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What are LMPs?
Labelled Markov processes are probabilistic 
versions of labelled transition systems.  

A transition is triggered by an action (label) 
and the final state is governed by a 
probability distribution that depends on the 
action and the initial state.

There is no other indeterminacy.

No probabilities are associated with the 
choice of label, i.e. no attempt to model the 
environment.
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We observe the actions, not the internal 
states.  Unlike most of the treatments seen 
in probability books.  This does not make a 
serious difference.

In general, the state space may be a 
continuum. 
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Model and reason about systems with 
continuous state space or continuous time 
evolution or both.

Hybrid systems

Telecommunication systems with spatial 
variation, e.g. mobile phones

performance modelling

probabilistic languages with loops or 
recursion

Motivation
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An Example
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a - turn left

b - turn right

c - straight

University of Indiana Talk 4th November 2005 – p.6/37
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Actions

a - turn left, b - turn right, c - keep on course

The actions move the craft sideways with some probability

distributions on how far it moves. The craft may “drift”

even with c. The action a (b) must be disabled when the

craft is too near the left (right) boundary.

University of Indiana Talk 4th November 2005 – p.7/37

6Monday, June 14, 2010



+ < >

An Example

!
!
!
!
!
!
!
!"
#
#
#
#
#
#
#
#$

%
%

%&

a - turn left

b - turn right

c - straight

University of Indiana Talk 4th November 2005 – p.6/37

+ < >

Schematic of Example

!"#$%&'(L

a,c !! a,c
""!"#$%&'(M

a,b,c
##b,c

$$

a,c
""!"#$%&'(R

b,c%%

b,c

$$

This picture is misleading: unless very special
conditions hold the process cannot be compressed
into an equivalent (?) finite-state model. In general,
the transition probabilities should depend on the
position.
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Some remarks on this 
model

This is a toy model but it exemplifies some of 
the issues.

Can be used for reasoning: much better if 
we could have a finite-state version.

Why not discretize right away and never 
worry about the continuous case?
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Because we would love the ability to refine 
the model later.

A better model would be assign “rewards” or 
“costs” to the states and look for optimal 
policies rather than to think of this as a 
pure verification problem.

We would benefit from more interaction with 
the reinforcement learning community.
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What is meant by “equivalent” finite-state 
model?

I assume everyone knows what is meant by 
ordinary bisimulation.

We need to look into the probabilistic 
analogue.

Equivalence?
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Probabilistic Transition Systems
(S,A,∀a ∈ A Ta : S × S → [0, 1])

S: states
A: actions
Ta: transition matrix.

This model is reactive: all probabilities are associated with
the internal choices, no probabilities are associated with
how the environment chooses the labels.

+ < >

When can states be combined?

If two states behave in exactly the same way they
can be combined.

In queueing theory there was a notion of lumpability
of Markov chains (with no labels).

In process algebra (with no probabilities) Park and
Milner formulated a notion called bisimulation which
captures a very fine notion of process equivalence.

University of Indiana Talk 4th November 2005 – p.12/37
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Bisimulation for PTS: Larsen and Skou

Consider

t0
a[ 13 ]
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Should s0 and t0 be bisimilar?

Yes, but we need to add the probabilities.
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The Official Definition*

Let S = (S, L, Ta) be a PTS. An equivalence relation
R on S is a bisimulation if whenever sRs′, with
s, s′ ∈ S, we have that for all a ∈ A and every
R-equivalence class, A, Ta(s,A) = Ta(s′, A).

The notation Ta(s,A) means “the probability of
starting from s and jumping to a state in the set A.”

Two states are bisimilar if there is some bisimulation
relation R relating them.

University of Indiana Talk 4th November 2005 – p.14/37
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A Labelled Markov Process (LMP) is a tuple:

(S,Σ,A,∀a ∈ A τa : S × Σ → [0, 1])

such that

τa(s, ·) is a measure and

τa(·, A) is a measurable function.

τa is just a Markov kernel.
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Larsen-Skou-style bisimulation

Let S = (S,Σ,A, τa) be an LMP. An equivalence relation
R on S is called a bisimulation if whenever sRt, then
for every a and every R-closed measurable set A,

τa(s,A) = τa(t, A).

Two states are bisimilar if they are related by some such R.

Note that R itself does not need to satisfy any
measurability condition. One only requires the
matching to work on R-closed measurable sets.
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Logical Characterization

L ::== T|φ1 ∧ φ2|〈a〉qφ

We say s |= 〈a〉qφ iff

∃A ∈ Σ.(∀s′ ∈ A.s′ |= φ) ∧ (τa(s,A) > q).

