The Mirror of Mathematics Part I: Classical Stone Duality

Prakash Panangaden¹

¹School of Computer Science McGill University

Spring School, Oxford 20 - 22 May 2014

Outline

What am I trying to do?

- Describe the general notion of duality
- 2 Work through three specific dualities:
 - Stone,
 - Gelfand and
 - Pontryagin.

What I am not trying to do

- Review all possible dualities.
- Discuss my recent work on automata minimization or Markov processes.
- Prove everything in detail.
- Discuss all the physical connections in detail.

Examples of duality principles

- "and" vs "or" in propositional logic
- Linear programming
- Electric and magnetic fields
- Controllability and observability in control theory: Kalman
- State-transformer and weakest-precondition semantics: Plotkin, Smyth
- Forward and backward dataflow analyses
- Induction and co-induction.

What is duality intuitively ?

- Two types of structures: Foo and Bar.
- Every Foo has an associated Bar and vice versa.
- $V \rightarrow S, S \rightarrow V'; V$ and V' are isomorphic.
- Two *apparently* different structures are actually two different descriptions of the same thing.
- More importantly, given a map: $f: S_1 \rightarrow S_2$ we get a map $\hat{f}: V_2 \rightarrow V_1$ and vice versa;
- note the *reversal* in the direction of the arrows.
- The two mathematical universes are *mirror images* of each other.
- Two completely different sets of theorems that one can use.

Examples of such dualities

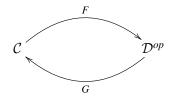
- Vector spaces and vector spaces.
- Boolean algebras and Stone spaces. [Stone]
- State transformer semantics and weakest precondition semantics. [DeBakker,Plotkin,Smyth]
- Logics and Transition systems. [Bonsangue, Kurz,...]
- Measures and random variables. [Kozen]
- L^P and L^q spaces with $\frac{1}{p} + \frac{1}{q} = 1$.
- Commutative unital C*-algebras and compact Hausdorff spaces. [Gelfand, Stone]

Background

- Basic category theory: functors, natural transformations, adjunctions.
- Elementary algebra: linear algebra, very basic group theory.
- Topology: open neighbourhood, closed sets, connectedness, separation axioms, compactness, continuous functions, homeomorphisms.
- "The reader should not be discouraged if (s)he does not have the prerequisites to read the prerequisites." - Paul Halmos.

Maps matter!

- An essential aspect of mathematics: structure-preserving maps between objects.
- Interesting constructions on objects (usually) have corresponding constructions on the maps.
- Compositions are preserved or reversed.
- This is *functoriality*.
- From this one can often conclude *invariance properties*.



Given

$$A \in \mathcal{C}$$

$$\downarrow_f$$

$$B \in \mathcal{C}$$

We get

$$A \in \mathcal{C} \qquad F(A) \in \mathcal{D}$$

$$\downarrow_{f}$$

$$B \in \mathcal{C} \qquad F(B) \in \mathcal{D}$$

and

$$A \in \mathcal{C} \qquad F(A) \in \mathcal{D}$$

$$\downarrow^{f} \qquad F(f) \uparrow^{*}$$

$$B \in \mathcal{C} \qquad F(B) \in \mathcal{D}.$$

Similarly, given

$$C \in \mathcal{D} \ igg|_{g} \ D \in \mathcal{D}$$

We get

$$G(C) \in \mathcal{C}$$
 $C \in \mathcal{D}$
 \downarrow^g
 $G(D) \in \mathcal{C}$ $D \in \mathcal{D}$

and

$$G(C) \in \mathcal{C}$$
 $C \in \mathcal{D}$
 $\uparrow^{G(g)}$ \downarrow^{g}
 $G(D) \in \mathcal{C}$ $D \in \mathcal{D}.$

Isomorphisms

We have isomorphisms

$$A \simeq G(F(A))$$
 and $C \simeq F(G(C))$.

Categorical Duality

We have a (contravariant) adjunction between categories C and D, which is an *equivalence* of categories.

Often obtained by looking at maps into an object living in both categories: a schizophrenic object.

A duality that you know and love (I)

- Finite-dimensional vector space V over, say, C.
- *Dual space* V^{*} of linear maps from V to C.
- *V** has the same dimension as *V* and a (basis-dependent) isomorphism between *V* and *V**.
- The double dual *V*** is also isomorphic to *V*
- with a "nice" canonical isomorphism: $v \in V \mapsto \lambda \sigma \in V^*.\sigma(v).$

