Quantum alternation

Prakash Panangaden¹

¹School of Computer Science McGill University

Universidade do Minho Braga, Portugal 25 May 2017

Outline

- Introduction
- Basic background
- Superoperators: Kraus, Choi and Stinespring
- Classical control and quantum data
- Quantum control: ideas
- Quantum control: semantics
- Conclusions

Quantum programming languages

- Quantum Turing machines: very messy!
- Circuits: low level, OK for algorithm design. Very flexible.
- Quantum λ-calculus: hard to give semantics.
- Measurement calculus: low-level, close to implementation.
- Selinger's Quantum Programming Language: Quantum data and classical control.
- There are more.

Example

Simple program

```
input b:bit;
input p, q:qbit;
b := \text{measure } p;
if b then q := N(q) else p := N(p);
output p, q
```

- N is the NOT operation on a qubit.
- bit and qbit separate datatypes.
- The conditional is based on a classical boolean.

What about quantum alternation?

Simple program input p, q:**qbit**;

```
q=\left|0\right>; q:=H(q); if q then skip else p:=N(p); output p,q
```

- Here H is the one-qubit Hadamard gate.
- q is in the state $\frac{1}{\sqrt{2}}[|0\rangle + |1\rangle]$ just before the conditional.
- The if is producing a controlled not.
- Does this make sense?
- Quantum alternation is problematic in general.

Basics of bits and qubits

- A bit is a classical bit: it takes two values, 0, 1.
- It can be read and written and copied freely.
- A quantum bit is a two-dimensional system, mathematically \mathbb{C}^2 .
- We write $|0\rangle=\left(\begin{array}{c}1\\0\end{array}\right)$ and $|1\rangle=\left(\begin{array}{c}0\\1\end{array}\right)$.
- We assume as understood the notions of Hilbert space, bra and ket notation, pure and mixed states, density matrices, unitaries, Hermitian operators and projection operators.
- Any time we say "operator" we mean "linear operator."

Cones and positive elements

- A cone C in a vector space V is a subset of V such that
 - \bullet if $x, y \in C$ then x + y in C,
 - 2 if $x \in C$ and $r \in \mathbb{R}^+$ then $r \cdot x \in C$ and
 - if $x \in C$ and $-x \in C$ then x = 0.
- Given a cone we can define a notion of *positive* element by saying x is positive if $x \in C$.
- We induce a partial order \leq_C by $x \leq_C y$ if $y x \in C$.

Positive operators

- Let \mathcal{H} be a Hilbert space. An operator $A: \mathcal{H} \to \mathcal{H}$ is **positive** if for all $x \in \mathcal{H}$ we have $(x, Ax) \geq 0$.
- The positive operators are automatically Hermitian and form a cone.
- Density matrices are positive operators with trace ≤ 1.
- Thus, we have a natural order structure on density matrices.
- We write $\mathcal{B}(\mathcal{H})$ for the bounded linear operators on \mathcal{H} .
- A **positive map** is a map from $\mathcal{B}(\mathcal{H})$ to itself such that it takes positive operators to positive operators.

Completely positive maps

- An operator representing a physical transformation has to be positive, because it must take density matrices to density matrices.
- It should also be trace non-increasing (trace preserving if we want normalized density matrices).
- Is this enough?
- It is possible to have a positive map A from $\mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$, such that $A \otimes I_{\mathcal{K}} : \mathcal{B}(\mathcal{H} \otimes \mathcal{K}) \to \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ is not positive.
- This is unphysical.
- A positive map such that its tensor product with any identity map is positive is called completely positive.
- Maps describing physical processes (e.g. channels) must be completely positive maps (cp maps).
- A superoperator is a cp map that is also trace non-increasing.

Notation

- We write M_{nm} for n by m (complex) matrices.
- If n = m (square matrices) we write M_n .
- We write $CP(M_n, M_k)$ for completely positive maps from M_n to M_k .

