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What am I trying to do?

1 Probability as logic: the central role of conditional probability.
2 Describe the key mathematical concepts behind modern

probability: measure and integration.
3 Probabilistic systems and bisimulation (briefly)
4 Semantics of programming languages: part II.
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What I am not trying to do

Drown you in category theory.
Discuss applications to e.g. Bayes nets.
Discuss metrics or approximation theory.
Deal with continuous time.
Prove everything in detail (or anything at all!).
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A puzzle

Imagine a town where every birth is equally likely to give a boy or
a girl. Pr(boy) = Pr(girl) = 1

2 .
Each birth is an independent random event.
There is a family with two children.
One of them is a boy (not specified which one), what is the
probability that the other one is a boy?
Since the births are independent, the probability that the other
child is a boy should be 1

2 . Right?
Wrong! Before you are given the additional information that one
child isa boy, there are 4 equally likely situations: bb, bg, gb, gg.
The possibility gg is ruled out. So of the three equally likely
scenarios: bb, bg, gb, only one has the other child being a boy.
The correct answer is 1

3 .
If I had said, “The elder child is a boy”, then the probability that the
other child is a boy is indeed 1

2 .
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The point of the puzzle

Conditional probability is tricky!
Conditional probability/expectation is the heart of probabilistic
reasoning.
Conditioning = revising probability (expectation) values in the
presence of new information.
Analogous to inference in ordinary logic.
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Basic Terminology

Sample space: set of possible outcomes; X.
Event: subset of the sample space; A,B ⊂ X.
Probability: Pr : X −→ [0, 1],

∑
x∈X Pr(x) = 1.

Probability of an event A: Pr(A) =
∑

x∈A Pr(x).
A,B are independent: Pr(A ∩ B) = Pr(A) · Pr(B).
Subprobability:

∑
x∈X Pr(x) ≤ 1.
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Conditional probability

Definition
If A and B are events, the conditional probability of A given B, written
Pr(A | B), is defined by:

Pr(A | B) = Pr(A ∩ B)/Pr(B).

What happens if Pr(B) = 0?
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Revising probabilities

Bayes’ Rule

Pr(A | B) =
Pr(B | A) · Pr(A)

Pr(B)
.

Trivial proof: calculate from the definition.
Example: Two coins, one fake (two heads) one OK. One coin
chosen with equal probability and then tossed to yield a H. What
is the probability the coin was fake?
Answer: 2

3 .
Bayes’ rule shows how to update the prior probability of A with the
new information that the outcome was B: this gives the posterior
probability of A given B.
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Expectation values

A random variable r is a real-valued function on X.
The expectation value of r is

E[r] =
∑
x∈X

Pr(x)r(x).

The conditional expectation value of r given A is:

E[r | A] =
∑
x∈X

r(x)Pr({x} | A).

Conditional probability is a special case of conditional expectation.

Panangaden (McGill University) Probabilistic Languages POPL 2015 Tutorial 10 / 43



Logic and probability

Kozen’s correspondence

Classical logic Generalization
Truth values {0, 1} Probabilities [0, 1]

Predicate Random variable
State Distribution

The satisfaction relation |= Integration
∫
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Motivation

Model and reason about systems with continuous state spaces.

Hybrid control systems; e.g. flight management systems.
Telecommunication systems with spatial variation; e.g. mobile
(cell) phones.
Performance modelling.
Continuous time systems.
Probabilistic programming languages with recursion.
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The Need for Measure Theory

Basic fact: There are subsets of R for which no sensible notion of
size can be defined.
More precisely, there is no translation-invariant measure defined
on all the subsets of the reals.
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Measurable spaces

Countability is the key: basic analysis works well with countable
summations.
A σ-algebra Ω on a set X is a family of subsets with the following
conditions:

1 ∅,X ∈ Ω
2 A ∈ Ω⇒ Ac ∈ Ω
3 {Ai ∈ Ω}i∈N ⇒

⋃
i Ai ∈ Ω

Closure under countable intersections is automatic.
A ∈ Ω and A ⊂ B or B ⊂ A does not imply B ∈ Ω.
A set with a σ-algebra (X,Ω) is called a measurable space.
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Properties of σ-algebras

The collection of all subsets of X is always a σ-algebra.
The intersection of any collection of σ-algebras is a σ-algebra.
Thus, given any family F of subsets of X there is a least σ-algebra
containing them: σ(F); the σ-algebra generated by F .
For most σ-algebras of interest a “generic” member is hard to
describe. We try to work with simpler generating families.
Because measurable sets are closed under complementation, the
character of the subject is very different from topology; e.g.
closure under limits.
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Two Examples

