# ON PREDICTION AND PLANNING IN PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES WITH LARGE OBSERVATION SETS

PABLO SAMUEL CASTRO

PCASTR@CS.MCGILL.CA

McGILL UNIVERSITY

JOINT WORK WITH: DOINA PRECUP AND PRAKASH PANANGANDEN

#### MOTIVATION

- INTERESTED IN SEQUENTIAL DECISION MAKING UNDER UNCERTAINTY
- AGENT MUST INFER ITS "STATE" BASED ON OBSERVATIONS OF ENVIRONMENT
- A LARGER OBSERVATION SPACE GIVES MORE INFORMATION, BUT INCREASES COMPLEXITY OF PROBLEM
- HARDWARE IS CHEAP AND SMALL => MANY SENSORS/OBSERVATIONS!

#### OUR CONTRIBUTION

- ALLOW SUBSETS OF OBSERVATION SPACE TO BE SPECIFIED FOR PLANNING/LEARNING.
- PROVIDE THEORETICAL FOUNDATIONS WHEN PLANNING/LEARNING USING THIS IDEA.
- WILL ADDRESS QUESTIONS SUCH AS:
  - HOW IS AGENT'S BEHAVIOUR AFFECTED BY USING ONLY A SUBSET OF ALL OBSERVATIONS?
  - **HOW ARE AGENT'S PREDICTIONS AFFECTED?**

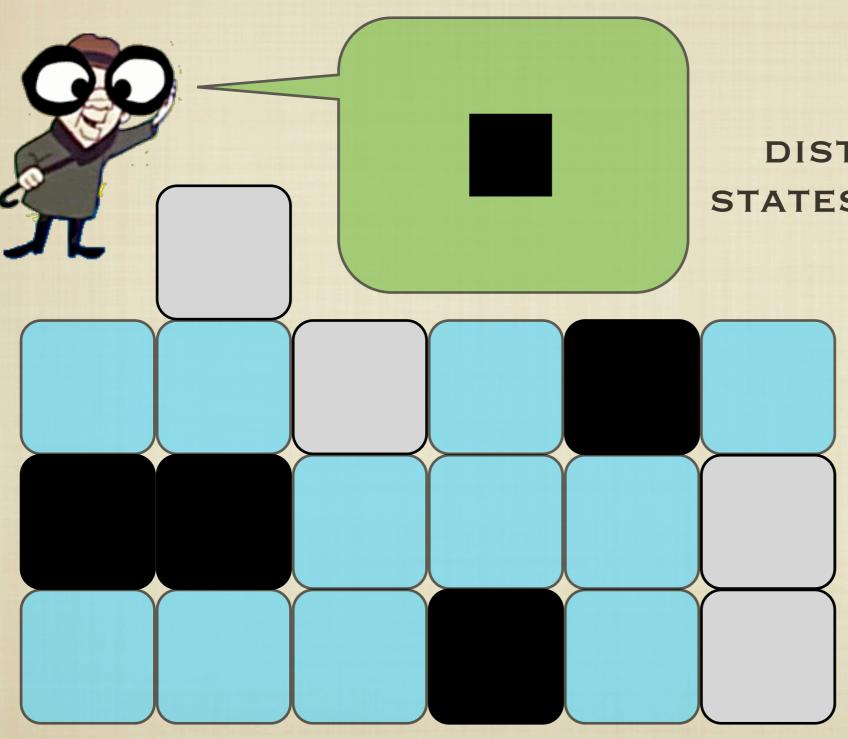
#### OUTLINE

- POMDP REVIEW
- NEW POMDP FORMULATION
- EQUIVALENCE RELATIONS
  - **VALUE FUNCTIONS**
  - TRAJECTORY PREDICTIONS
  - BISIMULATION
- CONCLUSIONS AND FUTURE WORK

#### OUTLINE

- **POMDP** REVIEW
- NEW POMDP FORMULATION
- EQUIVALENCE RELATIONS
  - **VALUE FUNCTIONS**
  - TRAJECTORY PREDICTIONS
  - BISIMULATION
- CONCLUSIONS AND FUTURE WORK

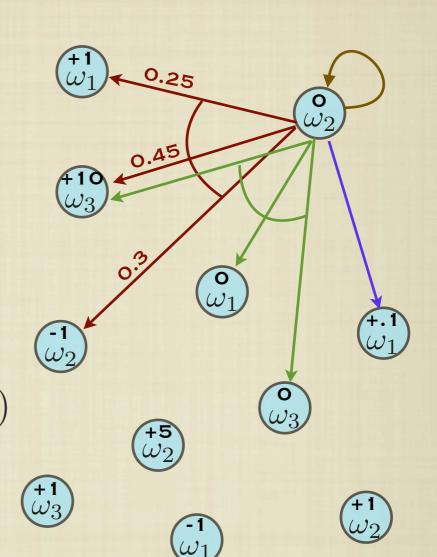
## PARTIALLY OBSERVABLE MDPs (POMDPs)



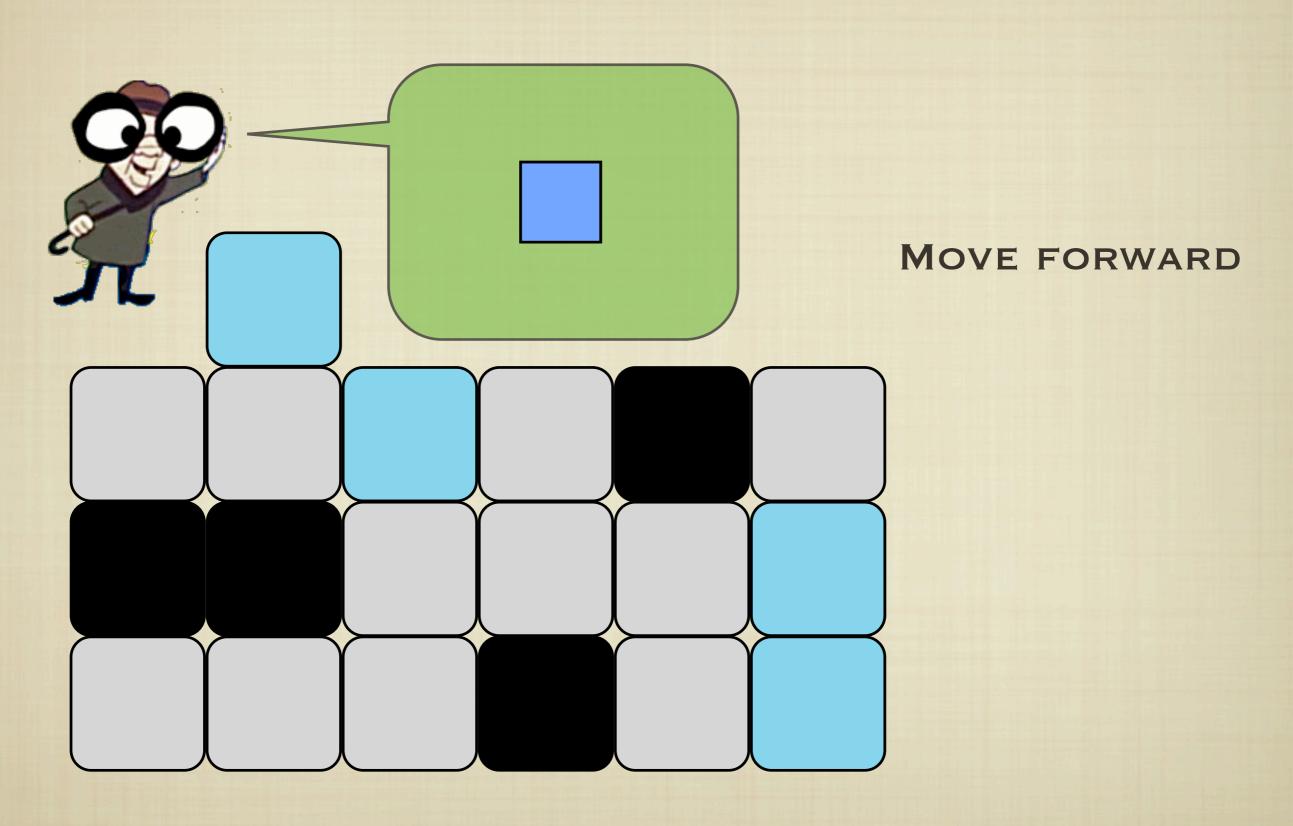
MAINTAIN A
DISTRIBUTION OVER
STATES BASED ON CLUES

#### STANDARD POMDPS

- 6-TUPLE  $\langle S, A, P, R, \Omega, O \rangle$  consisting of
  - $lacksquare{}$  Set of states  $S, (s, s', t, \ldots)$
  - lacksquare SET OF ACTIONS  $A, (a, b, \ldots)$
  - PROBABILISTIC TRANSITION FUNCTION  $P(s,a)(s^\prime)$
  - lacksquare Bounded reward function R(s,a)
  - lacksquare SET OF OBSERVATIONS  $\Omega$
  - lacksquare Observation function  $O(a,s)(\omega)$
  - DISCOUNT FACTOR  $0 \le \gamma < 1$



#### BELIEF STATES



#### BELIEF STATES

- lacksquare A belief state  $\mu$  is a distribution over S .
- GIVEN  $\mu$ , ACTION a AND OBSERVATION  $\omega$ , THERE IS A UNIQUE NEXT BELIEF STATE  $\tau(\mu,a,\omega)$ .
- CAN ALSO COMPUTE PROBABILITY OF NEXT OBSERVATIONS.