Two systems are bisimilar iff they obey the same
formulas of L. [DEP 1998 LICS, I and C 2002]

University of Indiana Talk 4th November 2005 – p.20/37
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where [[φ]] = {s|s |= φ},
but we do not yet know that {s|s |= φ} is measurable.
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That Cannot be Right?
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Two processes that cannot be distinguished without
negation.

The formula that distinguishes them is 〈a〉(¬〈b〉#).
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But it is!

s0
a[p]

!!!!
!!

!!
! a[q]

"""
""

""
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s1 s2

b
##

s3

t0

a[r]
##

t1

b
##

t2

We add probabilities to the transitions.

If p + q < r or p + q > r we can easily distinguish
them.

If p + q = r and p > 0 then q < r so 〈a〉r〈b〉1#
distinguishes them.
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Easy to prove that if states are bisimilar they will satisfy
the same formulas (in fact in much richer logics).

For the other direction, we need to show that the relation
“s and t satisfy the same formulas” is a bisimulation.

If s and t satisfy exactly the same formulas it follows that
for all φ, τa(s, [[φ]]) = τa(t, [[φ]]).

Using some basic measure theory (Dynkin’s lemma), one can
show that τa(s,A) = τa(t, A) for any A in the σ-algebra
generated by the sets of the form [[φ]].
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At this point one gets stuck! So we make an additional
assumption. The state spaces are required to be analytic.

Analytic spaces are extremely general: all discrete spaces,
all manifolds, any complete separable metric space.

If one day you encounter a space that is not analytic
you are probably just having a bad dream.

What is so great about analytic spaces and what
are they anyway?
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B

︸︷︷︸
A

Suppose B is a measurable subset of R2,
its projection on the x-axis, say A, is clearly measurable.?

Actually, this is false! What you get is an analytic set.
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Analytic sets have some magical properties.

If you take the quotient of an analytic set by a “smooth”
equivalence relation you get another analytic set.

Logical equivalence is indeed a smooth equivalence relation!

Markov kernels can be defined on analytic sets.

If you have a sub-σ-algebra that is countably-generated
(so not too large) and separates points (so not too small) it is
the whole σ-algebra.

So the σ-algebra generated by the sets [[φ]] is in fact
the whole σ-algebra.
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Simulation*

Let S = (S,Σ, τ) be a labelled Markov process. A
preorder R on S is a simulation if whenever sRs′, we
have that for all a ∈ A and every R-closed measurable
set A ∈ Σ, τa(s,A) ≤ τa(s′, A). We say s is simulated by s′

if sRs′ for some simulation relation R.

University of Indiana Talk 4th November 2005 – p.24/37
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Logic for Simulation?

The logic used in the characterization has no
negation, not even a limited negative construct.

One can show that if s simulates s′ then s satisfies all
the formulas of L that s′ satisfies.

What about the converse?
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Counter Example!

In the following picture, t satisfies all formulas of L that s
satisfies but t does not simulate s.
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All transitions from s and t are labelled by a.
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Counter Example (contd.)

A formula of L that is satisfied by t but not by s.

〈a〉0(〈a〉0T ∧ 〈b〉0T).

A formula with disjunction that is satisfied by s but not
by t:

〈a〉 3
4
(〈a〉0T ∨ 〈b〉0T).
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A Logical Characterization for Simulation

The logic L does not characterize simulation. One
needs disjunction.

L∨ := L | φ1 ∨ φ2.

With this logic we have:
An LMP s1 simulates s2 if and only if for every
formula φ of L∨ we have

s1 |= φ ⇒ s2 |= φ.

The only proof we know uses domain theory.
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Approximation Results

Our main result is a systematic approximation
scheme for labeled Markov processes. The set of
LMPs is a Polish space. Furthermore, our
approximation results allow us to approximate
integrals of continuous functions by computing them
on finite approximants.

For any LMP, we explicitly provide a (countable)
sequence of approximants to it such that:
- For every logical property satisfied by a process,
there is an element of the chain that also satisfies the
property.
- The sequence of approximants converges – in a
certain metric – to the process that is being
approximated.

University of Indiana Talk 4th November 2005 – p.33/37
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There are lots more things to say about:

1. Metrics (Franck, Wednesday)

2. Combining probability and nondeterminism
(Roberto this afternoon)

3. Approximation

4. Domains and universal Markov processes

5. Markov decision processes and applications to
machine learning.
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6. Real-time systems.

7. Weak bisimulation

8. Applications to information theory and security
(Pasquale later this week)

9. Duality theory

but it’s lunch time!
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