Markov Processes as Function Transformers Part II: Functorial View of Expectation Values

Prakash Panangaden¹

¹School of Computer Science McGill University

CIRM Marseille 20 - 24 February 2012

Panangaden (McGill University)

Introduction

- 2 Some background
- 3 The Arena: Two Categories
- 4 The expectations value functors
- 5 Labelled abstract Markov processes

- Approximation of Markov processes should be based on "averaging".
- Averages are computed by expectation values.
- Beautiful functorial presentation of expectation values d'après Vincent Danos.
- Make bisimulation and approximation live in the same universe

$$\mathcal{M}^{\ll p}(X) \xrightarrow{\sim} L_{1}^{+}(X,p) \xrightarrow{\sim} L_{\infty}^{+,*}(X,p) \tag{1}$$

$$\bigwedge_{V}^{p} \xrightarrow{\sim} L_{\infty}^{+}(X,p) \xrightarrow{\sim} L_{1}^{+,*}(X,p)$$

where the vertical arrows represent dualities and the horizontal arrows represent isomorphisms.

Pairing function

There is a map from the product of the cones $L^+_{\infty}(X,p)$ and $L^+_1(X,p)$ to \mathbb{R}^+ defined as follows:

$$\forall f \in L^+_{\infty}(X,p), g \in L^+_1(X,p) \quad \langle f, g \rangle = \int fg \mathrm{d}p.$$

- Given (X, Σ, p) and (Y, Λ) and a measurable function $f : X \to Y$ we obtain a measure q on Y by $q(B) = p(f^{-1}(B))$. This is written $M_f(p)$ and is called the *image measure* of p under f.
- 2 We say that a measure ν is **absolutely continuous** with respect to another measure μ if for any measurable set A, $\mu(A) = 0$ implies that $\nu(A) = 0$. We write $\nu \ll \mu$.

The Radon-Nikodym theorem is a central result in measure theory allowing one to define a "derivative" of a measure with respect to another measure.

Radon-Nikodym

If $\nu \ll \mu$, where ν, μ are finite measures on a measurable space (X, Σ) there is a positive measurable function *h* on *X* such that for every measurable set *B*

$$\nu(B) = \int_B h \,\mathrm{d}\mu.$$

The function *h* is defined uniquely up to a set of μ -measure 0. The function *h* is called the Radon-Nikodym derivative of ν with respect to μ ; we denote it by $\frac{d\nu}{d\mu}$. Since ν is finite, $\frac{d\nu}{d\mu} \in L_1^+(X,\mu)$.

- Given an (almost-everywhere) positive function $f \in L_1(X, p)$, we let $f \cdot p$ be the measure which has density f with respect to p.
- Ivo identities that we get from the Radon-Nikodym theorem are:
 - given $q \ll p$, we have $\frac{dq}{dp} \cdot p = q$.

• given
$$f \in L_1^+(X,p), \frac{\mathrm{d}f \cdot p}{\mathrm{d}p} = f$$

Solution These two identities just say that the operations (−) · p and d(−)/dp are inverses of each other as maps between L⁺₁(X, p) and M^{≪p}(X) the space of finite measures on X that are absolutely continuous with respect to p.

- The expectation $\mathbb{E}_p(f)$ of a measurable function f is the average computed by $\int f dp$ and therefore it is just a number.
- The conditional expectation is not a mere number but a random variable.
- It is meant to measure the expected value in the presence of additional information.
- **3** The additional information takes the form of a sub- σ algebra, say Λ , of Σ . The experimenter knows, for every $B \in \Lambda$, whether the outcome is in *B* or not.
- Now she can recompute the expectation values given this information.

Formalizing conditional expectation

 It is an immediate consequence of the Radon-Nikodym theorem that such conditional expectations exist.

Kolmogorov

Let (X, Σ, p) be a measure space with p a finite measure, f be in $L_1(X, \Sigma, p)$ and Λ be a sub- σ -algebra of Σ , then there exists a $g \in L_1(X, \Lambda, p)$ such that for all $B \in \Lambda$

$$\int_B f \mathrm{d}p = \int_B g \mathrm{d}p.$$

- This function g is usually denoted by $\mathbb{E}(f|\Lambda)$.
- We clearly have $f \cdot p \ll p$ so the required g is simply $\frac{df \cdot p}{dp|_{\Lambda}}$, where $p|_{\Lambda}$ is the restriction of p to the sub- σ -algebra Λ .

- The point of requiring Λ -measurability is that it "smooths out" variations that are too rapid to show up in Λ .
- The conditional expectation is *linear*, *increasing* with respect to the pointwise order.
- It is defined uniquely p-almost everywhere.

- We define two categories Rad_∞ and Rad₁ that will be needed for the functorial definition of conditional expectation.
- This will allow for L_{∞} and L_1 versions of the theory.
- Going between these versions by duality will be very useful.