#### OUTLINE

- POMDP REVIEW
- **NEW POMDP FORMULATION**
- **EQUIVALENCE RELATIONS** 
  - **VALUE FUNCTIONS**
  - TRAJECTORY PREDICTIONS
  - **BISIMULATION**
- CONCLUSIONS AND FUTURE WORK

#### POMDPs

lacksquare 5-Tuple  $\langle S, A, P, \Omega, O \rangle$  consisting of

SET OF STATES S,  $(s, s', t, \ldots)$ 

lacksquare SET OF ACTIONS  $A, (a, b, \ldots)$ 

K-DIMENSIONAL OBSERVATION VECTOR

PROBABILISTIC TRANSITION FUNCTION P(s,a)  $(s^2)^2 \times \cdots \times \Omega_k$ 

REWARDS PART OF OBSERVATION VECTOR

lacksquare SET OF OBSERVATIONS  $\Omega$ 

OBSERVATION FUNCTION  $O(a,s)(\omega)$ 

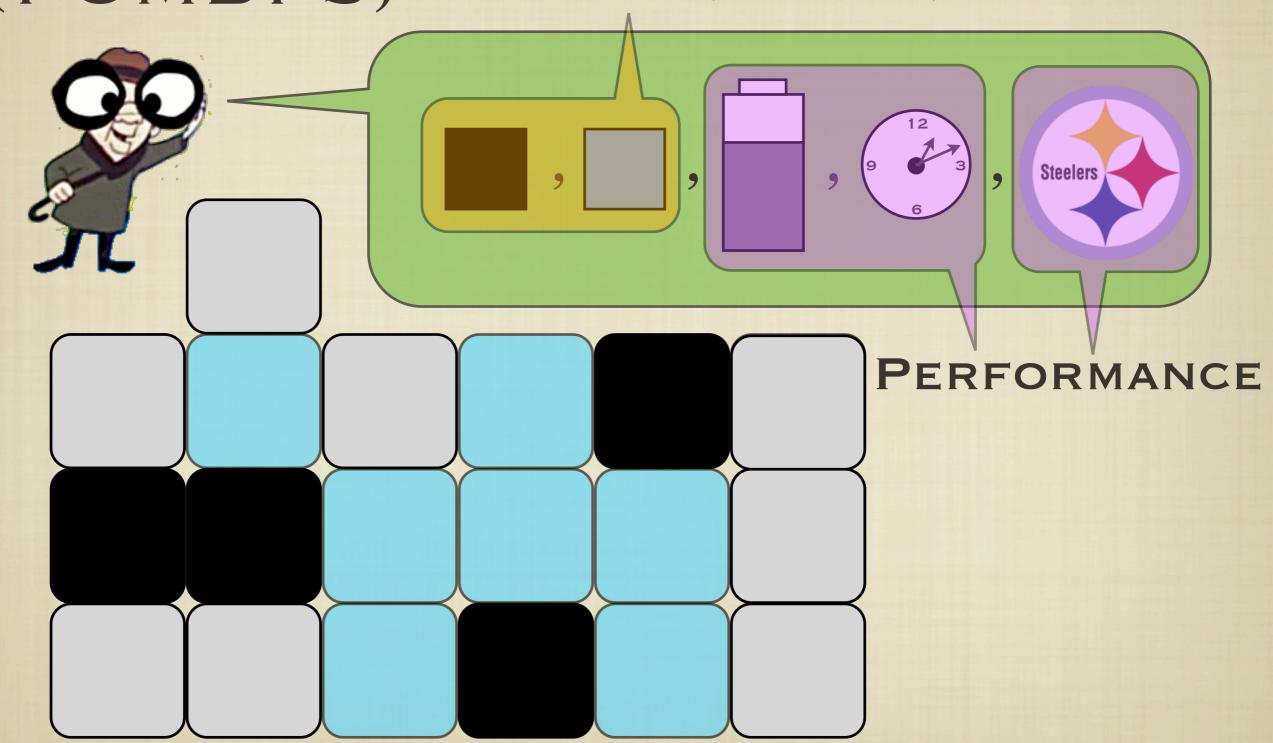
 $\begin{array}{c} +1 \\ \omega_3 \end{array}$ 





 $\blacksquare$  Discount factor  $0 \leq \gamma < 1$ 

# PARTIALLY OBSERVABLE MDPS (POMDPS) STATE UPDATES



## SPECIFYING DATA AND INTEREST

- LET  $\mathcal{D} \subseteq \{1,2,\ldots,k\}$  BE INDICES OF OBSERVATION COORDINATES USED FOR BELIEF UPDATES
- LET  $\mathcal{I} \subseteq \{1,2,\ldots,k\}$  BE INDICES OF OBSERVATION COORDINATES THAT ARE OBSERVABLES OF INTEREST FOR PLANNING/PREDICTION.
- Let  $\Omega_{\mathcal{D}}$  be set of observations containing only observations from  $\mathcal{D}$ . Similarly for  $\Omega_{\mathcal{I}}$ .

#### NEW POMDP DYNAMICS

- We project observation functions with binary projection matrices  $\Phi_{\mathcal{D}}\colon O_{\mathcal{D}}=O\Phi_{\mathcal{D}}$
- Unique next beliefs specific to choice of  $\mathcal{D}$ :  $\tau_{\mathcal{D}}(\mu,a,\omega) = \frac{\mu P^a O_{\mathcal{D}}^{\omega}}{\mu P^a O_{\mathcal{D}}^{\omega} \mathbf{e}^T}$
- CAN DEFINE A TRANSITION FN. BETWEEN BELIEF STATES  $T_{\mathcal{D}}(\mu,a)(\mu')$ .

#### MEASURING PERFORMANCE

- ELEMENTS FROM  $\Omega_{\mathcal{I}}$  MAY BE OF MANY DIFFERENT TYPES.
- NEED A WAY TO QUANTIFY AN AGENT'S PERFORMANCE.
- We assume a function  $f:\Omega_{\mathcal{I}}\to\mathbb{R}$  that maps observations of interest to a real number.

## POLICIES AND VALUE FUNCTIONS

- CLOSED-LOOP POLICIES: MAP BELIEF STATES TO ACTIONS  $(\pi \in \Pi)$
- VALUE OF A BELIEF STATE  $\mu$  UNDER  $\pi$ :  $\mathbb{E}^{\pi}$   $\left|\sum_{i=0}^{n} \gamma^{i} r_{i} | \mu\right|$

$$V_{\mathcal{D},\mathcal{I}}^{\pi} = \sum_{\omega_{\mathcal{I}} \in \Omega_{\mathcal{I}}} Pr(\omega_{\mathcal{I}}|\mu, \pi(\mu))) f(\omega_{\mathcal{I}}) + \gamma \sum_{\mu' \in \mathcal{B}} T_{\mathcal{D}}(\mu, \pi(\mu))(\mu') V_{\mathcal{D},\mathcal{I}}^{\pi}(\mu')$$

OPTIMAL VALUE FUNCTION:

$$V_{\mathcal{D},\mathcal{I}}^*(\mu) = \max_{a \in A} \left\{ \sum_{\omega_{\mathcal{I}} \in \Omega_{\mathcal{I}}} Pr(\omega_{\mathcal{I}}|\mu, a) f(\omega_{\mathcal{I}}) + \gamma \sum_{\mu' \in \mathcal{B}} T_{\mathcal{D}}(\mu, a) (\mu') V_{\mathcal{D},\mathcal{I}}^*(\mu') \right\}$$

## IS NEW POMDP DEFINITION SUITABLE?

- ARE FULLY OBSERVABLE MDPs STILL EXPRESSIBLE?
- DOES THE DEFINITION PROPERLY FOLLOW INTUITION? (E.G. DO LARGER OBSERVATION SUBSETS YIELD IMPROVED PERFORMANCE)?

#### MDPs

- $\blacksquare$  Assume the observations are just  $S\times \mathbb{R}$
- lacksquare  $\mathcal D$  points to S and  $\mathcal I$  points to  $\mathbb R$ .

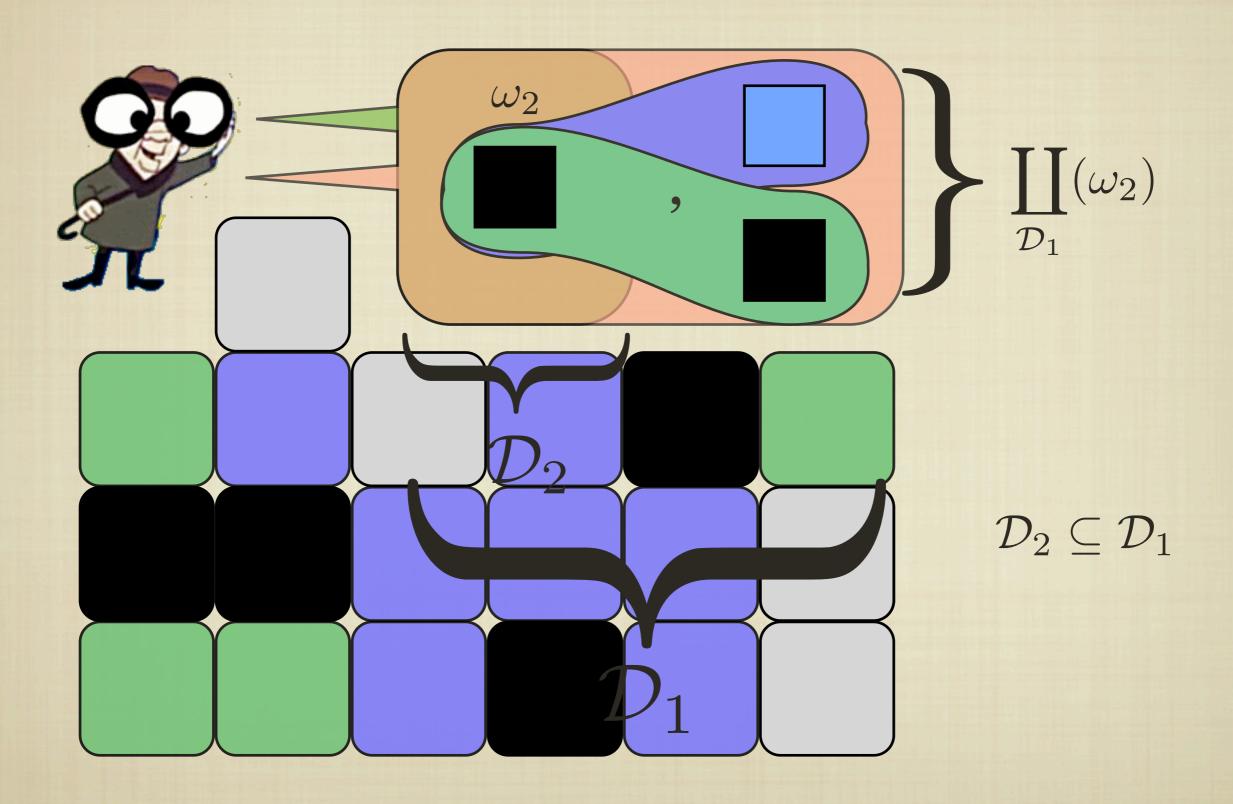
Monday, April 4, 2011 18

#### OPTIMAL VALUE FUNCTIONS

PROPOSITION: GIVEN INDEXING SETS  $\mathcal{D}_2 \subseteq \mathcal{D}_1$  AND  $\mathcal{I}$ , THEN