R: the real line. The open intervals do not form a σ-algebra.
However, they generate one: the Borel algebra.
Let A be an “alphabet” of symbols (say finite) and consider A∗:
words over A. Let Aω be finite and infinite words.
Let u ∈ A∗ and let u ↑def

= {v ∈ Aω | u ≤ v}.
A “natural” σ-algebra on Aω is the σ-algebra generated by
{u ↑| u ∈ A∗}.
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Measurable functions

f : (X,Σ) −→ (Y,Ω) is measurable if for every B ∈ Ω, f−1(B) ∈ Σ.
Just like the definition of continuous in topology.
Why is this the definition? Why backwards?
x ∈ f−1(B) if and only if f (x) ∈ B.
No such statement for the forward image.
Exactly the same reason why we give the Hoare triple for the
assignment statement in terms of preconditions.
Older books (Halmos) give a more general definition that is not
compositional.
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Examples

If A ⊂ X is a measurable set, 1A(x) = 1 if x ∈ A and 0 otherwise is
called the indicator or characteristic function of A and is
measurable.
The sum and product of real-valued measurable functions is
measurable.
If we take finite linear combinations of indicators we get simple
functions: measurable functions with finite range.
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Convergence properties

If {fi : R −→ R}i∈N converges pointwise to f and all the fi are
measurable then so is f .
Stark difference with continuity.
If f : (X,Σ) −→ (R,B) is non-negative and measurable then there is
a sequence of non-negative simple functions si such that
si ≤ si+1 ≤ f and the si converge pointwise to f .
The secret of integration.
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Measures

Want to define a “size” for measurable sets.
A measure on (X,Σ) is a function µ : Σ −→ [0,∞] or µ : Σ −→ [0, 1]
(probability) such that

1 µ(∅) = 0
2 A ∩ B = ∅ implies µ(A ∪ B) = µ(A) + µ(B).
3 A ⊂ B implies µ(A) ≤ µ(B), follows.
4 {Ai}i∈N ⊂ Σ pairwise disjoint implies µ(

⋃
i

Ai) =
∑

i

µ(Ai);

subsumes (2).
5 µ is continuous with respect to upward and downward chains of

sets; follows from (4).
6 Actually, (4) is the only axiom needed.

Panangaden (McGill University) Probabilistic Languages POPL 2015 Tutorial 20 / 43



Examples of measures

X countable, σ-algebra all subsets of X; c(A) = number of
elements in A. Counting measure; not very useful.
X any set, σ-algebra P(X), fix x0 ∈ X δx0(A) = 1 if x0 ∈ A, 0
otherwise. Dirac delta “function.”
X = R, σ-algebra generated by the open (or closed) intervals, the
Borel sets B. λ : B −→ R≥0 defined as the measure which assigns
to intervals their lengths.
How do we know that such a measure is defined or that it is
unique?
Similarly, we can define measures on Rn.
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Extension theorems

We look for simple “well-structured” families of sets, e.g. intervals
in R and define “suitable” functions on them.
Then we rely on extension theorems to obtain a unique measure
on the generated σ-algebra.
I will skip the “well-structured” conditions on the family of sets and
the definition of “suitable” functions.
A π-system is a family of sets closed under finite intersection.
If two measures agree on a π-system then they agree on the
generated σ-algebra.
Fantastically useful!!
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The Lebesgue integral

Want to define
∫

f dµ, where f is measurable and µ is a measure.
Assume that f is everywhere non-negative and bounded and µ is
a probability measure.
If f is 1A then we define

∫
1Adµ = µ(A).

If f is r · 1A then we define
∫

f dµ = r · µ(A).

If f =

k∑
i=1

ri1Ai (simple function) then we define

∫
f dµ =

k∑
i=1

ri · µ(Ai).

Need to check that it does not matter how we write such an f as a
simple function.
There are some subtleties if sets can have infinite measure but
these do not arise if we are dealing with probability measures and
bounded measurable functions.
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The Lebesgue integral II

The Lebesgue integral
If f is non-negative and measurable and µ a probability measure we
define ∫

f dµ = sup
∫

sdµ

where the sup is over all simple non-negative functions below f .

