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What am I trying to do?

1 Present a “new” view of Markov processes as function
transformers

2 Show a beautiful functorial presentation of expectation values
3 Make bisimulation and approximation live in the same universe
4 Minimal realization theory
5 Approximation
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What I am not trying to do

Review all the previous work
Discuss metrics
Prove everything in detail
Deal with continuous time
Deal with nondeterminism
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What are labelled Markov processes?

Labelled Markov processes are probabilistic versions of labelled
transition systems. Labelled transition systems where the final
state is governed by a probability distribution - no other
indeterminacy.
All probabilistic data is internal - no probabilities associated with
environment behaviour.
We observe the interactions - not the internal states.
In general, the state space of a labelled Markov process may
be a continuum.

Panangaden (McGill University) Overview and Cones LI 2012 Week 4 5 / 37



Motivation

Model and reason about systems with continuous state spaces or
continuous time evolution or both.

hybrid control systems; e.g. flight management systems.
telecommunication systems with spatial variation; e.g. cell phones
performance modelling,
continuous time systems,
probabilistic process algebra with recursion.
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Formal Definition of LMPs

An LMP is a tuple (S,Σ,L,∀α ∈ L.τα) where τα : S×Σ −→ [0, 1] is a
transition probability function such that
∀s : S.λA : Σ.τα(s,A) is a subprobability measure
and
∀A : Σ.λs : S.τα(s,A) is a measurable function.
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Logical Characterization

L0 ::== T|φ1 ∧ φ2|〈a〉qφ

We say s |= 〈a〉qφ iff

∃A ∈ Σ.(∀s′ ∈ A.s′ |= φ) ∧ (τa(s,A) > q).

Two systems are bisimilar iff they obey the same formulas of L.
[DEP 1998 LICS, I and C 2002]
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Approximation

Our main result is a systematic approximation scheme for labelled
Markov processes. The set of LMPs is a Polish space.
Furthermore, our approximation results allow us to approximate
integrals of continuous functions by computing them on finite
approximants.
For any LMP we explicitly provide a (countable) sequence of
approximants to it such that: for every L0 property satisfied by a
process, there is an element of the chain that also satisfies the
property.
The sequence of approximants converges – in a certain metric –
to the process that is being approximated.
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Domain-theoretic Results

We establish the following equivalence of categories:

LMP ' Proc

where LMP is the category with objects LMPs and with
morphisms simulations; and Proc is the solution to the recursive
domain equation

Proc '
∏

Labels

PJP(Proc).

We show that there is a perfect match between:
bisimulation and equality in Proc,
simulation and the partial order of Proc and strict simulation and
way below in Proc.
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State transformers and predicate transformers

A transition system (S,A,→) has a natural interpretation as a
state transformer.
Given s ∈ S and a ∈ A we have F(s)(a) = {s′ | s a−−→ s′}.
We can extend F to Q ⊂ S by direct image.
We can also define predicate transformers: given P ⊂ S we have
wp(a)(P) = {s′ | s′ a−−→ s}.
Here the flow is backward.
There is a duality between state-transformer and
predicate-transformer semantics.
Here one is thinking of a “predicate” as simply a subset of S, but
such a subset can be described by a logical formula.

Panangaden (McGill University) Overview and Cones LI 2012 Week 4 11 / 37



Logic and Probability

Classical logic Generalization
Truth values {0, 1} Probabilities [0, 1]

Predicate Random variable
State Distribution

The satisfaction relation |= Integration
∫
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The “predicate transformer” view of Markov processes

Recall, a Markov kernel τ from (X,Σ) to (Y,Λ) is a map τ : X × Λ
−→ [0, 1] which is measurable in its first argument and a
(subprobability) measure in the second argument.
Let f be a real-valued function on Y. We define
Bτ (f )(x) =

∫
Y f (y)τ(x, dy); this is playing the role analogous to a

predicate transformer. It is in fact an expectation transformer.
Bτ (f )(x) is the expectation value of f after a step given that one
was at x.
We can also define an analogue of the forward transformer.
Fτ (µ)(D ∈ Λ) =

∫
X τ(x,D)dµ(x).

