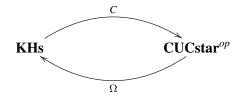
## Dualities in Mathematics: Analysis dressed up as algebra is dual to topology Part II: Gelfand Duality

Prakash Panangaden<sup>1</sup>

<sup>1</sup>School of Computer Science McGill University

Spring School, Oxford 20 - 22 May 2014

### The basic message



**KHs**: Compact Hausdorff spaces, continuous functions. **CUCstar**: Commutative, unital, (complex)  $C^*$  algebras, with \*-homomorphisms as the morphisms.  $C(\cdot)$ : continuous complex-valued functions.  $\Omega$ : "characters" = "maximal ideal space".

### Stone-Gelfand

- Strangely, there is also a duality between *real* (commutative, unital) *C*\*-algebras and compact Hausdorff spaces: Stone-Gelfand.
- Very thoroughly treated in *Stone Spaces* by Johnstone.
- Hence there is an equivalence of categories between the two types of *C*<sup>\*</sup> algebras.
- In real  $C^*$  algebras the \* structure is trivial.
- The complex version uses different mathematics and
- is much more relevant for quantum mechanics.

## A word from our sponsor

- In traditional treatments of quantum mechanics the state space is a Hilbert space.
- Most quantities of interest are modelled by (bounded ?) operators on the Hilbert space.
- These form a complex *C*<sup>\*</sup> algebra; the \* operation is adjoint.
- Observables are self-adjoint, but these do not form a sub-algebra of the *C*<sup>\*</sup> algebra of all bounded operators.
- The observables can be viewed as a real *C*\*-algebra but one loses the essential role played by the complex numbers in quantum mechanics.

# Rings

### Commutative unital rings

A commutative unital ring *R* is a set containing two distinguished elements 0 and 1 and two binary operations + and  $\times$  satisfying:

- (R, +, 0) forms an abelian group,
- $(R, \times, 1)$  forms a commutative monoid,
- $\times$  distributes over +.

- Integers  $\mathbb{Z}$ , reals  $\mathbb{R}$ , complex numbers  $\mathbb{C}$ .
- Polynomials in *n* variables with coefficients in  $\mathbb{Z}$  or, indeed any commutative ring.
- A non-example: matrices with entries in a ring.
- Complex-valued continuous functions from a compact Hausdorff space *X* to  $\mathbb{C}$ .

## Ideals in a ring

Let *R* be a fixed commutative ring. Henceforth, *all* rings are assumed to be unital unless otherwise stated.

#### Ideals

An **ideal** *I* in *R* is a subset that is closed under + and if  $x \in I$  and  $r \in R$  then  $r \cdot x \in I$ .

Typical example: all multiples of, say, 9 in  $\mathbb{Z}$ . Write (9) for this ideal; the ideal *generated* by 9.

We can define  $\sim_I$  by  $r \sim_I r'$  if  $r - r' \in I$  and R/I as the set of equivalence classes of  $\sim_I$ ; R/I is also a (commutative) ring.

The ring Z/(9) has an element [3] with  $[3] \cdot [3] = [9] = [0]$ . Such an element is called **nilpotent**.

## Maximal and prime ideals

#### Maximal ideal

An ideal *I* of *R* is called a **maximal ideal** if there are no ideals strictly containing it and strictly contained in *R*.

The ideal (9) is not maximal, it is contained in (3), which is a maximal ideal.

#### Prime ideal

An ideal *I* is a **prime ideal** if whenever  $xy \in I$  then  $x \in I$  or  $y \in I$ .

If p is a prime number then (p) is a prime ideal in  $\mathbb{Z}$ . Maximal ideals are always prime but not conversely. In  $\mathbb{Z}(0)$  is prime but not maximal.

# The ring C(X)

- Let *X* be a compact Hausdorff space and let *C*(*X*) be the ring of complex-valued continuous functions on *X*.
- C(X) is clearly a commutative unital ring.
- It has a lot more structure than that.
- Fix  $x \in X$  then  $M_x := \{f \in C(X) \mid f(x) = 0\}$  is a maximal ideal of C(X).
- It has no nontrivial nilpotent elements.

### Points define maximal ideals

- Fix a compact Hausdorff space X.
- In the ring C(X), fix  $x \in X$ ; the set  $M_x = \{f \mid f(x) = 0\}$  is a maximal ideal.
- Clearly  $M_x$  is an ideal.
- Not hard to see that it is maximal: any attempt to enlarge it will lead to a nowhere vanishing function *f* in the ideal.
   Then <sup>1</sup>/<sub>f</sub> is a well-defined continuous function so λ*x*.1 in the ideal.
- We have a map  $\Gamma : X \to \mathfrak{M}(C(X))$ , where  $\mathfrak{M}(R)$  is the set of maximal ideals of a ring *R*.
- By Urysohn's Lemma,  $\Gamma$  is injective.