C* algebras

- A C* algebra abstracts properties of operators.
- An algebra is a vector space with a multiplication operation obeying obvious laws.
- An algebra may be equipped with a norm $||\cdot||$ obeying usual norm axioms. It must satisfy $||ab|| \le ||a|| \cdot ||b||$.
- If it is complete in the norm we have a Banach algebra.
- A *-algebra is an algebra equipped with a unary operation * such that: (i) $a^{**} = a$, (ii) $(ab)^* = b^*a^*$ and (iii) $(\lambda a)^* = \overline{\lambda}a^*$, where $\lambda \in \mathbb{C}$.
- A C^* -algebra is a *-algebra and a Banach algebra satisfying $||a^*a||=||a||^2$.
- The matrix algebras M_n are all C^* -algebras with the * being \dagger (adjoint).
- The bounded operators on a Hilbert space form a C^* -algebra.

About C*-algebras

- A **homomorphism** of C^* -algebras is a linear map $\psi: \mathcal{A} \to \mathcal{D}$ such that the operations (* and product) are preserved.
- A **positive** element is an element of the form a^*a .
- There is a unique norm on a C^* -algebra.
- One can define completely positive maps between C*-algebras just as between spaces of operators or matrices.
- Every commutative unital C*-algebra is isomorphic to the set of continuous functions on a compact Hausdorff space (Gelfand duality).

Representations

- C*-algebras seem like a very abstract concept.
- However, abstract C^* -algebras can be *represented* in a concrete way as a subalgebra of $\mathcal{B}(\mathcal{H})$.
- A representation of a C^* -algebra \mathcal{A} is a homomorphism $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ for some Hilbert space.

Three ways to understand CP maps

Let us consider maps on spaces of matrices. Suppose that ϕ is a CP map and A is a matrix:

- Kraus: $\phi(A) = \sum_i K_i^\dagger A K_i$ where K_i are matrices satisfying $\sum K_i K_i^\dagger \leq I$.
- This decomposition is not unique. If ϕ is $M_n \to M_k$ then K_i are all $n \times k$ and there are fewer than $n \cdot k$ of them.
- Choi: The action of $\phi \in CP(M_n, M_k)$ can be given explicitly as a matrix in M_{nk} depending on the particular Kraus decomposition.
- Stinespring: For any completely positive map $\theta: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ there is a triple (π, V, \mathcal{K}) where \mathcal{K} is a Hilbert space, $\pi: \mathcal{A} \to \mathcal{B}(\mathcal{K})$ is a representation and $V: \mathcal{H} \to \mathcal{K}$ such that

$$\theta(a) = V^{\dagger} \pi(a) V.$$

Stinespring

- Any completely positive map can be realized as a "twisted" homomorphism.
- There is even a special minimal such Stinespring representation.
- For quantum information theory this tells one that any completely positive map can be realized as a unitary on an expanded space: purification.
- If $\theta \in CP(M_n, M_k)$ then the minimal Stinespring representation is in M_m where $m \le n^2k$.

Stinespring to Kraus

- Let \mathcal{H} and \mathcal{K} be two finite-dimensional Hilbert spaces and $\mathcal{B}(\mathcal{H}), \mathcal{B}(\mathcal{K})$ the Banach algebras of bounded linear operators.
- Let $\mathcal{E}: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K})$ be a superoperator.
- By Stinespring, there exists an ancilla $\mathcal A$ and an operator $V:\mathcal K\to\mathcal H\otimes\mathcal A$ such that

$$\mathcal{E}(\rho) = V^*(\rho \otimes \mathbb{I}_{\mathcal{A}})V.$$

• Choose a basis $\{e_i\}_{i=1}^k$ for \mathcal{A} and define $V_i: \mathcal{K} \to \mathcal{H}$ by

$$\forall \psi \in \mathcal{K}, \ V\psi = \sum_{i=1}^k (V_i \psi) \otimes e_i.$$

- Easy to check $\mathcal{E}(\rho) = \sum_{i=1}^{k} V_i^* \rho V_i$.
- The V_i give a Kraus representation for \mathcal{E} .