$$V_{\mathcal{D}_2,\mathcal{I}}^* \le V_{\mathcal{D}_1,\mathcal{I}}^*$$

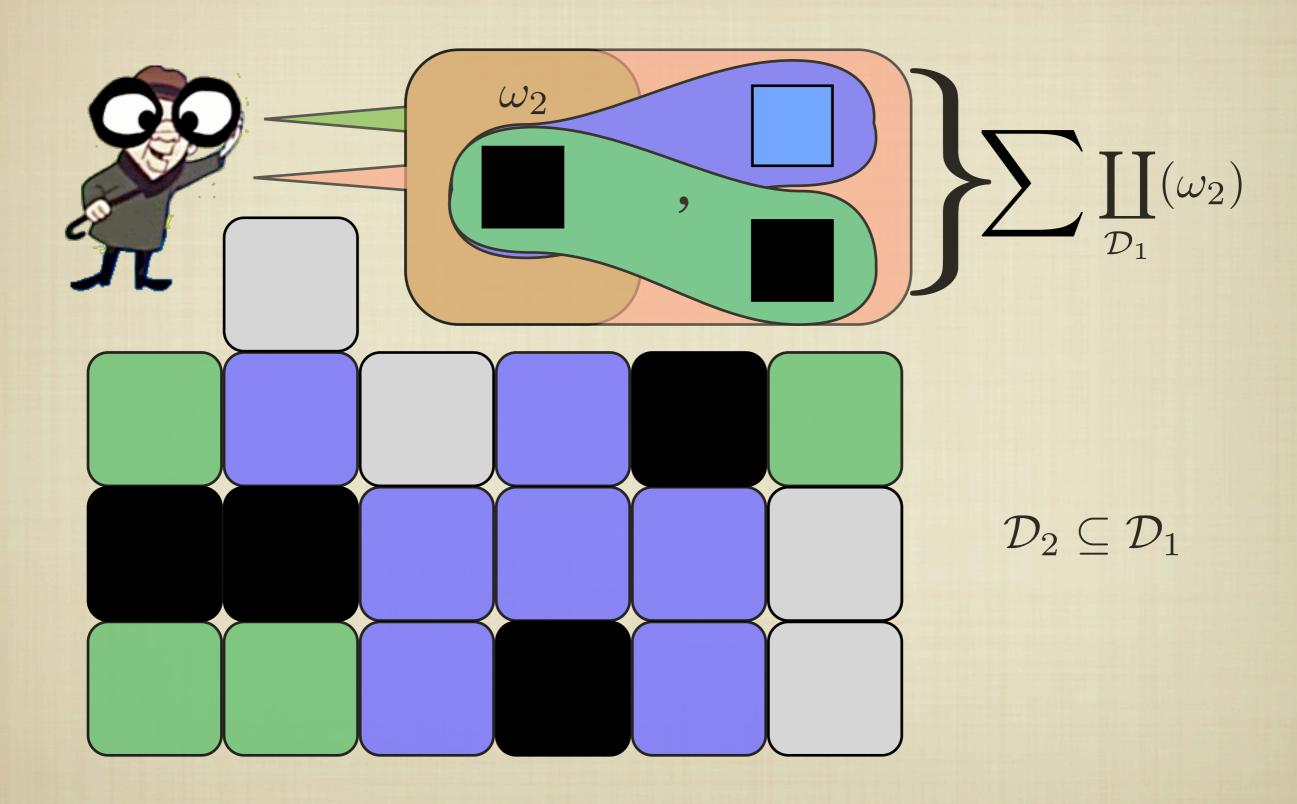
#### CONVEXITY OF BELIEFS



#### CONVEXITY OF BELIEFS

**THEOREM:** GIVEN A BELIEF  $\mu$ , AN ACTION a,  $\mathcal{D}_2 \subseteq \mathcal{D}_1$ , AND OBSERVATION  $\omega_2 \in \Omega_{\mathcal{D}_2}$ , THE UNIQUE NEXT BELIEF  $\tau_{\mathcal{D}_2}(\mu, a, \omega_2)$  CAN BE EXPRESSED AS A CONVEX COMBINATION OF THE BELIEF STATES  $\{\tau_{\mathcal{D}_1}(\mu, a, \omega_1)\}_{\omega_1 \in \coprod_{\mathcal{D}_1}(\omega_2)}$ .

#### CONVEXITY OF BELIEFS



#### OUTLINE

- POMDP REVIEW
- NEW POMDP FORMULATION
- **EQUIVALENCE RELATIONS** 
  - **VALUE FUNCTIONS**
  - TRAJECTORY PREDICTIONS
  - **BISIMULATION**
- CONCLUSIONS AND FUTURE WORK

#### EQUIVALENCE RELATIONS

- PARTITION BELIEF SPACE INTO EQUIVALENCE CLASSES
- CAPTURE SOME FORM OF BEHAVIOURAL EQUIVALENCE
- TWO BELIEFS IN SAME EQUIVALENCE ARE BEHAVIOURALLY INDISTINGUISHABLE

#### OUTLINE

- POMDP REVIEW
- NEW POMDP FORMULATION
- **EQUIVALENCE RELATIONS** 
  - **VALUE FUNCTIONS**
  - TRAJECTORY PREDICTIONS
  - **BISIMULATION**
- CONCLUSIONS AND FUTURE WORK

## VALUE FUNCTION EQUIVALENCES

- FOR ALL BELIEF STATES  $\mu, \nu$  LET  $\Pi_{\mu, \nu}$  BE THE SET OF ALL POLICIES  $\pi \in \Pi$  WHERE  $\pi(\mu) = \pi(\nu)$
- BELIEF STATES  $\mu, \nu$  are  $(\mathcal{D}, \mathcal{I})$ -closed value equivalent if for all  $\pi \in \Pi_{\mu, \nu}$ ,

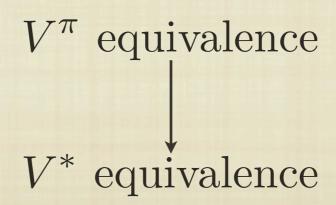
$$V_{\mathcal{D},\mathcal{I}}^{\pi}(\mu) = V_{\mathcal{D},\mathcal{I}}^{\pi}(\nu)$$

BELIEF STATES  $\mu, \nu$  are  $(\mathcal{D}, \mathcal{I})$ -optimal value equivalent if

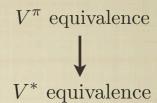
$$V_{\mathcal{D},\mathcal{I}}^*(\mu) = V_{\mathcal{D},\mathcal{I}}^*(\nu)$$

# CLOSED AND OPTIMAL VALUE EQUIVALENCES

THEOREM: IF TWO STATES ARE CLOSED VALUE EQUIVALENT, THEN THEY ARE NECESSARILY OPTIMAL VALUE EQUIVALENT.



## CLOSED AND OPTIMAL VALUE EQUIVALENCES

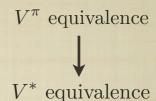


LEMMA: If  $s_0, t_0$  are  $V^\pi$  equivalent and  $V^*(s_0) > V^*(t_0)$ , then prob. of reaching  $t_0$  from  $s_0$  under  $\pi^*$  is strictly positive.

LET  $\Pi_{CV}$  be set of all policies  $\pi$  constructed from some optimal policy  $\pi^*$  as follows:

$$\pi(s') = \pi^*(s_0)$$
 if  $s' = t_0$   
 $\pi(s') = \pi^*(s')$  otherwise

## CLOSED AND OPTIMAL VALUE EQUIVALENCES



- $lacksymbol{B}$  is set of bounded functions  $V:S imes\Pi_{CV} o [0,1]$
- $\mathbb{R} \in B$ ,  $\mathcal{R}(s,\pi) = R(s,\pi(s))$
- $\qquad \Upsilon: B \to B, \ \Upsilon(V)(s,\pi) = \gamma \sum_{s' \not = t_0} P\!\!/\!\! (s,\pi(s)) \!\!/\!\! (s') \!\!/\!\! W(s',\pi) + P(s,\pi(s))(t_0) \!\!\! V(t_0,\pi)$
- $au(e) = \mathcal{R} + \Upsilon(e)$  has least fixed pt  $e^*(s,\pi) = V^\pi(s)$

#### THEOREM (BASED ON (KOZEN, 2007))

Define  $\varphi \subseteq B$  as  $V \in \varphi \Rightarrow \forall \pi \in \Pi_{CV}.V(s,\pi) \geq V^*(s)$ , then if  $\varphi \neq \emptyset$  and  $e \in \varphi \Rightarrow \tau(e) \in \varphi$ , then  $e^* \in \varphi$ .

