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Motivation

Interested in sequential decision making 
under uncertainty

Agent must infer its “state” based on 
observations of environment

A larger observation space gives more 
information, but increases complexity of 
problem

Hardware is cheap and small => many 
sensors/observations!
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Our contribution
Allow subsets of observation space to be 
specified for planning/learning.

Provide theoretical foundations when  
planning/learning using this idea.

Will address questions such as:

How is agent’s behaviour affected by 
using only a subset of all 
observations?

How are agent’s predictions affected?
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Maintain a 
distribution over 

states based on clues

Partially observable MDPs
(POMDPs)
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Standard POMDPs
6-tuple                      consisting of

Set of states   ,

Set of actions   ,

Probabilistic transition 
function

Bounded reward function

Set of observations

Observation function

Discount factor

+1

+10

-1

0

0

+.1

0

+1

-1

+5

+1

(a, b, . . .)

R(s, a)

(s, s�, t, . . .)

P (s, a)(s�)

0.25

0.45

0.
3

0 ≤ γ < 1

O(a, s)(ω)

ω1

ω1

ω1

ω1

ω2

ω2

ω2

ω2

ω3

ω3

ω3Ω

S

A

�S, A, P, R, Ω, O�
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Move forward

Belief states
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Belief states

A belief state     is a distribution over    . 

Given    , action    and observation    , 
there is a unique next belief state
              .

Can also compute probability of next 
observations.

µ S

a ωµ

τ(µ, a,ω)

9Monday, April 4, 2011



Outline

POMDP review 

New POMDP formulation

Equivalence relations

Value functions

Trajectory predictions

Bisimulation

Conclusions and future work

10Monday, April 4, 2011



POMDPs
5-tuple                    consisting of

Set of states   ,

Set of actions   ,

Probabilistic transition 
function

Set of observations

Observation function

Discount factor

+1

+10

-1

0

0

+.1

0

+1

-1

+5

+1

(a, b, . . .)

(s, s�, t, . . .)

P (s, a)(s�)

0.25

0.45

0.
3

0 ≤ γ < 1

O(a, s)(ω)

ω1

ω1

ω1

ω1

ω2

ω2

ω2

ω2

ω3

ω3

ω3

Ω

S

A

�S, A, P, Ω, O�

= Ω1 × Ω2 × · · ·× Ωk

k-dimensional observation vector

Rewards part of observation vector!

Os,ω
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Partially observable MDPs
(POMDPs)

12

3

6

9, , , ,

State updates

Performance
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Specifying data and 
interest

Let                         be indices of 
observation coordinates used for 
belief updates

Let                        be indices of 
observation coordinates that are 
observables of interest for planning/
prediction.

Let       be set of observations 
containing only observations from   . 
similarly for     . 

ΩD
D

ΩI

D ⊆ {1, 2, . . . , k}

I ⊆ {1, 2, . . . , k}
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New POMDP dynamics

We project observation functions with 
binary projection matrices      :

Unique next beliefs specific to choice 
of    :                 

Can define a transition fn. between 
belief states                 .

D

TD(µ, a)(µ�)

OD = OΦDΦD

τD(µ, a,ω) =
µP aOω

D
µP aOω

DeT
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Measuring performance

Elements from       may be of many 
different types.

Need a way to quantify an agent’s 
performance. 

We assume a function                  that 
maps observations of interest to a real 
number.

f : ΩI → R

ΩI
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Closed-loop policies: Map belief states 
to actions (        ) 

Value of a belief state    under   :

Optimal value function: 

Policies and value 
functions

V π
D,I =

π ∈ Π

µ π Eπ

�
H�

i=0

γiri|µ
�

+γ
�

µ�∈B
TD(µ, π(µ))(µ�)V π

D,I(µ
�)

V ∗
D,I(µ) = max

a∈A





�

ωI∈ΩI

Pr(ωI |µ, a)f(ωI) + γ
�

µ�∈B
TD(µ, a)(µ�)V ∗

D,I(µ
�)






�

ωI∈ΩI

Pr(ωI |µ, π(µ)))f(ωI)
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Is new POMDP definition 
suitable?

Are fully observable MDPs still 
expressible?

Does the definition properly follow 
intuition? (e.g. do larger observation 
subsets yield improved performance)?
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MDPs

Assume the observations are just         

    points to     and     points to    .

S × R

D S I R
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Optimal value functions

Proposition: Given indexing sets              
and    , then

D2 ⊆ D1

I
V ∗
D2,I ≤ V ∗

D1,I
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Convexity of beliefs

,

{ {D2

D1

ω2
�

D1

(ω2)

{
D2 ⊆ D1
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Theorem: Given a belief   , an action   ,
           , and observation            , the unique 
next belief                 can be expressed as a 
convex combination of the belief 
states                              .