Löwner order on density matrices

- Recall that the positive operators form a cone, hence define a partial order: the Löwner order.
- $A \sqsubseteq B$ if B A is positive.
- Recall density matrices are defined to have trace ≤ 1, so the zero matrix is the smallest element in this order.
- In this order, every increasing sequence has a least upper bound (lub). Such a structure is called a directed-complete partial order (dcpo).
- Note it is not a lattice.
- Least upper bounds of increasing sequences co-incide with topological limits in the euclidean topology.
- Any order preserving function on the operators will preserve lubs of increasing sequences if it is topologically continuous.
- A function from a dcpo to another dcpo is called Scott continuous if it preserves lubs of increasing sequences.

Flowcharts

Quantum flowcharts are built out of:

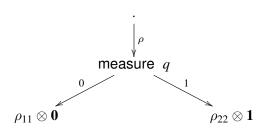
- new qbit $q := \mathbf{0}$ [allocate]
- discard q [discard]
- $\vec{q}* = U$ [apply unitary to \vec{q}]
- lacktriangle measure and branch on the result
- merge [combine two possible paths]

Semantics of the flowcharts I

$$ullet$$
 new qbit $q:=oldsymbol{0};
ho\mapsto\left(egin{array}{cc}
ho & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{array}
ight)$

• discard
$$q$$
; $\begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix} \mapsto [\rho_{11} + \rho_{22}]$

Semantics of measurement



Here
$$\rho = \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix}$$

$$\rho_{11} \otimes \mathbf{0} = \begin{pmatrix} \rho_{11} & 0 \\ 0 & 0 \end{pmatrix}$$

$$\rho_{22} \otimes \mathbf{1} = \begin{pmatrix} 0 & 0 \\ 0 & \rho_{22} \end{pmatrix}$$

Iteration

- Loop in the flowchart.
- When the loop is unwound one gets "formally" an infinite flowchart.
- The meaning of this is given by an infinite sum.
- This sum can be proven to converge yielding a density matrix with trace < 1.

Recursion

- Part of the program can call itself.
- The recursive call may allocate new qubits.
- The recursion can be partially unwound.
- The successive unwindings are given by $F(\mathbf{0}), F^2(\mathbf{0}), \dots$
- Each unwinding is less than the next in the Löwner order, because F is monotone.
- The meaning is given by a least upper bound of the increasing sequence.
- Because the density matrices form a dcpo we are sure that the lubs exist.
- Recursion can implement iteration but not the other way around.

What do we want?

- Suppose we have a qubit q and two superoperators $S,T:\mathcal{B}(\mathcal{H})\to\mathcal{B}(\mathcal{K})$ then the quantum alternation (qAlt)(q;S,T) should be a superoperator from $\mathcal{B}(\mathcal{Q}\otimes\mathcal{H})\to\mathcal{B}(\mathcal{Q}\otimes\mathcal{K})$.
- We want this to be compositional, so we can then use this new superoperator in any context without looking inside it.
- We want it to only depend on the superoperator and not on how the superoperator is described, e.g. through a specific Kraus form.
- We want the operation to be monotone so we can use this inside recursions.

Can we really do all this?

- No!
- It is not possible to make it compositional and stick with superoperators.
- Can we define it in a monotone way?
- I am almost sure this is impossible.

Basic scheme

- \mathcal{H} Hilbert space with orthonormal basis $\{e_i\}_{i=1}^n$, \mathcal{K} another Hilbert space.
- Let Π_i be the projection onto the subspace spanned by e_i .
- For each $i \in \{1, 2, \dots, k-1, k\}$ we have a *unitary* U_i acting on K.
- The quantum alternation of the U_i controlled by a state in \mathcal{H} is defined to be the following unitary:

•

$$\sum_{i=1}^k \Pi_i U_i : \mathcal{H} \otimes \mathcal{K} \to \mathcal{H} \otimes \mathcal{K}.$$

- If \mathcal{H} is a qubit then we have $(\mid 0 \mid \langle 0 \mid \otimes U_0) + (\mid 1 \mid \langle 1 \mid \otimes U_1)$.
- Action: $(\sum_i e_i \otimes \psi_i) \mapsto (\sum_i e_i \otimes U_i \psi_i)$.