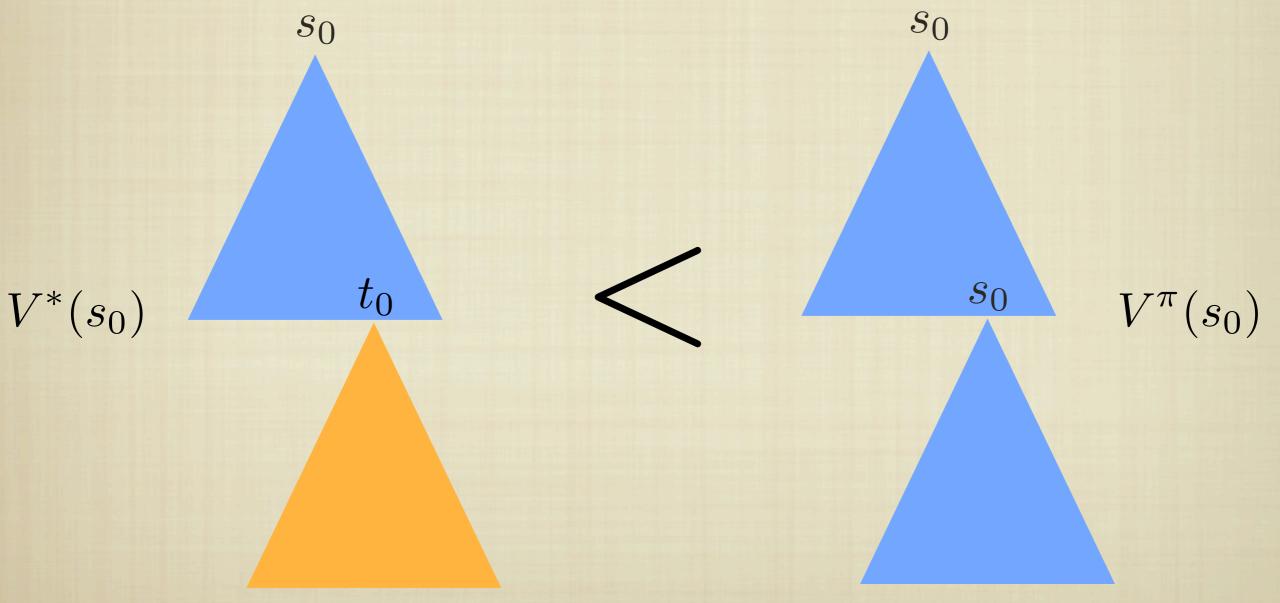
### CLOSED AND OPTIMAL VALUE

#### EQUIVALENCES

 $V^{\pi}$  equivalence  $V^{*}$  equivalence

Lemma: If  $s_0$  and  $t_0$  are  $V^\pi$  equivalent then  $V^*(s_0) \leq V^*(t_0)$ .

PROOF: ASSUME  $V^*(s_0) > V^*(t_0)$ 



Monday, April 4, 2011 30

#### CLOSED AND OPTIMAL VALUE

#### EQUIVALENCES

 $V^{\pi}$  equivalence  $V^{*}$  equivalence

Lemma: If  $s_0$  and  $t_0$  are  $V^\pi$  equivalent then  $V^*(s_0) \leq V^*(t_0)$ .

LEMMA: If  $s_0$  and  $t_0$  are  $V^\pi$  equivalent then  $V^*(s_0) \geq V^*(t_0)$ .

Monday, April 4, 2011 31

# CLOSED AND OPTIMAL VALUE EQUIVALENCES

LEMMA: If  $s_0$  and  $t_0$  are  $V^\pi$  equivalent then  $V^*(s_0) \leq V^*(t_0)$ .

LEMMA: If  $s_0$  and  $t_0$  are  $V^\pi$  equivalent then  $V^*(s_0) \geq V^*(t_0)$ .

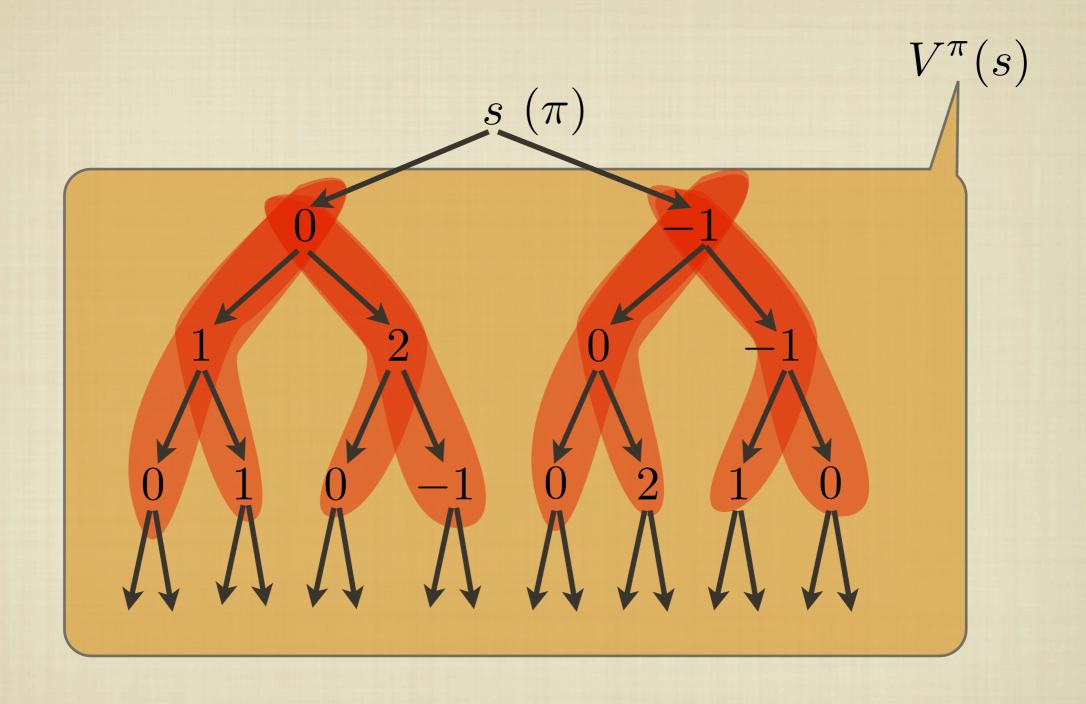
Theorem: If  $s_0$  and  $t_0$  are  $V^\pi$  equivalent then  $V^*(s_0) = V^*(t_0)$ .

 $V^{\pi}$  equivalence  $V^{*}$  equivalence

#### OUTLINE

- POMDP REVIEW
- NEW POMDP FORMULATION
- **EQUIVALENCE RELATIONS** 
  - **VALUE FUNCTIONS**
  - TRAJECTORY PREDICTIONS
  - **BISIMULATION**
- CONCLUSIONS AND FUTURE WORK

## TRAJECTORY EQUIVALENCES



Monday, April 4, 2011 34

#### TRAJECTORY EQUIVALENCE

Two belief states  $\mu, \nu$  are  $\mathcal{I}$ -closed trajectory equivalent if for all  $\pi \in \Pi_{\mu,\nu}$  and all finite observation trajectories,  $\alpha = \langle \omega_1, \omega_2, \ldots, \omega_n \rangle \in \Omega_{\mathcal{I}}^*$ 

$$Pr(\alpha|\mu,\pi) = Pr(\alpha|\nu,\pi)$$

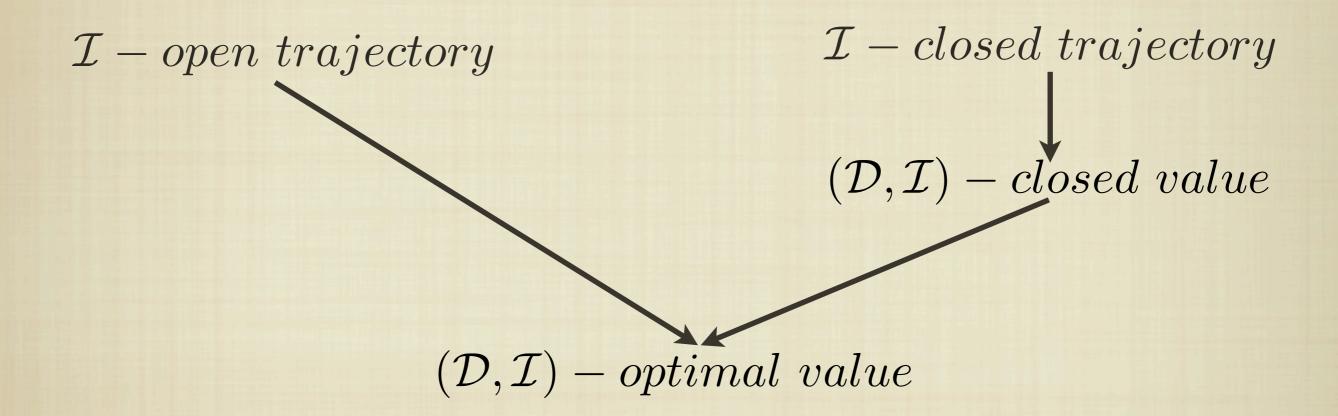
#### TRAJECTORY EQUIVALENCE

- OPEN-LOOP POLICIES  $\theta \in \Theta$  map time steps to actions
- Two belief states  $\mu, \nu$  are  $\mathcal{I}$ -open trajectory equivalent if for all  $\theta \in \Theta$  and all finite observation trajectories  $\alpha = \langle \omega_1, \omega_2, \ldots, \omega_n \rangle \in \Omega_{\mathcal{I}}^*$ ,  $Pr(\alpha|\mu, \theta) = Pr(\alpha|\nu, \theta)$