One can define integrals of general functions by splitting them into
positive and negative pieces.
One can prove that the integral is linear and monotone.
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Monotone convergence

The monotone convergence theorem
Let {fn} be a sequence of measurable functions on X such that (1)
∀x ∈ X, 0 ≤ f1(x) ≤ f2(x) ≤ . . . ≤ fn(x) ≤ . . . ≤ f (x) and (2)
∀x ∈ X, supn fn(x) = f (x) then

sup
n

∫
fndµ =

∫
f dµ.

Should remind you of things in domain theory.
The integral is continuous in an order-theoretic sense.
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The monotone convergence mantra

Want to prove
∫
E(f )dµ =

∫
E ′(f )dν.

Prove it for the special case f = 1A, usually easy.
Then automatic for simple functions by linearity.
Then automatic for non-negative bounded measurable functions
by the monotone convergence theorem.
Then clear for general bounded measurable functions.
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Ordinary binary relations

R : A −→ B is just R ⊆ A× B

Natural converse relation R◦ : B −→ A.
Composition: R1 : A −→ B, R2 : B −→ C then
R1 ◦ R2 = {(x, z)∃y ∈ B, xR1y and yR2z}.
Close relation with the powerset construction:
R̂ : A −→ P(B) is an equivalent description of R.
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Markov kernels

A Markov kernel on a measurable space (S,Σ) is a function
h : S× Σ −→ [0, 1] with (a) h(s, ·) : Σ −→ [0, 1] a (sub)probability
measure and (b) h(·,A) : X −→ [0, 1] a measurable function.
Though apparantly asymmetric, these are the probabilistic
analogues of binary relations
and the uncountable generalization of a matrix.
They describe transition probabilities in situations where a
“point-to-point” approach does not make sense.
Composition: k “after” h, (k ◦ h)(x,A) =

∫
k(x′,A)dh(x, ·), where we

are integrating the variable x′ using the measure h(x, ·).
We construct these things using a major theorem (the
Radon-Nikodym theorem).
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Probabilistic relations

Want to define R : (X,Σ) −→ (Y,Ω).
Define a probabilistic relation R from X to Y to be a Markov kernel
of type R : X × Ω −→ [0, 1] with the same measurability conditions.
Given relations R1 : (X,Σ) −→ (Y,Ω) and R2 : (Y,Ω) −→ (Z,Λ) we
define R2 ◦ R1 (R1; R2) as
(R2 ◦ R1)(x,C ∈ Λ) =

∫
R2(y,C)R1(x, ·)d.

Just like the formula for composing ordinary relations with
integration for ∃.
Converse is tricky and requires more machinery and more
structure.
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The category SRel

Objects: measurable spaces (X,ΣX)

Morphisms: h : (X,ΣX) −→ (Y,ΣY) are Markov kernels h : X × ΣY

−→ [0, 1].
Composition: h : X −→ Y, k : Y −→ Z then ∀x ∈ X,C ∈ ΣZ,
(k ◦ h)(x,C) =

∫
Y k(y,C)h(x, dy).

The identity morphisms: id : X −→ X is δ(x,A).
Prove associativity of composition by using the monotone
convergence mantra.
It has countable coproducts; very useful for semantics.
Unlike Rel this category is not self dual.
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The Gíry Monad

Define Π : Mes −→Mes by Π((X,ΣX)) = {ν | ν : ΣX −→ [0, 1]}
where ν is a subprobability measure on X.
Actually, Gíry used probability measures; I made the small change
to subprobability measures in order to adapt it to programming
language semantics.
But Π(X) has to be a measurable space not just a set.
For every A ∈ ΣX we define evA : Π(X) −→ [0, 1] by evA(ν) = ν(A).
We define the σ-algebra on Π(X) to be the least σ-algebra making
all the evA measurable.
Given f : X −→ Y define (Π(f )(ν))(B ∈ ΣY) = ν(f−1(B)).
Need natural transformations: η : I −→ Π and µ : Π2 −→ Π.
ηX(x) = δ(x, ·)
µX(Ω ∈ Π2(X)) = λB ∈ ΣX.