\mathbf{Rad}_{∞}

The category $\operatorname{Rad}_{\infty}$ has as objects probability spaces, and as arrows $\alpha : (X,p) \to (Y,q)$, measurable maps such that $M_{\alpha}(p) \leq Kq$ for some real number *K*.

The reason for choosing the name $\operatorname{Rad}_{\infty}$ is that $\alpha \in \operatorname{Rad}_{\infty}$ maps to $d/dqM_{\alpha}(p) \in L^{+}_{\infty}(Y,q)$.

\mathbf{Rad}_1

The category **Rad**₁ has as objects probability spaces and as arrows $\alpha : (X,p) \rightarrow (Y,q)$, measurable maps such that $M_{\alpha}(p) \ll q$.

- The reason for choosing the name Rad_1 is that $\alpha \in \operatorname{Rad}_1$ maps to $d/dqM_{\alpha}(p) \in L_1^+(Y,q)$.
- **2** The fact that the category $\operatorname{Rad}_{\infty}$ embeds in Rad_1 reflects the fact that L_{∞}^+ embeds in L_1^+ .

Recall the isomorphism between $L^+_{\infty}(X,p)$ and $L^{+,*}_1(X,p)$ mediated by the pairing function:

$$f\in L^+_\infty(X,p)\mapsto \lambda g: L^+_1(X,p).\langle f, g
angle =\int fg\mathrm{d} p.$$

- Now, precomposition with α in $\operatorname{Rad}_{\infty}$ gives a map $P_1(\alpha)$ from $L_1^+(Y,q)$ to $L_1^+(X,p)$.
- 2 Dually, given $\alpha \in \operatorname{Rad}_1 : (X,p) \to (Y,q)$ and $g \in L^+_{\infty}(Y,q)$ we have that $P_{\infty}(\alpha)(g) \in L^+_{\infty}(X,p)$.
- Thus the subscripts on the two precomposition functors describe the *target* categories.
- Using the *-functor we get a map $(P_1(\alpha))^*$ from $L_1^{+,*}(X,p)$ to $L_1^{+,*}(Y,q)$ in the first case and
- dually we get $(P_{\infty}(\alpha))^*$ from $L_{\infty}^{+,*}(X,p)$ to $L_{\infty}^{+,*}(Y,q)$.

- The functor E_∞(·) is a functor from Rad_∞ to ωCC which, on objects, maps (X,p) to L⁺_∞(X,p) and on maps is given as follows:
- Given α : (X, p) → (Y, q) in Rad_∞ the action of the functor is to produce the map E_∞(α) : L⁺_∞(X, p) → L⁺_∞(Y, q) obtained by composing (P₁(α))* with the isomorphisms between L^{+,*}₁ and L⁺_∞

$$L_{1}^{+,*}(X,p) < \cdots L_{\infty}^{+}(X,p)$$

$$(P_{1}(\alpha))^{*} \downarrow \qquad \qquad \qquad \downarrow \mathbb{E}_{\infty}(\alpha)$$

$$L_{1}^{+,*}(Y,q) \cdots > L_{\infty}^{+}(Y,q)$$

Consequences

• It is an immediate consequence of the definitions that for any $f \in L^+_{\infty}(X,p)$ and $g \in L_1(Y,q)$

$$\langle \mathbb{E}_{\infty}(\alpha)(f), g \rangle_{Y} = \langle f, P_{1}(\alpha)(g) \rangle_{X}.$$

- One can informally view this functor as a "left adjoint" in view of this proposition.
- 3 Note that since we started with α in \mathbf{Rad}_{∞} we get the expectation value as a map between the L_{∞}^+ cones.

The **functor** $\mathbb{E}_1(\cdot)$ is a functor from **Rad**₁ to ω **CC** which maps the object (X, p) to $L_1^+(X, p)$ and on maps is given as follows: Given $\alpha : (X, p) \to (Y, q)$ in **Rad**₁ the action of the functor is to produce the map $\mathbb{E}_1(\alpha) : L_1^+(X, p) \to L_1^+(Y, q)$ obtained by composing $(P_{\infty}(\alpha))^*$ with the isomorphisms between $L_{\infty}^{+,*}$ and L_1^+ as shown in the diagram below

$$L_{\infty}^{+,*}(X,p) < \cdots L_{1}^{+}(X,p)$$

$$\downarrow P_{\infty}(\alpha))^{*} \downarrow \qquad \qquad \qquad \downarrow \mathbb{E}_{1}(\alpha)$$

$$L_{\infty}^{+,*}(Y,q) = L_{1}^{+}(Y,q)$$

Once again we have an "adjointness" statement; this time it is a right adjoint.