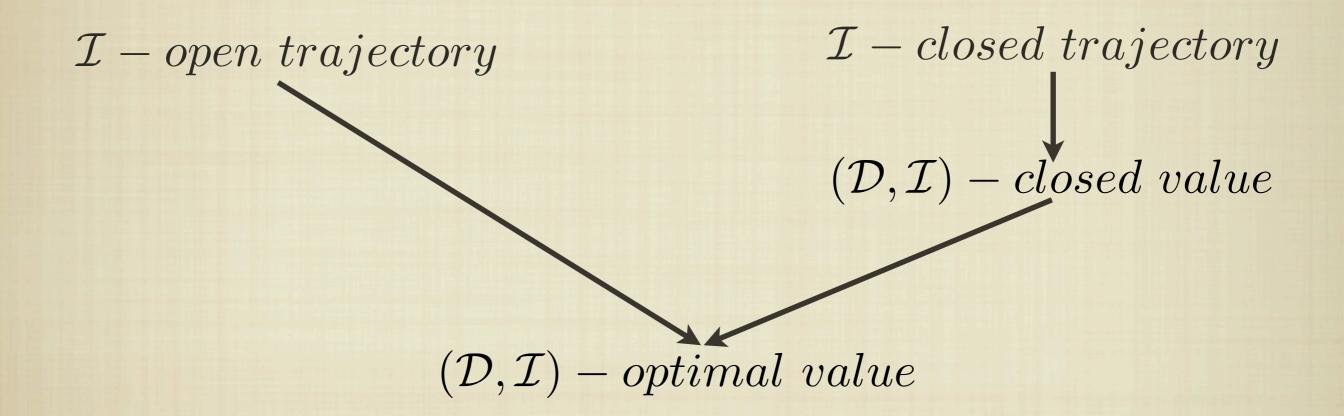
A TRAJECTORY  $\alpha$  AND OPEN LOOP POLICY  $\theta$  CONSTITUTE A PSR TEST (LITTMAN ET AL., 2002)!

$$\langle a_1, \omega_1, a_1, \omega_2, \dots, a_n, \omega_n \rangle$$

IF  $\mathcal{D} \subseteq \mathcal{I}$ , then the following hierarchy is obtained

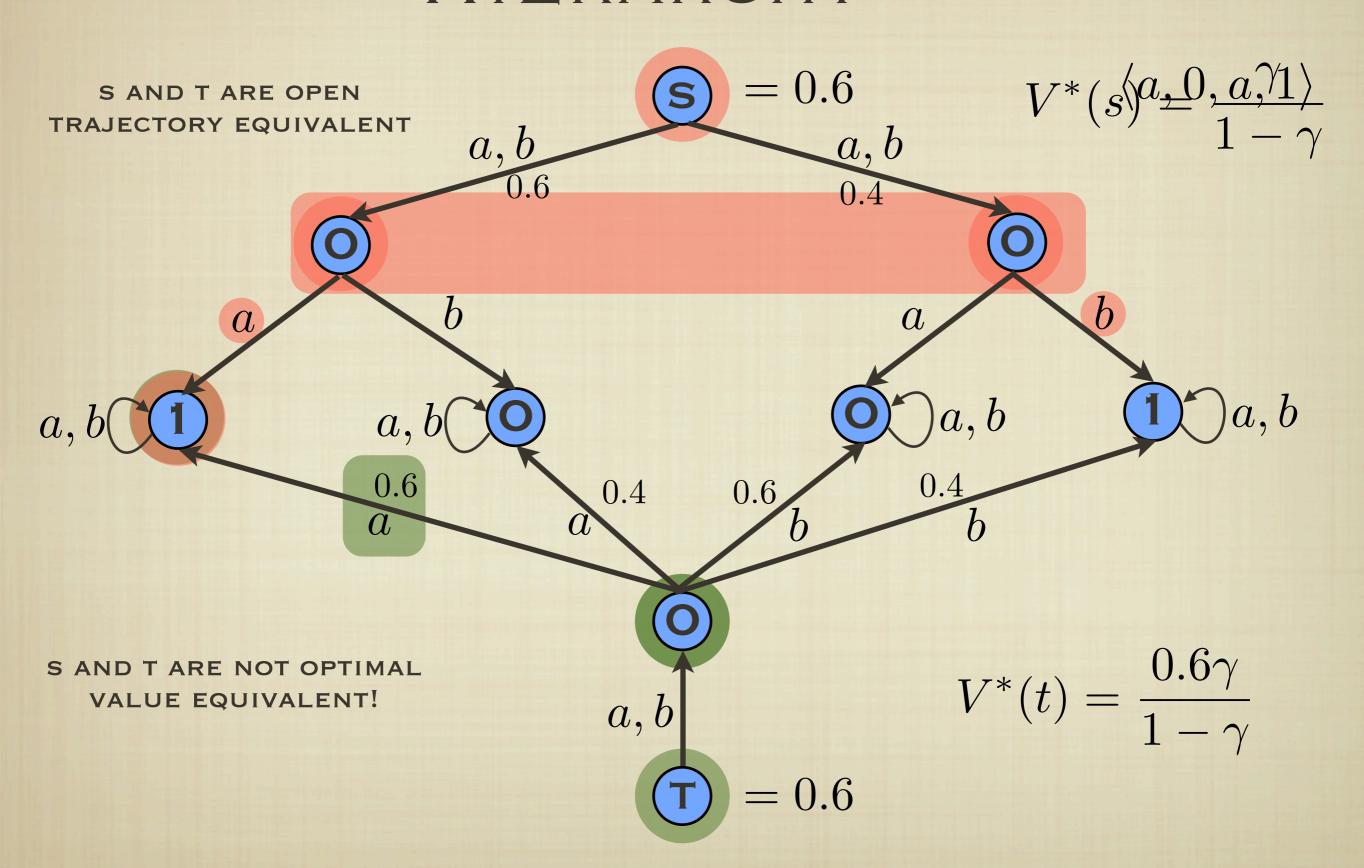


IF  $\mathcal{D} \not\subseteq \mathcal{I}$ , THEN THE FOLLOWING HIERARCHY IS OBTAINED



$$\mathcal{I}-open\ trajectory$$
  $\longrightarrow$   $(\mathcal{D},\mathcal{I})-optimal\ value$ 

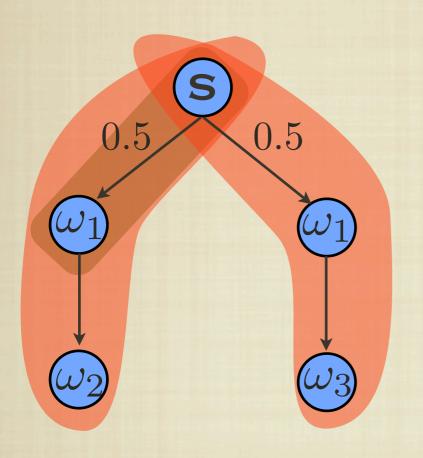
 $\mathcal{I}$  - open trajectory  $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$ 



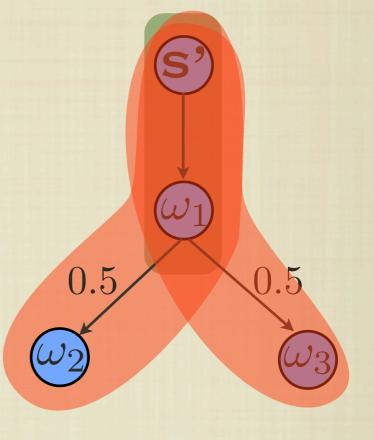
#### OUTLINE

- POMDP REVIEW
- NEW POMDP FORMULATION
- **EQUIVALENCE RELATIONS** 
  - VALUE FUNCTIONS
  - **TRAJECTORY PREDICTIONS**
  - **BISIMULATION**
- CONCLUSIONS AND FUTURE WORK

#### BISIMULATION



0.5



#### BISIMULATION

- An equivalence relation E is a  $(\mathcal{D},\mathcal{I})$ -bisimulation relation if whenever  $\mu,\nu$  are  $(\mathcal{D},\mathcal{I})$ -bisimilar then
  - FOR ALL  $\omega \in \Omega_{\mathcal{I}}, a \in A$  ,  $\Pr(\omega | \mu, a) = \Pr(\omega | \nu, a)$
  - FOR ALL  $c \in \mathcal{B}/_E$ ,  $a \in A$ ,

$$\sum_{\mu' \in c} T_{\mathcal{D}}(\mu, a)(\mu') = \sum_{\mu' \in c} T_{\mathcal{D}}(\nu, a)(\mu')$$

If  $\mu$  and  $\nu$  are  $(\mathcal{D},\mathcal{I})\text{-bisimilar}$  we will write  $\mu \sim \nu$  .