A duality that you know and love (II)

$$U \xrightarrow{\theta} V$$

$U^* \prec_{\theta^*} V^*$

Given a linear maps θ between vector spaces *U* and *V* we get a map θ^* *in the opposite direction* between the dual spaces:

$$\theta^*(\sigma \in V^*)(u \in U) = \sigma(\theta(u)).$$

Boolean algebras

A Boolean algebra is a set *A* equipped with two constants, 0, 1, a unary operation $(\cdot)'$ and two binary operations \lor , \land which obey the following axioms, *p*, *q*, *r* are arbitrary members of *A*:

$$0' = 1 \qquad 1' = 0$$

$$p \land 0 = 0 \qquad p \lor 1 = 1$$

$$p \land 1 = p \qquad p \lor 0 = p$$

$$p \land p' = 0 \qquad p \lor p' = 1$$

$$p \land p = p \qquad p \lor p = p$$

Boolean algebras II

$$p'' = p$$

$$(p \land q)' = p' \lor q'$$

$$(p \lor q)' = p' \land q'$$

$$p \land q = q \land p$$

$$p \lor q = q \lor p$$

$$p \land (q \land r) = (p \land q) \land r$$

$$p \land (q \lor r) = (p \land q) \lor (r \land r)$$

$$p \land (q \lor r) = (p \land q) \lor (p \land r)$$

$$p \lor (q \land r) = (p \lor q) \land (p \lor r)$$

The operation \lor is called *join*, \land is called *meet* and $(\cdot)'$ is called *complement*. Maps are Boolean algebra homomorphisms.

Order

A Boolean algebra has a natural order.

Order from the algebraic structure

$$p \leq q \text{ iff } p = p \land q \text{ (or } q = p \lor q).$$

Boolean algebra homomorphisms are order preserving.

Examples of Boolean algebras

- All subsets of a set *X*, the *powerset* : $\mathcal{P}(X)$.
- The *regular* (int(cl(*A*)) = *A*) open sets of a topological space.
- The collection of (equivalence classes of) formulas of classical propositional logic.
- A non-example: *all* the open sets of R.

Atoms

Definition

An element *a* of a Boolean algebra *B* that satisfies (i) 0 < a and (ii) if $0 \le p \le a$ then 0 = p or a = p is called an **atom**.

Example

Singleton set in $\mathcal{P}(X)$.

Definition

A Boolean algebra in which every element is the join of atoms below it is called **atomic**.

Example

A non-example: the Boolean algebra generated by the half-closed intervals of $\mathbb R$ is not atomic.

CABAs

Definition

An *atomic* Boolean algebra that is complete (every subset has a meet and a join) is called a **CABA**.

Every finite Boolean algebra is a CABA.

Representation theorem for CABAs

Theorem

A CABA is isomorphic to the set of all subsets of some set with the usual set-theoretic operations as the Boolean algebra structure.

Proof idea: If *B* is a Boolean algebra and *A* is its set of atoms then *B* is isomorphic to the power set of *A*.

Corollary

A Boolean algebra is isomorphic to the power set of some set iff it is complete and atomic.

Compact Hausdorff space

Compact

A topological space is said to be **compact** if every open cover has a finite subcover.

Closed and bounded subsets of \mathbb{R}^n are compact.

Hausdorff

A topological space *X* is said to be **Hausdorff** (T_2) if for every pair of distinct points *x*, *y* there are *disjoint* open sets *U*, *V* with $x \in U$ and $y \in V$.

Compact Hausdorff spaces are "on the edge": if you add more open sets the topology fails to be compact and if you remove some open sets it fails to be Hausdorff.

Separation axioms

T_0

A topological space *X* is said to be T_0 if for every pair of distinct points *x* and *y* there is an open set containing one of them but not the other.

T_1

A topological space *X* is said to be T_1 if for every pair of distinct points *x*, *y* there is an open set that contains *x* but not *y* and another open set that contains *y* but not *x*.

The conditions T_0 , T_1 and T_2 form a natural progression: each is strictly more stringent that its predecessor.

Regular and normal spaces

Regular (T_3)

A topological space *X* is said to be **regular** if it is T_1 and for every point *x* and *closed* set *C* with $x \notin C$ there are *disjoint* open sets *U* and *V* such that $x \in U$ and $C \subset V$.

Normal (T_4)

A topological space *X* is said to be **normal** if for every pair of *disjoint* closed subsets *C*, *D* there are *disjoint* open subsets *U*, *V* such that $C \subset U$ and $D \subset V$.

A compact Hausdorff space is automatically normal, hence also regular.

Connectedness

Connected

A topological space is said to be **connected** if there is no proper subset that is both open and closed. Equivalently, there are not two disjoint open sets whose union is the whole space.

A maximal connected subset (in the subspace topology) is called a *connected component*.

Totally disconnected

A topological space is said to be **totally disconnected** if the only connected components are the singletons.

The Cantor set is totally disconnected. The irrational numbers are another example of a totally disconnected space.

Zero dimensional spaces

A set that is both closed and open is called *clopen*. The existence of a non-trivial clopen set means that the space is not connected.

Zero dimensional space

A topological space *X* is said to be **zero dimensional** if there is a base for the topology consisting of clopen sets.

For (locally) compact Hausdorff spaces we have

Proposition

A locally compact Hausdorff space is totally disconnected iff it is zero dimensional.