Convexity of beliefs

ω2D2 ⊆ D1

µ a
∈ ΩD2

τD2(µ, a,ω2)

{τD1(µ, a,ω1)}ω1∈
‘
D1

(ω2)
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Convexity of beliefs

,

ω2
�

D1

(ω2)

{
D2 ⊆ D1

�
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Equivalence relations

Partition belief space into equivalence 
classes

Capture some form of behavioural 
equivalence

Two beliefs in same equivalence are 
behaviourally indistinguishable
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Value function 
equivalences

For all belief states       let        be the 
set of all policies          where

Belief states       are         -closed value 
equivalent if for all             ,

Belief states       are         -optimal 
value equivalent if

µ, ν Πµ,ν

π ∈ Π π(µ) = π(ν)

µ, ν (D, I)
π ∈ Πµ,ν

V π
D,I(µ) = V π

D,I(ν)

µ, ν (D, I)

V ∗
D,I(µ) = V ∗

D,I(ν)
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Closed and optimal value 
equivalences

Theorem: If two states are closed value 
equivalent, then they are necessarily optimal 
value equivalent.

V π equivalence

V ∗ equivalence
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V π equivalence

V ∗ equivalence

Closed and optimal value 
equivalences

Lemma: If        are      equivalent and                        ,
then prob. of reaching     from    under     is 
strictly positive.

V π

Let          be set of all policies     constructed 
from some optimal policy     as follows:

ΠCV
π∗

π

π(s�) = π∗(s�) otherwise

s0, t0 V ∗(s0) > V ∗(t0)

π(s�) = π∗(s0) if s� = t0

t0 s0 π∗
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V π equivalence

V ∗ equivalence

Closed and optimal value 
equivalences

Theorem (based on (Kozen, 2007))
Define         as                                         , then
if          and                       , then          .

ϕ ⊆ B

e ∈ ϕ⇒ τ(e) ∈ ϕ e∗ ∈ ϕ

    is set of bounded functions 

          ,

             ,

                          has least fixed pt 

B

R(s, π) = R(s, π(s))

τ(e) = R+ Υ(e) e∗(s, π) = V π(s)

V : S ×ΠCV → [0, 1]

ϕ �= ∅

R ∈ B

Υ : B → B V (t0, π)V (s0, π)
�

s�

P (s, π(s))(s�)V (s�, π)Υ(V )(s, π) = γ
�

s� �=t0

P (s, π(s))(s�)V (s�, π) + P (s, π(s))(t0)

V ∈ ϕ ⇒ ∀π ∈ ΠCV .V (s, π) ≥ V ∗(s)
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V π equivalence

V ∗ equivalence

Closed and optimal value 
equivalences

Lemma: If    and    are      equivalent then                    .s0 t0 V π V ∗(s0) ≤ V ∗(t0)

s0

Proof: Assume V ∗(s0) > V ∗(t0)

t0

s0

s0<V ∗(s0) V π(s0)
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V π equivalence

V ∗ equivalence

Closed and optimal value 
equivalences

Lemma: If    and    are      equivalent then                    .s0 t0 V π V ∗(s0) ≤ V ∗(t0)

Lemma: If    and    are      equivalent then                    .s0 t0 V π V ∗(s0) ≥ V ∗(t0)
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V π equivalence

V ∗ equivalence

Closed and optimal value 
equivalences

Lemma: If    and    are      equivalent then                    .s0 t0 V π V ∗(s0) ≤ V ∗(t0)

Lemma: If    and    are      equivalent then                    .s0 t0 V π V ∗(s0) ≥ V ∗(t0)

Theorem: If    and    are      equivalent then       
                                    .

s0 t0 V π

V ∗(s0) = V ∗(t0)
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Trajectory equivalences

0

1

s

2

−1

0 −1

10 0 −1 0 2 1 0

(π)
V π(s)
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Trajectory equivalence

Two belief states       are     -closed trajectory 
equivalent if for all               and all finite 
observation trajectories,

µ, ν I
π ∈ Πµ,ν

Pr(α|µ, π) = Pr(α|ν, π)
α = �ω1, ω2, . . . ,ωn� ∈ Ω∗

I

35Monday, April 4, 2011



Trajectory equivalence

Open-loop policies           map time steps to actions

Two belief states       are     -open trajectory 
equivalent if for all            and all finite 
observation trajectories                                        ,

A trajectory     and open loop policy     constitute 
a PSR test (Littman et al., 2002)!