## Maximal ideals define points

- Given a maximal ideal *M* there exists *x* ∈ *X* such that *M* = *M<sub>x</sub>*.
- Suppose not, then  $\forall x \in X, \exists f_x \in M \text{ with } f_x(x) \neq 0.$
- Since *f<sub>x</sub>* is continuous there is an open set *O<sub>x</sub>* ∋ *x* where *f<sub>x</sub>* is non-vanishing.
- The  $\{O_x | x \in X\}$  form a cover of *X*, so by compactness, there is a finite subcover:  $\{(x_1, f_1, O_1), \dots, (x_k, f_k, O_k)\}$ .
- $\sum_{i=1}^{} f_i^2$  is nowhere vanishing and in *M*.
- Γ is bijective.

### Getting the topology of X

- Given *f* ∈ *C*(*X*), define *O<sub>f</sub>* = {*x* ∈ *X*|*f*(*x*) ≠ 0}: base for the topology of *X*.
- Let  $U_f = \{M \in \mathfrak{M}(C(X)) | f \notin M\}$ : base for a topology on  $\mathfrak{M}(C(X))$ .
- Easy to see that  $\Gamma(O_f) = U_f$ , so  $\Gamma$  is a homeomorphism.

## Are we there yet?

- No! The inverse image of a maximal ideal is not necessarily a maximal ideal so we cannot make these constructions functorial.
- That's why algebraic geometers use the *prime* ideals and define the *spectrum* of a ring in terms of prime ideals.
- Before I get mired in scheme theory let me beat a hasty retreat!
- *C*(*X*) cannot possibly produce arbitrary commutative rings: there will never be nilpotent elements.
- So what kind of rings do arise as *C*(*X*) for some compact Hausdorff space *X*?
- Answer: *C*\*-algebras. This is Gelfand duality.

### Algebras

All vector spaces are assumed to be over the field of complex numbers.

#### Algebras

An *algebra* is a vector space equipped with an associative multiplication operation  $\cdot$ , that is bilinear in its arguments.

 $Mat_n$ :  $n \times n$  matrices with entries in  $\mathbb{C}$ ; a noncommutative example.

Bounded linear operators on a Hilbert space  $\mathcal{H}$ ; written as  $\mathcal{B}(\mathcal{H})$ . The multiplication is composition. This is also noncommutative.

The space C(X) with pointwise multiplication; a commutative algebra.

### Banach algebras

#### Norm and Banach space

A **norm** on a vector space *V* is a function  $\|\cdot\| : V \to \mathbb{R}$  satisfying:

- $\|\alpha v\| = |\alpha| \|v\|$
- $||u+v|| \le ||u|| + ||v||$
- ||v|| = 0 iff v = 0.

A vector space with a norm is called a **normed space** and a normed space that is *complete* in the metric induced by the norm is called a **Banach space**.

A **Banach algebra** *A* is an algebra and a Banach space with a norm  $\|\cdot\| : A \to \mathbb{R}^+$  such that  $\|ab\| \le \|a\| \|b\|$ .

It is easy to see that the multiplication operation is jointly continuous in the topology induced by the norm.

# Examples of Banach algebras

- If X is any set then *l*<sup>∞</sup>(X) the set of *bounded* complex-valued functions with pointwise operations and the *sup* norm is a *unital* Banach algebra.
- If X is a topological space then C<sub>b</sub>(X) the space of all bounded *continuous* complex-valued functions is a unital Banach algebra, in fact a *closed* subalgebra of l<sup>∞</sup>(X).
- If *X* is compact, then the space of all continuous complex-valued functions of *X* (written C(X)) is a unital Banach algebra, being the same as  $C_b(X)$ .
- If X is a locally compact Hausdorff space we say that a function f : X → C vanishes at infinity if ∀ε > 0, {x ∈ X | | f(x) |≥ ε} is compact.
- The set of continuous functions that vanish at infinity is written *C*<sub>0</sub>(*X*).
- *C*<sub>0</sub>(*X*) is a closed subalgebra of *C*<sub>b</sub>(*X*) and is unital if and only if *X* is compact.

## Star algebras

• An **involution** on an algebra A is a map  $* : A \rightarrow A$  such that

1 
$$\forall a \in A, \alpha \in \mathbb{C}, (\alpha a)^* = \overline{\alpha} a^*,$$
  
2  $\forall a \in A, (a^*)^* = a \text{ and}$   
3  $\forall a, b \in A, (ab)^* = b^* a^*.$ 

- An algebra with an involution is called a \*-algebra.
- An element *a* ∈ *A* is called **self-adjoint** or **hermitian** if *a* = *a*<sup>\*</sup>.
- Every element *a* in a \*-algebra can be written as *a* = *b* + *ic* where *b*, *c* are hermitian.
- A self-adjoint element p is called a **projection** if  $p^2 = p$ .
- Note that *aa*<sup>\*</sup> and *a*<sup>\*</sup>*a* are always self-adjoint; they are called **positive elements**.