#### DETERMINISTIC BISIMULATION

- An equivalence relation E is a deterministic  $(\mathcal{D},\mathcal{I})$  -bisimulation relation if whenever  $\mu,\nu$  are deterministic  $(\mathcal{D},\mathcal{I})$  -bisimilar then
  - For all  $\omega \in \Omega_{\mathcal{I}}, a \in A$  ,  $\Pr(\omega | \mu, a) = \Pr(\omega | \nu, a)$
  - For all  $\omega \in \Omega_{\mathcal{D}}$ ,  $a \in A$ ,  $\tau_{\mathcal{D}}(\mu, a, \omega) E \tau_{\mathcal{D}}(\nu, a, \omega)$
- If  $\mu$  and  $\nu$  are deterministic  $(\mathcal{D},\mathcal{I})$ -bisimilar we will write  $\mu\simeq\nu$ .

$$\mathcal{D} \subseteq \mathcal{I}$$

Deterministic

$$(\mathcal{D}, \mathcal{I})$$
 – bisimulation

$$\mathcal{I}-open\ \overline{t}rajectory$$

 $(\mathcal{D}, \mathcal{I}) - bisimulation$ 

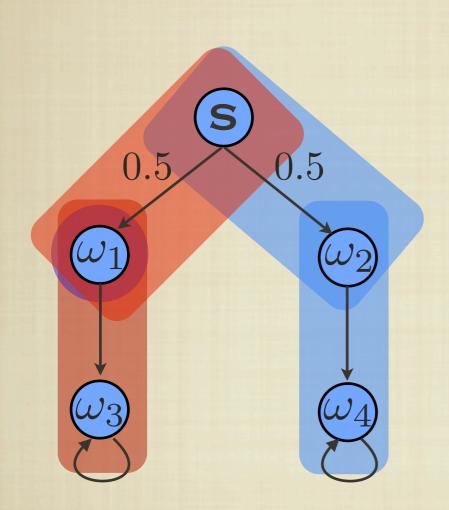
 $I-closed\ trajectory$ 

 $(\mathcal{D}, \mathcal{I}) - closed\ value$ 

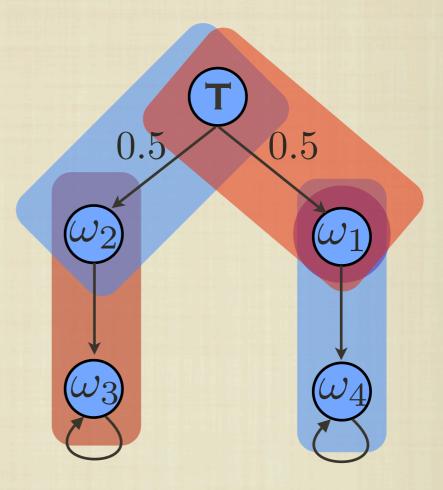
 $(\mathcal{D}, \mathcal{I})$  – optimal value

 $(\mathcal{D}, \mathcal{I}) - bisimulation \\ (\mathcal{D}, \mathcal{I}) - bisimulation$ 

 $(\mathcal{D}, \mathcal{I})$  - bisimulation  $\downarrow$  Deterministic  $(\mathcal{D}, \mathcal{I})$  - bisimulation



 $s \sim t$  $s \not\simeq t$ 



# $\mathcal{D} \not\subseteq \mathcal{I}$

#### HIERARCHY

Deterministic

$$(\mathcal{D}, \mathcal{I})$$
 – bisimulation

$$\mathcal{I}-open$$
 trajectory

 $(\mathcal{D}, \mathcal{I}) - bisimulation$ 

 $I-closed\ trajectory$ 

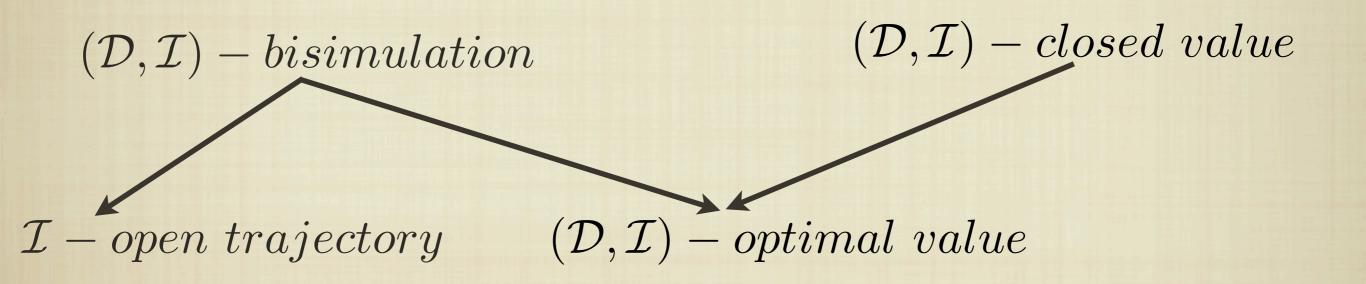
 $(\mathcal{D}, \mathcal{I}) - closed\ value$ 

 $(\mathcal{D}, \mathcal{I})$  – optimal value

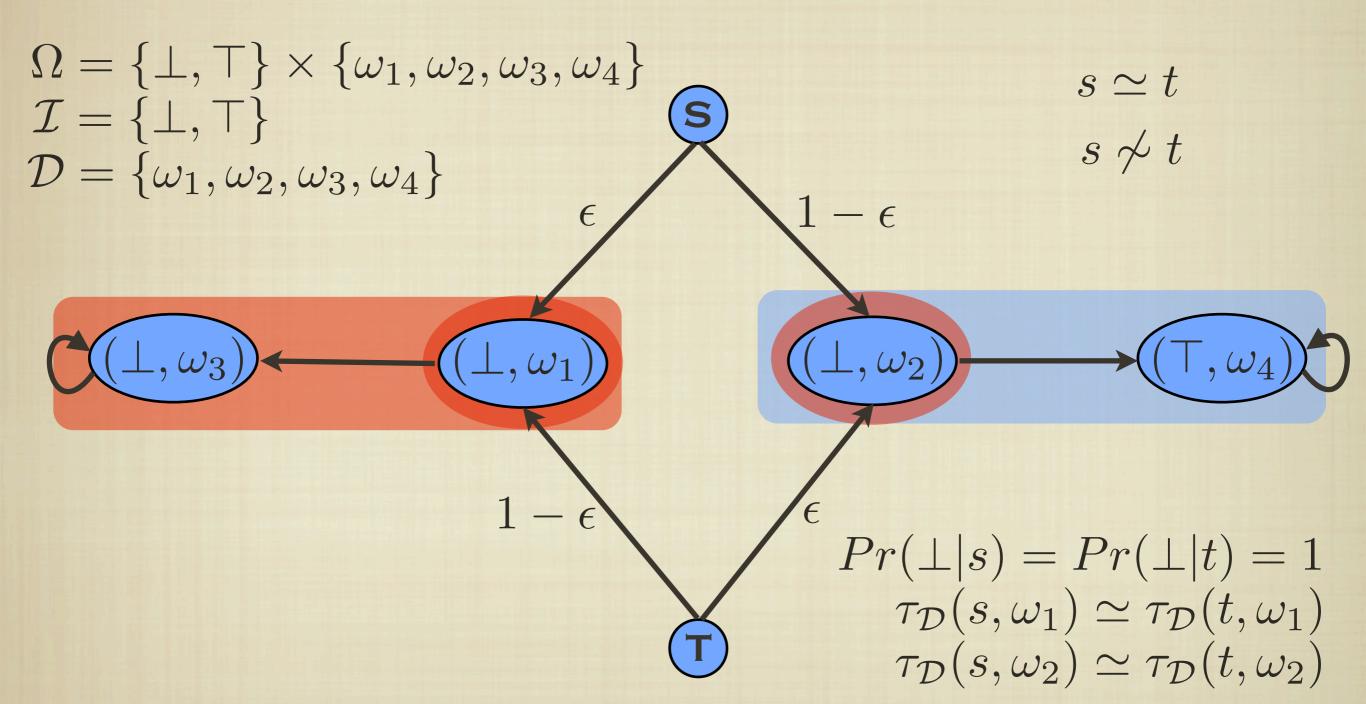
# $\mathcal{D} \not\subseteq \mathcal{I}$

#### HIERARCHY

 $Deterministic \\ (\mathcal{D}, \mathcal{I}) - bisimulation$ 



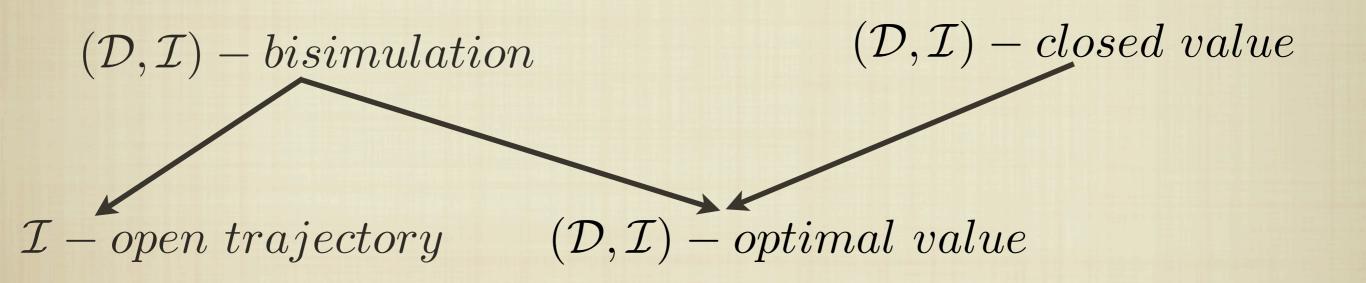
 $Deterministic \\ (\mathcal{D}, \mathcal{I}) - bisimulation \\ \downarrow \\ (\mathcal{D}, \mathcal{I}) - bisimulation$ 



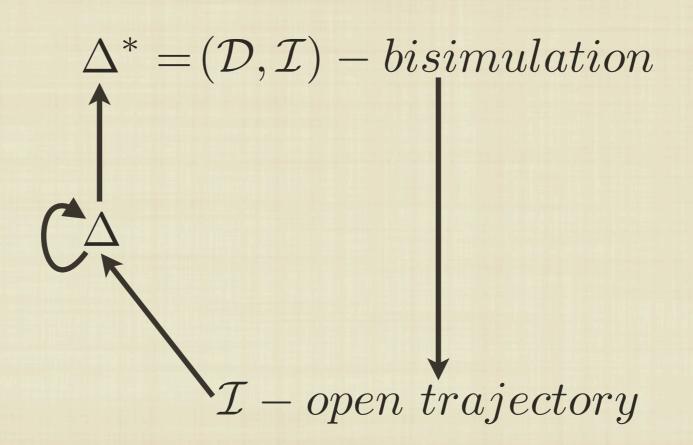
## $\mathcal{D} \not\subseteq \mathcal{I}$

#### HIERARCHY

 $Deterministic \\ (\mathcal{D}, \mathcal{I}) - bisimulation$ 



# STRENGTHENING OPEN D \( \mathcal{I} \mathcal{I} \) TRAJECTORY



FROM (CASTRO ET AL., 2009)

#### CONCLUSIONS

- SUBSETS MUST BE CHOSEN WITH CARE TO AVOID SUB-OPTIMAL PERFORMANCE
- OPEN TRAJECTORY EQUIVALENCE IS CLOSELY RELATED TO PSRs; WE SHOWED THIS IS NOT APPROPRIATE WITH RESPECT TO BAD CHOICES OF  $\mathcal{D}$  AND  $\mathcal{I}$ .
- In most situations we would require  $\mathcal{D} \subseteq \mathcal{I}$  .
- $lackbox{0}(\mathcal{D},\mathcal{I})$ -bisimulation is robust even when  $\mathcal{D}\not\subseteq\mathcal{I}$  .