Examples I

- Syntax: if q then U_0 else U_1 .
- Controlled NOT: if q then skip else $q_1 * = N$.
- Controlled Hadamard: if q then skip else $q_1* = H$.
- Controlled phase if q then U_0 else $q_1*=e^{i\theta}$.
- Toffoli gate uses nested if:
 if q₀ then skip else if q₁ then skip else q₂* = N.
- Very useful for describing algorithms especially if there are only unitaries.

Examples II: Deutsch's algorithm

- Given a function $f:\{0,1\} \to \{0,1\}$ we can determine if f is a constant function or not, f(0) = f(1) or not using only one computation of f.
- Use qubits $|0\rangle, |1\rangle$ and build quantum circuit to compute $f(0) \oplus f(1)$ using one call to f. Measure the output.
- Let U_i , i = 1, 2 be unitaries mapping $|0\rangle$ to $|f(i)\rangle$.

•

```
new qbit x, y

x* = H

y* = N; H

if x then y* = U_0 else y* = U_1

x* = H
```

- Can write quantum Fourier transform in a few lines.
- Simple and intuitive, but
- can we extend it to quantum operations that are not unitaries?

What is a Kraus form?

- A superoperator describes the most general physical transformation of a system.
- According to Stinespring, every transformation can be regarded as a unitary acting on an enlarged space followed by a partial trace.
- This extra space is the environment which interacts with the system.
- A superoperator is always represented by a Kraus form, but this is not unique.
- A particular Kraus form comes from a particular choice of basis of the environment, as we saw.
- A basis corresponds to a particular choice of measurement. Thus the particular Kraus representation is dictated by how the experimenter chooses to describe the environment.

Semantics in terms of Kraus forms

- Our position: Do not try to give semantics in terms of superoperators, give the semantics in terms of the Kraus forms.
- Basic idea: we can form quantum alternation of the Kraus operators just as we did for unitaries; details on the next slide.
- Idea (Mingsheng Ying): Define quantum alternation by using all possible Kraus forms for a superoperator and define the meaning of quantum alternation to be the set of all possible combinations of quantum alternations of Kraus forms.
- Not compositional, already noted by M. Ying.
- Our claim: No compositional semantics in terms of superoperators is possible.
- We give compositional semantics but in terms of specific choices of Kraus operators, we do not try to give compositional superoperator semantics.

Quantum alternation of unitaries

Given unitary operators U, V on \mathcal{H} and a qubit q (space \mathcal{Q}) we define

$$\mid 0 \mid \langle 0 \mid \otimes U + \mid 1 \mid \langle 1 \mid \otimes V = \begin{pmatrix} U & 0 \\ 0 & V \end{pmatrix}$$

as the quantum alternation of U and V.

Alternation of Kraus forms

• Given superoperators \mathcal{E}, \mathcal{F} with Kraus forms

•
$$\mathcal{E}\rho = \sum_{i=1}^m E_i^* \rho E_i$$
 and $\mathcal{F}\rho = \sum_{j=1}^n F_j^* \rho F_j$,

• we define a family of operators $K_{i,j}$ by

$$K_{i,j} = \mid 0 \mid \langle 0 \mid \otimes (\frac{1}{\sqrt{m}}E_i) + \mid 1 \mid \langle 1 \mid \otimes (\frac{1}{\sqrt{n}})F_j \rangle = \begin{pmatrix} \frac{1}{\sqrt{m}}E_i & 0 \\ 0 & \frac{1}{\sqrt{n}}F_j \end{pmatrix}.$$

This defines a superoperator

$$S(\rho) = \sum_{i,j} K_{i,j}^* \rho K_{i,j}.$$

What Stinespring says

If one looks at the Stinespring dilation corresponding to the above construction we see that the ancilla spaces (environments) of the two Kraus forms are tensored together.