θ ∈ Θ

µ, ν I
θ ∈ Θ

Pr(α|µ, θ) = Pr(α|ν, θ)

α θ

�a1, ω1, a1, ω2, . . . , an, ωn�

α = �ω1, ω2, . . . ,ωn� ∈ Ω∗
I
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Hierarchy

If          , then the following hierarchy 
is obtained
D ⊆ I

(D, I)− closed value

(D, I)− optimal value

I − closed trajectoryI − open trajectory
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Hierarchy

If          , then the following hierarchy 
is obtained

(D, I)− closed value

(D, I)− optimal value

D �⊆ I

I − open trajectory I − closed trajectory
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Hierarchy

(D, I)− optimal value/I − open trajectory
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Hierarchy (D, I)− optimal value

/

s

0 0

1 0 0 1

0

t

a b

a, b a, b

a, b

a a b b

a b

0.6

0.6 0.6

0.4

0.4 0.4

a, b a, b a, b a, b

= 0.6

= 0.6

s and t are open 
trajectory equivalent

�a, 0, a, 1�V ∗(s) =
γ

1− γ

V ∗(t) =
0.6γ

1− γ

s and t are not optimal 
value equivalent!

I − open trajectory
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d

Bisimulation

s s’

ω1

ω2 ω3

ω1 ω1

ω2 ω3

0.5 0.5

0.5 0.5

0.5
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Bisimulation

An equivalence relation    is a          -bisimulation 
relation if whenever       are          -bisimilar then

For all            ,          ,

For all              ,          ,

If     and     are          -bisimilar we will write
         .

µ, ν
(D, I)

ω ∈ ΩI a ∈ A Pr(ω|µ, a) = Pr(ω|ν, a)

E
(D, I)

c ∈ B/E a ∈ A
�

µ�∈c

TD(µ, a)(µ�) =
�

µ�∈c

TD(ν, a)(µ�)

(D, I)µ ν
µ ∼ ν
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Deterministic Bisimulation

An equivalence relation    is a deterministic          
         -bisimulation relation if whenever       are          
deterministic          -bisimilar then

For all            ,          ,

For all             ,          ,

If     and     are deterministic           -bisimilar we 
will write          .

µ, ν(D, I)

ω ∈ ΩI a ∈ A Pr(ω|µ, a) = Pr(ω|ν, a)

E

(D, I)

a ∈ A

(D, I)

ω ∈ ΩD τD(µ, a,ω)EτD(ν, a,ω)

µ � ν
µ ν
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HierarchyD ⊆ I

(D, I)− closed value

(D, I)− optimal value

Deterministic

(D, I)− bisimulation
=

I − open trajectory I − closed trajectory

(D, I)− bisimulation
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Hierarchy

Deterministic

(D, I)− bisimulation
(D, I)− bisimulation/
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Hierarchy Deterministic

(D, I)− bisimulation

(D, I)− bisimulation

/

s

ω1 ω2

ω3

0.5 0.5
t

ω2

ω3

ω1

0.5 0.5

ω4 ω4

s ∼ t
s �� t
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HierarchyD ⊆ I

(D, I)− closed value

Deterministic

(D, I)− bisimulation
=

I − open trajectory I − closed trajectory

(D, I)− bisimulation

D �⊆ I

(D, I)− optimal value
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Hierarchy

(D, I)− closed value

Deterministic

(D, I)− bisimulation

I − open trajectory

(D, I)− bisimulation

(D, I)− optimal value

D �⊆ I
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Hierarchy

Deterministic

(D, I)− bisimulation
(D, I)− bisimulation/
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Hierarchy
Deterministic

(D, I)− bisimulation

(D, I)− bisimulation

/

s

t

(⊥, ω1) (⊥, ω2)(⊥, ω3) (�, ω4)

� 1− �

�1− �

Ω = {⊥,�}× {ω1, ω2, ω3, ω4}
I = {⊥,�}
D = {ω1, ω2, ω3, ω4}

τD(s, ω1) � τD(t, ω1)
τD(s, ω2) � τD(t, ω2)

Pr(⊥|s) = Pr(⊥|t) = 1

s � t

s �∼ t
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Hierarchy

(D, I)− closed value

Deterministic

(D, I)− bisimulation

I − open trajectory

(D, I)− bisimulation

(D, I)− optimal value

D �⊆ I
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Strengthening open 
trajectory

I − open trajectory

(D, I)− bisimulation

D �⊆ I

∆

∆∗ =

From (Castro et al., 2009)
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Conclusions

Subsets must be chosen with care to avoid sub-
optimal performance

Open trajectory equivalence is closely related 
to PSRs; we showed this is not appropriate with 
respect to bad choices of     and   .

In most situations we would require            .

        -bisimulation is robust even when           .

D I

D ⊆ I

D �⊆ I(D, I)
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ConclusionsD ⊆ I

(D, I)− closed value

(D, I)− optimal value

Deterministic

(D, I)− bisimulation
=

I − open trajectory I − closed trajectory

(D, I)− bisimulation
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Conclusions

(D, I)− closed value

Deterministic

(D, I)− bisimulation

I − open trajectory

(D, I)− bisimulation

(D, I)− optimal value

D �⊆ I

∆

∆∗ =

+
/
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Current work

We are currently working on learning 
algorithms for determining     , assuming    is 
known.