- A C\*-algebra *A* is a Banach algebra with an involution satisfying
- $\forall a \in A$ ,  $||a^*a|| = ||a||^2$ : the  $C^*$  identity.
- It follows that  $||a|| = ||a^*||$ .
- A \*-homomorphism is a map preserving multiplication and the involution.
- They are *automatically* contractive: ||φ(a)|| ≤ ||a|| (hence continuous) and,
- if  $\phi$  is injective then  $\|\phi(a)\| = \|a\|$ .
- $C^*$ -algebras may or may not be unital, if they are ||1|| = 1.
- There is a unique norm on a *C*\*-algebra!
- More precisely, given a \*-algebra, there is at most one way of endowing it with a norm satisfying the *C*<sup>\*</sup> identity.

### Spectrum

- We fix a unital  $C^*$ -algebra A with unit 1.
- An element a ∈ A is said to be *invertible* if ∃b such that ab = ba = 1, we write a<sup>-1</sup> for b.
- Write Inv(*A*) for the set of invertible elements of *A*. Note that it is a group.

Spectrum

The **spectrum** of *a* is

$$\sigma(a) := \{ \lambda \in \mathbb{C} | \lambda 1 - a \notin \mathsf{Inv}(A) \}.$$

## Examples of spectra

- If A is the algebra of n × n matrices then σ(a) is the set of eigenvalues of a.
- If X is a compact Hausdorff space and A is the algebra C(X) then σ(f) = range(f).
- Thus the notion of spectrum generalizes the notion of range of a function as well as eigenvalues of a matrix.
- For operators on infinite-dimensional spaces the spectrum is not just the set of eigenvalues. In fact there may be no eigenvalues.
- Consider  $L^2(\mathbb{R})$  and the bounded linear map  $f \mapsto (\frac{1}{1+x^2} \cdot f)$ . This has no eigenvalues.

# Spectrum is non-empty

### Gelfand

If A is a unital Banach algebra then  $\sigma(a)$  is non-empty.

The proof uses some basic complex analysis.

#### **Gelfand-Mazur**

If a Banach algebra is a field then it is isomorphic to  $\mathbb{C}$ .

This is an immediate corollary.

### Characters

#### Definition

A **character** on an a commutative algebra *A* is a non-zero homomorphism  $\tau : A \to \mathbb{C}$ . We write  $\Omega(A)$  for the set of characters on *A*.

Just as we moved from ultrafilters to boolean algebra homomorphisms in Stone duality, we have

#### Proposition

For a commutative unital Banach algebra (CUBA)  $\tau \mapsto \ker(\tau)$  is a bijection between  $\Omega(A)$  and the set of maximal ideals.

### Proposition

For a CUBA A,  $\forall a \in A$ ,  $\sigma(a) = \{\tau(a) | \tau \in \Omega(A)\}.$ 

# Topologizing $\Omega(A)$

### A general strategy for defining topologies

Choose a set of functions  $\mathcal{F}$  from a set *X* to a topological space *Y*. Define the *weakest* (fewest open sets) topology that makes every function in  $\mathcal{F}$  continuous:  $\sigma(X, \mathcal{F})$ .

#### The Gelfand topology

Weakest topology that makes all the maps

$$\Omega(A) \to \mathbb{C} : \operatorname{eval}_a(\tau) = \tau(a)$$

continuous.

### Compactness

#### Theorem

A is a CUBA if and only if  $\Omega(A)$  is a compact Hausdorff space.

If *A* is not unital then  $\Omega(A)$  is locally compact. Adding a unit to *A* is the same as the "one-point compactification" of  $\Omega(A)$ .

## Functoriality

#### $\Omega(\cdot)$ as a functor

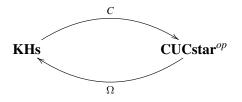
If  $h : A \to B$  is a Banach algebra map then  $\Omega(h) : \Omega(B) \to \Omega(A)$ is  $f \mapsto h \circ f$ .

### $C(\cdot)$ as a functor

If  $f: X \to Y$  is a continuous function between compact Hausdorff spaces then  $C(f): C(Y) \to C(X)$  given by  $C(f)(g) = g \circ f$  is a Banach algebra map, i.e. a norm-decreasing homomorphism.

But wouldn't we like it to be an isometry?

## Finally! Gelfand duality



#### Theorem

For a commutative unital  $C^*$ -algebra A the map  $a \mapsto eval_a : A \to C(\Omega(A))$  is an isometric \*-isomorphism.

This is even true for non-unital algebras if one uses  $C_0$ .

#### Corollary

For two commutative  $C^*$  algebras A and B,  $\Omega(A)$  and  $\Omega(B)$  are homeomorphic iff A and B are *isometrically* \*-isomorphic.