Kraus semantics

- We think of a superoperator as being given by a specific Kraus form.
- We write the composition of Kraus forms as S T where S and T are specific Kraus forms for the superoperators.
- We interpret commands in the quantum programming language as specific Kraus forms. So we can think of a superoperator as a set of Kraus operators.
- The meaning of a construct will be given by a set of Kraus operators.
- Sequential composition

$$[\![P;Q]\!] = [\![Q]\!] \circ [\![P]\!] = \{E_i \circ F_j \mid E_i \in [\![P]\!], F_j \in [\![Q]\!]\}.$$

Applying a unitary

$$[q* = U] = \{U\}.$$

More semantics

• Measure q, this has type $\tau \to \tau \oplus \tau$

$$[\![\mathbf{measure}\ q]\!] = \{\mathsf{in}_0 \circ \Pi_0, \mathsf{in}_1 \circ \Pi_1\}.$$

• Quantum alternation [if q then P else Q] =

$$\llbracket P \rrbracket \bullet \llbracket Q \rrbracket.$$

We do not give semantics for loops and conditionals.

Quantum alternation cannot be compositional

- More precisely: If the semantics is based on superoperators it cannot be compositional.
- consider $P \equiv e^{i\theta}I$ and I, as superoperators these are identical.
- But if q then I else P is definitely not the same as if q then I else I; the latter is clearly the same as I and the first is the controlled-phase gate.
- This example arose from discussions with Mingsheng Ying and Yuan Feng at UTS Sydney based on an example due to Nengkun Yu.
- One can think of quantum alternation as an algorithmic notation, it is not clear what it means physically.

Non-monotonicity

Theorem

Quantum control even with just unitary operators, is not monotone with respect to the Löwner order.

- Let U, V be one-qubit unitaries and $\lambda, \mu \in [0, 1]$.
- Let $S(\rho) = U\rho U^{\dagger}$, $T(\rho) = V\rho V^{\dagger}$ be associated superoperators.
- We have $\lambda^2 S \leq S$ and $\mu^2 T \leq T$ in the Löwner order.
- Define $R(\sigma) = W \sigma W^{\dagger}$ where

$$W = \left(\begin{array}{cc} U & 0 \\ 0 & V \end{array}\right)$$

• Define Define $R'(\sigma) = W'\sigma W'^{\dagger}$ where

$$W = \left(\begin{array}{cc} \lambda U & 0\\ 0 & \mu V \end{array}\right)$$

• By explicit calculation we can show that $R' \not \leq R$.

Canonical Kraus form?

- Is there any way to choose a canonical Kraus form?
- Yes, mathematically there is, but does it mean anything physically?
- There is an operator-algebra version of the Radon-Nikodym theorem due to Belavkin and Arveson (BARN).
- One can show that every CP map is uniformly dominated by the tracial map from M_n to M_k : trmap $(C) = \frac{1}{n} tr(C) I_k$.
- The BARN then gives a Kraus decomposition.
- One can give a denotational semantics based on these "canonical" Kraus forms but there is little reason to think that this has physical significance.

Grattage-Altenkirch 2005

- Defined a language and type system for quantum alternation.
- They defined "strict" maps; only these can be put in alternation.
- Strict maps correspond to have singleton Kraus decompositions.
- For example, one cannot nest quantum conditionals.
- No discussion of what quantum alternation means physically or mathematically.

Ying et. al. \sim 2015

- They use sets of superoperators.
- They look at all Kraus decompositions and then combine them in all possible ways.
- Then they forget the decomposition to get a superoperator semantics.
- Not compositional.

Summary

- Quantum alternation is troublesome: non-compositional and non-monotone.
- Is it a sensible thing to even consider? It came from programming languages without thinking about physics.
- One should look at real physical situations, e.g. Mach-Zehnder interferometers, quantum random walks or adiabatic quantum computation and extract a notion of quantum alternation.
- Perhaps quantum alternation and unrestricted recursion is not allowed in nature!

Thank you!