Start with a small    , incrementally add more 
observations.

Start planning/learning with a small    , use an 
expert/oracle to determine whether more 
observations are necessary

D I

D

D
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Future work

We project      onto       and      using binary 
projection matrices. 

If we allow general projection matrices, does 
open trajectory equivalence yield something 
similar to TPSRs (Rosencratz & Gordon, 2004; 
Boots et al., 2010).

Life-long learning: Many tasks to solve, 
different choices of      and      , depending on 
task.

ranking of observations to dynamically set     
based on time requirements.

Ω ΩD ΩI

D I

D

58Monday, April 4, 2011



References

Kozen, D. (2007). Coinductive proof principles for stochastic 
Processes. Logical Methods in Computer Science 3(4:8). DOI: 
10.2168/LMCS-3 (4:8) 2007.

Littman, M., R. Sutton, and S. Singh (2002). Predictive 
representations of state. In Proceedings of the 14th Conference 
on Advances in Neural Information Processing Systems (NIPS-02), 
pp. 1555–1561.

Castro, P. S., P. Panangaden, and D. Precup (2009). Notions of state 
equivalence under partial observability. In Proceedings of the 21st 
International Joint Conference on Artificial Intelligence 
(IJCAI-09), pp. 1653–1658.

Boots, B., S. M. Siddiqi, and G. J. Gordon (2010). Closing the 
learning-planning loop with predictive state representations. In 
Proc. Robotics: Science and Systems VI.

Rosencrantz, M. and G. Gordon (2004). Learning low dimensional 
predictive represen- tations. In Proceedings of the International 
Conference on Machine Learning (ICML- 04).

59Monday, April 4, 2011



V π equivalence

V ∗ equivalence

Closed and optimal value 
equivalences

Lemma: If    and    are      equivalent then                    .s0 t0 V π V ∗(s0) ≤ V ∗(t0)
Proof: Assume                      .V ∗(s0) > V ∗(t0)
∃V. V (s, π) ≥ V ∗(s)? Yes! Just take V ≡ 1
V (s, π) ≥ V ∗(s)⇒ τ(V )(s, π) ≥ V ∗(s)?

τ(V )(s, π) = R(s, π) + Υ(V )(s, π)

= R(s, π(s)) + γ
�

s� �=t0

P (s, π(s))(s�)V (s�, π) + γP (s, π(s))(t0)V (s0, π)

= R(s, π∗(s)) + γ
�

s� �=t0

P (s, π∗(s))(s�)V (s�, π) + γP (s, π∗(s))(t0)V (s0, π)

= V ∗(s)

Yes!Take any          ands �= t0 π ∈ ΠCV

We’ve shown that for any          and           ,
with strict inequality if 

s �= t0 π ∈ ΠCV V π(s) ≥ V ∗(s)
P (s, π∗(s))(t0) > 0

By last corollary we know ∃s� �= t0. P (s�, π∗(s�))(t0) > 0

Thus,                   , contradicting optimality of 

By contradiction, V ∗(s0) ≤ V ∗(t0)

Q.E.D.

V π(s�) > V ∗(s�)
I.H.

π(s�) = π∗(s�) otherwise
π(s�) = π∗(s0) if s� = t0

≥ R(s, π∗(s)) + γ
�

s� �=t0

P (s, π∗(s))(s�)V ∗(s�) + γP (s, π∗(s))(t0)V ∗(s0)

> R(s, π∗(s)) + γ
�

s� �=t0

P (s, π∗(s))(s�)V ∗(s�) + γP (s, π∗(s))(t0)V ∗(t0)

V ∗(s�)
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Specifying data and 
interest

Let       be a projection matrix used to 
compute                    :

If we have             , the projection       
yields the following:

ΦD
OD : n× |ΩD|

OD = OΦD

D2 ⊆ D1 Φ12

ΦD2 = ΦD1Φ12

OD2 = OD1Φ12
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Approximating bisimulation

Proposition: Given       ,       may be           -bisimilar 
for all           , but fail to be          -bisimilar.

D, I (D, Ii)Ii ⊂ I (D, I)
µ, ν

s

t

tt tt

1/3
1/6 1/6

1/3

1/2 1/2

(ω1,⊥) (⊥,⊥) (ω1, ω2) (⊥, ω2)

I1 = {⊥, ω1}
I2 = {⊥, ω2} 0.5D = I = I1 × I2
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If state is fully
observable, it is a MDP

Partially observable MDPs
(POMDPs)

?
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?

In POMDPs we only receive
clues of the state

Partially observable MDPs
(POMDPs)
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Maintain a 
distribution over 

states based on clues

Partially observable MDPs
(POMDPs)
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