Stone spaces

Stone spaces

A **Stone space** is a zero-dimensional compact Hausdorff space (hence totally disconnected).

These were called Boolean spaces by early authors.

Profinite groups are an example of a Stone space.

Note that the collection of clopen sets forms a Boolean algebra.

Stone spaces with continuous maps as the morphisms form a category called **Stone**.

A useful fact

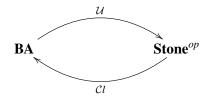
Lemma

A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.

Corollary

A continuous bijection from a Stone space to a compact Hausdorff space is a homeomorphism and hence, maps clopens to clopens.

The grand theorem



We need to describe the functors \mathcal{U} and $\mathcal{C}l$ and establish the existence of natural isomorphisms.

Filters and ultrafilters

Filter

A filter F in a Boolean algebra is a subset of B such that:

Ultrafilters

An **ultrafilter** *U* in a Boolean algebra *B* is a filter of *B* such that for every element $b \in B$, either $b \in U$ or $b' \in U$.

Observation

If *B* is a Boolean algebra and **2** is the two-element Boolean algebra and $h: B \rightarrow \mathbf{2}$ is a homomorphism then $h^{-1}(\{1\})$ is an ultrafilter. All ultrafilters can be described this way.

From Boolean algebras to Stone spaces

- 1 View 2 as a topological space with the discrete topology.
- 2 Let *B* be a Boolean algebra; the space 2^B of *arbitrary functions*, endowed with the product topology, is a Stone space.
- **3** The basic clopens are of the form $\{f \mid f(b) = \delta(b), b \in L\}$, where *L* is a *finite subset* of *B* and $\delta : L \rightarrow 2$ is any function.
- ④ The subset S ⊂ 2^B of homomorphisms forms a closed subset and hence is a Stone space in its own right.
- **5** We can identify *S* with the space of ultrafilters of *B*.

And back

- **1** The basic clopens of *S* are $\forall b \in B$. $U_b = \{u \mid b \in u\}$.
- 2 In short, the clopens of *S* correspond to the elements of *B*.
- **3** Not all opens are clopen of course.
- 4 Note that clopens always form a Boolean algebra.
- **5** *S* is called the *dual space* of *B*.
- 6 Given a Stone space *S* the Boolean algebra of its clopens is called the *dual algebra* of *S*.

Isomorphisms

Isomorphism theorem 1

If *B* is a Boolean algebra and *S* its dual space and *A* is the dual algebra of *S*, then *B* and *A* are isomorphic as Boolean algebras.

Isomorphism theorem 2

If *S* is a Stone space and *A* its dual algebra and *X* is the dual space of *A*, then *S* and *X* are homeomorphic as topological spaces.

Uses the "useful fact."

Functorial version

- **1** Cl from Stone to BA: given $f : X \to Y$ in Stone, define $Cl(f) = f^{-1} : Cl(Y) \to Cl(X)$.
- **2** \mathcal{U} : **BA** \rightarrow **Stone**: given $h : A \rightarrow B$ in **BA**, define $\mathcal{U}(h) : \mathcal{U}(B) \rightarrow \mathcal{U}(A)$ by $g : B \rightarrow 2 \mapsto g \circ h(: A \rightarrow 2)$.

Stone duality

Let *S* be a Stone space and *B* a Boolean algebra. There is a natural bijection between the hom-sets **BA**(*B*, Cl(S)) and **Stone**(*S*, U(B))) (or **Stone**^{*op*}(U(B), *S*).

We have an adjunction $\mathcal{U}^{op} \dashv \mathcal{C}l$, in fact we have an equivalence of categories, because the natural transformations associated with the adjunction are isomorphisms.

Schizophrenia

- What is 2?
- It is a two-element Boolean algebra: U(B) = BA(B, 2).
- It is also a two-point topological space, in fact a Stone space
- and Cl(S) =**Stone**(S, 2).
- Many dualities are mediated by such "schizophrenic" objects.

Prime spectrum

- In a lattice a filter, F, is said to be prime if a ∨ b ∈ F implies that a ∈ F or b ∈ F.
- Unlike in Boolean algebras, prime filters are not the same thing as *maximal filters*.
- The prime spectrum of a lattice is the collection of prime filters of the lattice.

Priestley duality

- Priestley defined a new topology on the prime spectrum of a bounded distributive lattice.
- This topology is both compact and Hausdorff.
- However, there is also an order structure that plays a crucial role.
- A Priestley space is a compact ordered topological space where the clopen *down-sets* separate points.
- One gets a duality theorem between Priestley spaces and bounded distributive lattices.

Stonean spaces

- A compact Hausdorff space is said to be **Stonean** if the closure of every open set is open (hence clopen).
- Every Stonean space is a Stone space but not vice versa.
- There is a duality between Stonean spaces and *complete* Boolean algebras: important in the theory of *C*^{*} algebras.