# $\mathcal{D} \subseteq \mathcal{I}$ CONCLUSIONS

Deterministic

$$(\mathcal{D}, \mathcal{I}) - bisimulation$$

$$\mathcal{I}-open\ \overline{t}rajectory$$

 $(\mathcal{D}, \mathcal{I}) - bisimulation$ 

 $I-closed\ trajectory$ 

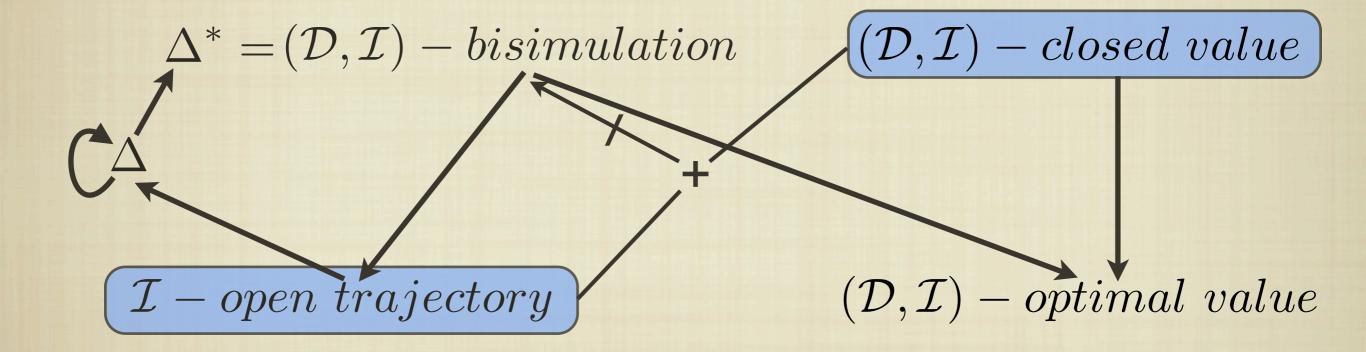
 $(\mathcal{D}, \mathcal{I}) - closed\ value$ 

 $(\mathcal{D}, \mathcal{I})$  – optimal value

# D & I CONCLUSIONS

Deterministic

 $(\mathcal{D}, \mathcal{I}) - bisimulation$ 



#### CURRENT WORK

- We are currently working on learning algorithms for determining  $\mathcal{D}$ , assuming  $\mathcal{I}$  is known.
  - START WITH A SMALL  $\mathcal{D}$ , INCREMENTALLY ADD MORE OBSERVATIONS.
  - START PLANNING/LEARNING WITH A SMALL  $\mathcal{D}$ , USE AN EXPERT/ORACLE TO DETERMINE WHETHER MORE OBSERVATIONS ARE NECESSARY

#### FUTURE WORK

- WE PROJECT  $\Omega$  ONTO  $\Omega_{\mathcal{D}}$  AND  $\Omega_{\mathcal{I}}$  USING BINARY PROJECTION MATRICES.
  - IF WE ALLOW GENERAL PROJECTION MATRICES, DOES OPEN TRAJECTORY EQUIVALENCE YIELD SOMETHING SIMILAR TO TPSRs (ROSENCRATZ & GORDON, 2004; BOOTS ET Al., 2010).
- LIFE-LONG LEARNING: MANY TASKS TO SOLVE, DIFFERENT CHOICES OF  $\mathcal D$  AND  $\mathcal I$ , DEPENDING ON TASK.
- RANKING OF OBSERVATIONS TO DYNAMICALLY SET  $\mathcal{D}$  BASED ON TIME REQUIREMENTS.

#### REFERENCES

- KOZEN, D. (2007). COINDUCTIVE PROOF PRINCIPLES FOR STOCHASTIC PROCESSES. LOGICAL METHODS IN COMPUTER SCIENCE 3(4:8). DOI: 10.2168/LMCS-3 (4:8) 2007.
- LITTMAN, M., R. SUTTON, AND S. SINGH (2002). PREDICTIVE REPRESENTATIONS OF STATE. IN PROCEEDINGS OF THE 14TH CONFERENCE ON ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NIPS-02), Pp. 1555–1561.
- CASTRO, P. S., P. PANANGADEN, AND D. PRECUP (2009). NOTIONS OF STATE EQUIVALENCE UNDER PARTIAL OBSERVABILITY. IN PROCEEDINGS OF THE 21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), Pp. 1653–1658.
- BOOTS, B., S. M. SIDDIQI, AND G. J. GORDON (2010). CLOSING THE LEARNING-PLANNING LOOP WITH PREDICTIVE STATE REPRESENTATIONS. IN PROC. ROBOTICS: SCIENCE AND SYSTEMS VI.
- ROSENCRANTZ, M. AND G. GORDON (2004). LEARNING LOW DIMENSIONAL PREDICTIVE REPRESEN- TATIONS. IN PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MACHINE LEARNING (ICML- 04).

### CLOSED AND OPTIMAL VALUE

#### EQUIVALENCES

 $V^{\pi}$  equivalence  $V^{*}$  equivalence

Lemma: If  $s_0$  and  $t_0$  are  $V^\pi$  equivalent then  $V^*(s_0) \leq V^*(t_0)$ .

**PROOF:** ASSUME  $V^*(s_0) > V^*(t_0)$ .

 $\exists V. \ V(s,\pi) \geq V^*(s)$ ? Yes! Just take  $V \equiv 1$ 

 $V(s,\pi) \geq V^*(s) \Rightarrow au(V)(s,\pi) \geq V^*(s)$ ? Yebe any  $s \neq t_0$  and  $\pi \in \Pi_{CV}$ 

We'veaus'h(qw)n  $\pi$ (ha)t+fioùr)(any  $s \neq t_0$  and  $\pi \in \Pi_{CV}$  ,  $V^\pi(s) \geq V^*(s)$ 

WITH STRICT LINESHALL TYSTFP(s, (s,s)) (s) (s)) (s)

 $\begin{array}{c} \pi(s') = \pi^*(s_0) \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') = \pi^*(s') \text{ if } s' = t_0 \\ \pi(s') =$ 

Thus,  $V^{\pi}(s') > V_{R}(s,s')$  (s) CONTRADICTING OPTIMALLITY (s')

BY CONTRADICTION(s) W\*\(\sigma\_{s'\neq t\_0}^\*) P(s, \vec{t}'(s)) V\*(s') + \gamma P(s, \pi^\*(s))(t\_0) V\*(t\_0)\)

 $=V^*(s)$ 

Q.E.D.

# SPECIFYING DATA AND INTEREST

LET  $\Phi_{\mathcal{D}}$  be a projection matrix used to compute  $O_{\mathcal{D}}:n imes |\Omega_{\mathcal{D}}|$ :

$$O_{\mathcal{D}} = O\Phi_{\mathcal{D}}$$

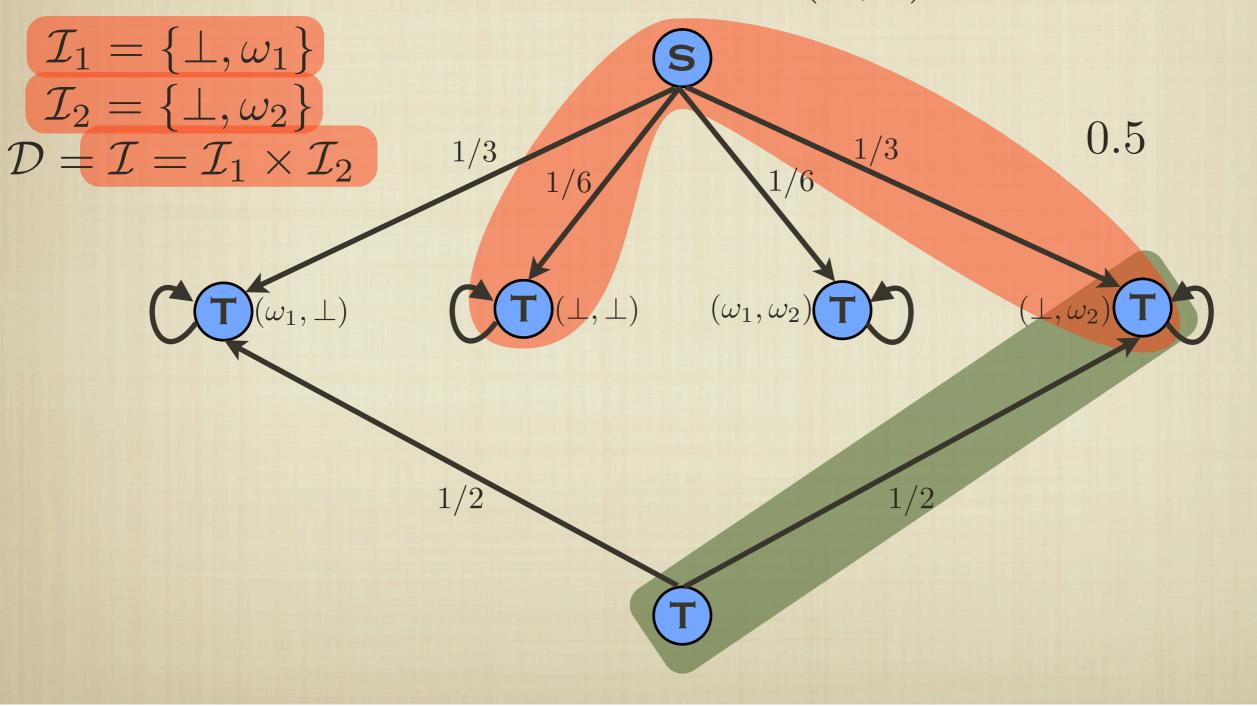
If we have  $\mathcal{D}_2 \subseteq \mathcal{D}_1$ , the projection  $\Phi_{12}$  yields the following:

