulation can be defined as
the existence of a span of zigzags.
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Back to the proof

ρ is well defined - I

Easy to check that q−1(q([[φ]])) = [[φ]]:
s ∈ q−1(q([[φ]])) implies that q(s) ∈ q([[φ]]), i.e. ∃s′ ∈ [[φ]].s ' s′, so s |= φ so s ∈ [[φ]].

Thus q([[φ]]) is measurable.
Thus the σ-algebra generated -say, Λ - by q([[φ]]) is a
sub-σ-algebra of Ω.
Λ is countably generated and separates points so by UST it is Ω.
Thus q([[φ]]) generates Ω.
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Back to the proof

ρ is well defined - II

The collection q([[φ]]) is a π-system (because L0 has conjunction)
and it generates Ω; thus if we can show that two measures agree
on these sets they agree on all of Ω.

If q(s) = q(s′) = t then τa(s, [[φ]]) = τa(s′, [[φ]]) (simple interpolation).
Thus τa(s, q−1(q([[φ]]))) = τa(s′, q−1(q([[φ]]))) and hence ρ is well
defined. We have ρa(q(s),B) = τa(s, q−1(B)).
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Back to the proof

Finishing the Argument

Let X be any '-closed subset of S.

Then q−1(q(X)) = X and q(X) ∈ Ω.
If s ' s′ then q(s) = q(s′) and

τa(s,X) = τa(s, q−1(q(X))) = ρa(q(s), q(X)) =

ρa(q(s′), q(X)) = τa(s′, q−1(q(X))) = τa(s′,X).
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Simulation

Simulation

Let S = (S,Σ, τ) be a labelled Markov process. A preorder R on S is a
simulation if whenever sRs′, we have that for all a ∈ A and every
R-closed measurable set A ∈ Σ, τa(s,A) ≤ τa(s′,A). We say s is
simulated by s′ if sRs′ for some simulation relation R.
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Simulation

Logic for simulation?

The logic used in the characterization has no negation, not even a
limited negative construct.

One can show that if s simulates s′ then s satisfies all the formulas
of L that s′ satisfies.
What about the converse?
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Simulation

Counter example!

In the following picture, t satisfies all formulas of L that s satisfies but t
does not simulate s.

s
1
2

��

1
2

��
s1

a
��

s2

b
��

· ·

t
1
4

xx
1
4��

1
4 ��

1
4

&&·
a
��

·
a
��

b

��

·
b
��

t1

· · · ·
All transitions from s and t are labelled by a.
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Simulation

Counter example (contd.)

A formula of L that is satisfied by t but not by s.

〈a〉0(〈a〉0T ∧ 〈b〉0T).

A formula with disjunction that is satisfied by s but not by t:

〈a〉 3
4
(〈a〉0T ∨ 〈b〉0T).

Panangaden (McGill University) Probabilistic Bisimulation Stanford November 2016 33 / 37



Simulation

Counter example (contd.)

A formula of L that is satisfied by t but not by s.

〈a〉0(〈a〉0T ∧ 〈b〉0T).

A formula with disjunction that is satisfied by s but not by t:

〈a〉 3
4
(〈a〉0T ∨ 〈b〉0T).

Panangaden (McGill University) Probabilistic Bisimulation Stanford November 2016 33 / 37



Simulation

A logical characterization for simulation

The logic L does not characterize simulation. One needs
disjunction.

L∨ := L| φ1 ∨ φ2.

With this logic we have:
An LMP s1 simulates s2 if and only if for every formula φ of L∨ we
have

s1 |= φ⇒ s2 |= φ.

The original proof uses domain theory and only works for finitely
many labels.
New proof, with Nathanaël Fijalkow and Bartek Klin, works with
countably many labels and uses topology.
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Games for bisimulation

Bartek Klin and Nathanaël Fijalkow

Spoiler/duplicator game. Spoiler tries to show that a pair of states
(s, t) are not bisimilar.

Spoiler move: Choose a measurable set C and an action a such
that τa(x,C) 6= τa(y,C) and C is a bisimulation equivalence class.
Duplicator will deny that C is an equivalence class by choosing
s′ ∈ C and y′ 6∈ C and claiming that (x′, y′) are bisimilar.
Duplicator wins if she can go on forever or if Spoiler is stuck.
Spoiler can only win if Duplicator is stuck. For example if C is all of
S.
s and t are bisimilar if and only if Duplicator has a winning strategy.
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Concluding remarks

Other Logics

LCan := L0 | Can(a)

L∆ := L0 | ∆a

L¬ := L0 | ¬φ
L∨ := L0 | φ1 ∨ φ2

L∧ := L¬ |
∧
i∈N

φi

where

s |= Can(a) to mean that τa(s, S) > 0;
s |= ∆a to mean that τa(s, S) = 0.

We need L∨ to characterise simulation.
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Concluding remarks

Conclusions

Strong probabilistic bisimulation is characterised by a very simple
modal logic with no negative constructs.

There is a logical characterisation of simulation.
There is a “metric” on LMPs which is based on this logic.
Why did the proof require so many subtle properties of analytic
spaces? There is a more general definition of bisimulation for
which the logical characterisation proof is “easy” but to prove that
that definition coincides with this one in analytic spaces requires
roughly the same proof as that given here.
Recently, we showed that if there are uncountably many labels
then the logical characterization of bisimulation fails.
However, if we introduce a topology on the space of labels and a
continuity assumption, we can regain the logical characterization
result.
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