∫
evBdΩΠ(X).
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The Kleisli category of Π

If T : C −→ C is a monad, then CT has the same objects as C and
the morphisms in CT from X to Y are morphisms in C from X to TY.
For the powerset monad we get morphisms X −→ P(Y) which we
recognize as just binary relations.
Here we get h : X −→ Π(Y) or h : X −→ (ΣY −→ [0, 1]) or h : X × ΣY

−→ [0, 1].
These are exactly the Markov kernels.
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Labelled Markov processes

Labelled Markov processes are probabilistic versions of labelled
transition systems. Labelled transition systems where the final
state is governed by a probability distribution - no other
indeterminacy.
All probabilistic data is internal - no probabilities associated with
environment behaviour.
We observe the interactions - not the internal states.
In general, the state space of a labelled Markov process may
be a continuum.
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Formal Definition of LMPs

An LMP is a tuple (S,Σ,L,∀α ∈ L.τα) where τα : S×Σ −→ [0, 1] is a
transition probability function such that
∀s : S.λA : Σ.τα(s,A) is a subprobability measure
and
∀A : Σ.λs : S.τα(s,A) is a measurable function.
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Larsen-Skou Bisimulation

Let S = (S,Σ, τ) be a labelled Markov process. An equivalence
relation R on S is a bisimulation if whenever sRs′, with s, s′ ∈ S, we
have that for all a ∈ A and every R-closed measurable set A ∈ Σ,
τa(s,A) = τa(s′,A).
Two states are bisimilar if they are related by a bisimulation
relation.
Can be extended to bisimulation between two different LMPs.
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Logical Characterization

L ::== T|φ1 ∧ φ2|〈a〉qφ

We say s |= 〈a〉qφ iff

∃A ∈ Σ.(∀s′ ∈ A.s′ |= φ) ∧ (τa(s,A) > q).

Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
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Syntax

Kozen’s Language

S ::== xi := f (~x)|S1; S2|if B then S1 else S2|while B do S.

There are a fixed set of variables ~x taking values in a measurable
space (X,ΣX).
f is a measurable function.
B is a measurable subset.

Panangaden (McGill University) Probabilistic Languages POPL 2015 Tutorial 37 / 43



Outline of the semantics

State transformer semantics: distribution (measure) transformer
semantics.
Meaning of statements: Markov kernels i.e. SRel morphisms.
The only subtle part: how to give fixed-point semantics to the
while loop?
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Partially additive structure

Back to SRel structure.
Can we “add” SRel morphisms?
Not always, the sum may exceed 1, but we can define summable
families which may even be countaby infinite.
The homsets of SRel form partially additive monoids.
The sums can be rearranged at will (partition-associativity).
Limit property: If F is a countable family in which every finite
subfamily is summable then F is summable.
In the category SRel, the sums interact properly with composition.
If {fi | i ∈ N} is a countable set of morphisms from X to Y and
there is a morphism f : X −→ (Y + Y + . . .) such that when
projected onto the X’s we get the fi, then the family is summable.
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Why this structure matters

Arbib and Manes
Given a partially additive category C and f : X −→ X + Y we can find a
unique pair f! : X −→ X and f2 : X −→ Y such that f = ι1 ◦ f1 + ι2 ◦ f2.
Furthermore, there is a morphism f ∗ : X −→ Y given by

f ∗ =

∞∑
n=0

f2 ◦ f n
1 .

The theorem says that the family f2 ◦ f n
1 is summable.

It is the iterate of f .
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Semantics of Kozen’s Language I

Statements are SRel morphisms of type (Xn,Σn) −→ (Xn,Σn).
Assignment: x := f (~x)

Jxi := f (~x)K(~x, ~A) = δ(x1,A1) . . . δ(xi−1,Ai−1)δ(f (~x),Ai)δ(xi+1,Ai+1) . . .

Sequential Composition: S1; S2

JS1; S2K = JS2K ◦ JS1K

where the composition on the right hand side is the composition in
SRel.
Conditionals: if B then S1 else S2

Jif B then S1 else S2K(~x, ~A) = δ(~x,B)JS1K(~x, ~A) + δ(~x,Bc)JS2K(~x, ~A)
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Semantics of Kozen’s Language II

While Loops: while B do S

Jwhile B do SK = h∗

where we are using the ∗ in SRel and the morphism

h : (Xn,Σn) −→ (Xn,Σn) + (Xn,Σn)

is given by

h(~x, ~A1 ] ~A2) = δ(~x,B)JSK(~x, ~A1) + δ(~x,Bc)δ(~x, ~A2).
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Weakest precondition semantics

We can construct a category of probabilistic predicate
transformers: SPT.
Objects are measurable spaces.
Given (X,ΣX) we can construct the (Banach) space of bounded
measurable functions on X (the “predicates”) F(X).
A morphism X −→ Y in SPT is a bounded (continuous) linear map
from F(X) to F(Y).

SPT ' SRelop.

This gives us the structure needed for a wp semantics.
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