$$\Phi_{\mathcal{D}_2} = \Phi_{\mathcal{D}_1} \Phi_{12}$$

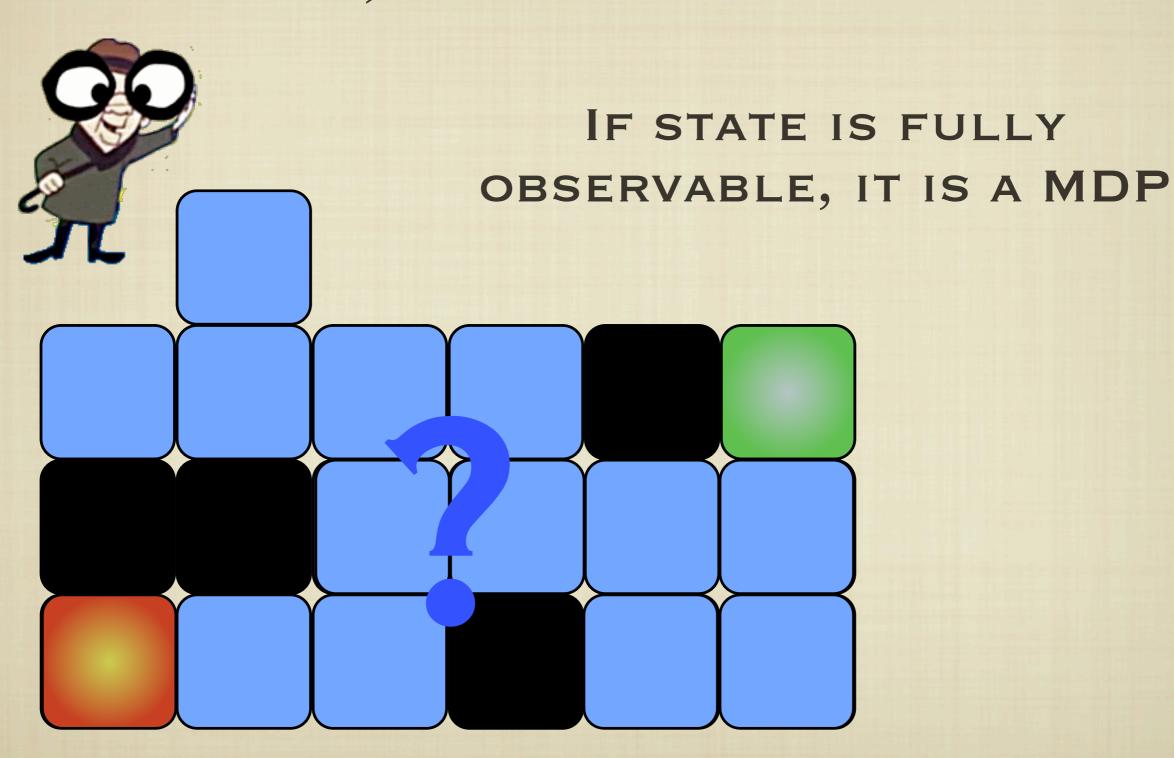
$$O_{\mathcal{D}_2} = O_{\mathcal{D}_1} \Phi_{12}$$

#### APPROXIMATING BISIMULATION

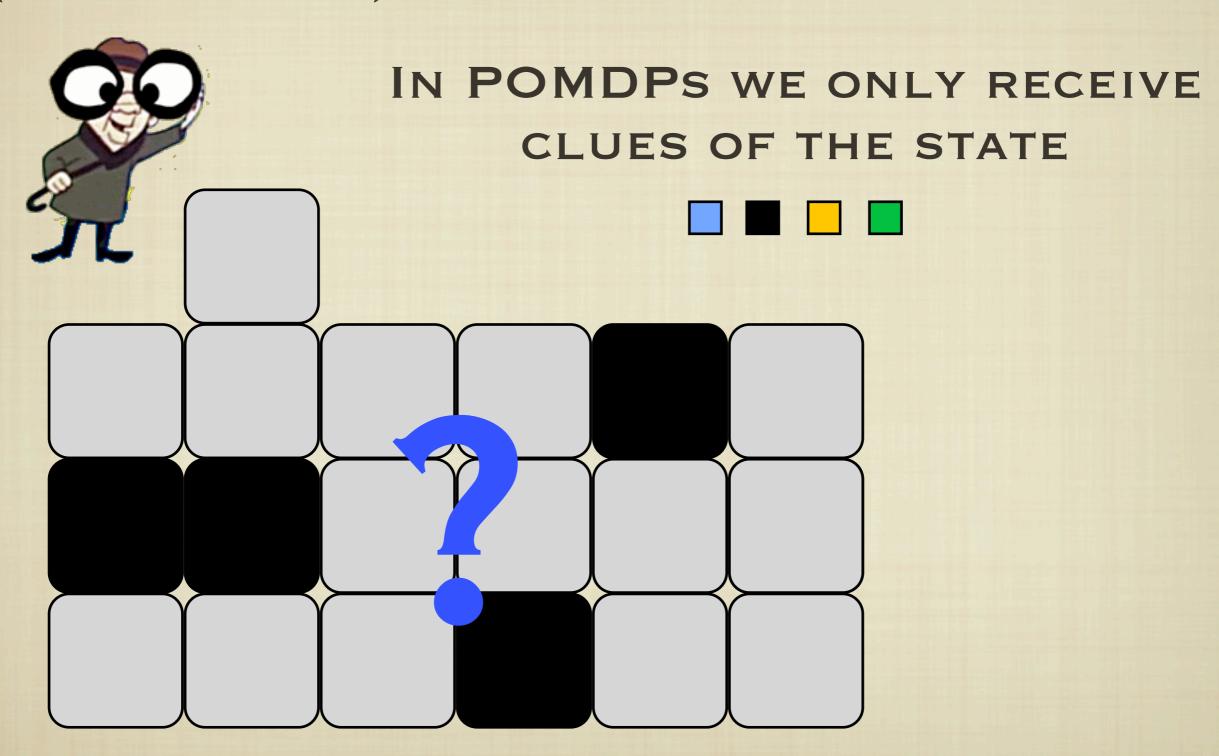
PROPOSITION: GIVEN  $\mathcal{D},\mathcal{I},\mu,\nu$  may be  $(\mathcal{D},\mathcal{I}_i)$ -bisimilar for all  $\mathcal{I}_i\subset\mathcal{I},$  but fail to be  $(\mathcal{D},\mathcal{I})$ -bisimilar.



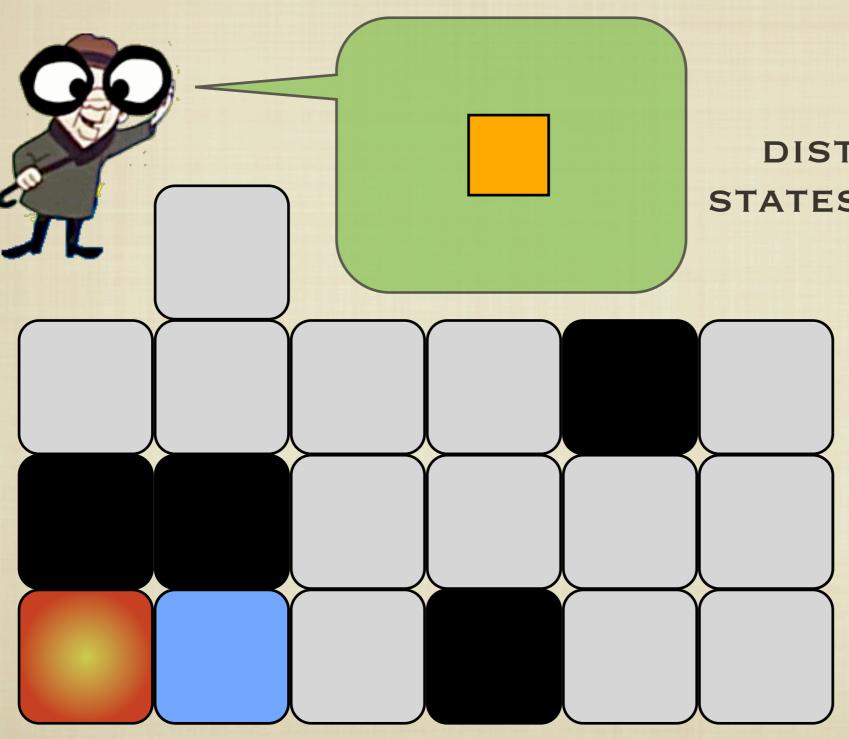
# PARTIALLY OBSERVABLE MDPs (POMDPs)



# PARTIALLY OBSERVABLE MDPs (POMDPs)



# PARTIALLY OBSERVABLE MDPs (POMDPs)



MAINTAIN A
DISTRIBUTION OVER
STATES BASED ON CLUES