Right adjoint

Given $f \in L^+_{\infty}(Y,q)$ and $g \in L^+_1(X,p)$ we have

$$\langle f, \mathbb{E}_1(\alpha)(g) \rangle_Y = \langle P_\infty(\alpha)(f), g \rangle_X.$$

Given $\alpha \in \mathbf{Rad}_{\infty}[(X,p),(Y,q)]$ we have

(a)
$$\mathbb{E}_1(\alpha)(f \circ \alpha) = \mathbb{E}_\infty(\alpha)(\mathbf{1}_X)f$$
, for $f \in L_1^+(Y,q)$ and
(b) $\mathbb{E}_\infty(\alpha)(f \circ \alpha) = \mathbb{E}_1(\alpha)(\mathbf{1}_X)f$, for $f \in L_\infty^+(Y,q)$.

- Given τ a Markov kernel from (X, Σ) to (Y, Λ) , we define $T_{\tau} : \mathcal{L}^+(Y) \to \mathcal{L}^+(X)$, for $f \in \mathcal{L}^+(Y)$, $x \in X$, as $T_{\tau}(f)(x) = \int_Y f(z)\tau(x, dz)$.
- 2 This map is well-defined, linear and ω -continuous.
- 3 If we write $\mathbf{1}_B$ for the indicator function of the measurable set *B* we have that $T_{\tau}(\mathbf{1}_B)(x) = \tau(x, B)$.
- It encodes all the transition probability information

- Conversely, any ω -continuous morphism *L* with $L(\mathbf{1}_Y) \leq \mathbf{1}_X$ can be cast as a Markov kernel by reversing the process on the last slide.
- 2 The interpretation of *L* is that $L(\mathbf{1}_B)$ is a measurable function on *X* such that $L(\mathbf{1}_B)(x)$ is the probability of jumping from *x* to *B*.

- **(**) We can also define an operator on $\mathcal{M}(X)$ by using τ the other way.
- 2 We define $\overline{T}_{\tau} : \mathcal{M}(X) \to \mathcal{M}(Y)$, for $\mu \in \mathcal{M}(X)$ and $B \in \Lambda$, as $\overline{T}_{\tau}(\mu)(B) = \int_{X} \tau(x, B) d\mu(x)$.
- It is easy to show that this map is linear and ω -continuous.

- The operator \overline{T}_{τ} transforms measures "forwards in time"; if μ is a measure on *X* representing the current state of the system, $\overline{T}_{\tau}(\mu)$ is the resulting measure on *Y* after a transition through τ .
- 2 The operator T_{τ} may be interpreted as a likelihood transformer which propagates information "backwards", just as we expect from predicate transformers.
- T_τ(f)(x) is just the expected value of f after one τ-step given that one is at x.

The definition

An **abstract Markov kernel** from (X, Σ, p) to (Y, Λ, q) is an ω -continuous linear map $\tau : L^+_{\infty}(Y) \to L^+_{\infty}(X)$ with $\|\tau\| \le 1$.

LAMPS

A labelled abstract Markov process on a probability space (X, Σ, p) with a set of labels (or actions) \mathcal{A} is a family of abstract Markov kernels $\tau_a : L^+_{\infty}(X, p) \to L^+_{\infty}(X, p)$ indexed by elements *a* of \mathcal{A} . The expectation value functors project a probability space onto another one with a possibly coarser σ -algebra.

Given an AMP on (X, p) and a map $\alpha : (X, p) \to (Y, q)$ in \mathbf{Rad}_{∞} , we have the following approximation scheme:

Approximation scheme

$$L^{+}_{\infty}(X,p) \xrightarrow{\tau_{a}} L^{+}_{\infty}(X,p)$$

$$P_{\infty}(\alpha) \bigwedge^{\uparrow} \mathbb{E}_{\infty}(\alpha) \bigvee^{\alpha(\tau_{a})} L^{+}_{\infty}(Y,q)$$

A special case

Take (X, Σ) and (X, Λ) with λ ⊂ Σ and use the measurable function *id* : (X, Σ) → (X, Λ) as α.

Coarsening the σ -algebra

$$\begin{array}{c} L^+_{\infty}(X,\Sigma,p) \xrightarrow{\tau_a} L^+_{\infty}(X,\Sigma,p) \\ \xrightarrow{P_{\infty}(\alpha)} & \mathbb{E}_{\infty}(\alpha) \\ L^+_{\infty}(X,\Lambda,p) \xrightarrow{id(\tau_a)} L^+_{\infty}(X,\Lambda,p) \end{array}$$

- Thus *id*(τ_a) is the approximation of τ_a obtained by averaging over the sets of the coarser *σ*-algebra Λ.
- We now have the machinery to consider approximating along arbitrary maps α .

- The special case on the previous slide can also be done for the L₁ situation, we get the map E₁(*id*) : L⁺₁(X, Σ, p) → L⁺₁(X, Λ, p).
- This is exactly the map that is written as $\mathbb{E}(\cdot||\Lambda)$ in probability theory books.
- The tower law is written $\mathbb{E}[\mathbb{E}[X||\Lambda_2]||\Lambda_1] = \mathbb{E}[X||\Lambda_1]$ where $\Lambda_1 \subset \Lambda_2$ and is given a half-page proof.
- But this is just functoriality!