If µ is the measure representing the “current” distribution on X
then after a τ -step, Fτ (µ) is the distribution on Y.
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The general plan

We are going to view Markov processes as function transformers
rather than as state transformers.
We will take the backward view; we could, perhaps equally well,
have developed a forward view but we have not spelled out the
details.
Measure theory works much better when one deals with
measurable functions rather than “points” and measures.
We never have to worry about “almost everywhere” and other
such nonsense.
Because of our backward view, bisimulation becomes a cospan
instead of a span. But this actually makes everything easier!
We can develop a theory of bisimulation, logical characterization,
approximation and minimal realization in this framework.
The theory works much more smoothly as I hope to show.
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Banach spaces

A norm on a vector space V is a function ‖·‖ : V −→ R≥0 such that:
1 ‖v‖ = 0 iff v = 0
2 ‖r · v‖ =| r | ‖v‖ and
3 ‖x + y‖ ≤ ‖x‖+ ‖y‖.

The norm induces a metric: d(u, v) = ‖u− v‖ and, hence, a
topology. This topology is called the norm topology.
If V is complete in this metric it is called a Banach space.
In quantum mechanics the state spaces are Hilbert spaces –
hence automatically Banach spaces – but the spaces of operators
are not Hilbert spaces, they are Banach spaces.
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Maps between Banach spaces

A linear map T : U −→ V is bounded if there exists a positive real
number α such that ∀u ∈ U, ‖Tu‖ ≤ α ‖u‖.
A lineap map between normed spaces is continuous iff it is
bounded.
Given a bounded linear map between normed spaces T : U −→ V
we define ‖T‖ = sup {‖Tu‖ | u ∈ U, ‖u‖ ≤ 1}.
This is a norm on the space of bounded linear maps and is called
the operator norm.
With this norm the space of bounded linear maps between
Banach spaces forms a Banach space.
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Duality for Banach spaces

The space of bounded (= continuous) linear maps from V, a
Banach space, to R is itself a Banach space, called the dual
space, V∗.
For any two vector spaces U,V we say that they are in algebraic
duality if there is a bilinear form 〈·, ·〉 : U × V −→ R such that
spaces of functionals 〈·, V〉 and 〈U, ·〉 separates points of U and
V.
We say two Banach spaces are in duality if 〈·, V〉 ⊆ U∗ and
〈U, ·〉 ⊆ V∗.
For V a Banach space, the spaces V and V∗ are in duality.
The bilinear form is 〈v, φ〉 = φ(v).
There is a canonical injection ι : V −→ V∗∗; if this is an isometry we
say that the Banach space V is reflexive.
Infinite dimensional Banach spaces are not necessarily reflexive.
Finite dimensional Banach spaces are always reflexive.
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Lp spaces

If (X,Σ, µ) is a measure space we can define integration on X: we
write

∫
X f dx. We say that f is integrable if this is finite.

If two functions agree everywhere except on a set of µ-measure 0
their integrals will be equal.
We define two functions to be equivalent if they are µ-almost
everywhere the same and we actually work with equivalence
classes.
The integral defines a norm on these equivalence classes and
gives the Banach space L1(X,Σ, µ) or just L1(µ).
The space Lp(µ) is the space obtained by defining the norm

‖f‖p = (
∫
| f |p dµ)

1
p , where 0 < p <∞.

The infinity norm of a measurable function f is
‖f‖∞ = inf {M > 0 || f (x) |≤ M for µ− almost all x}.
The collection of all equivalence classes of measurable functions f
with ‖f‖∞ <∞ with the norm just defined is the space L∞(µ).
These are all Banach spaces.
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Duality for Lp spaces

If 1 < p, q <∞ and 1
p + 1

q = 1 then Lp and Lq are duals of each
other!
However, L1 and L∞ are not duals.
The dual of L1 is L∞ but not the other way around!
We will switch to a cone view and the situation will be much
improved.
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What are cones?

Want to combine linear structure with order structure.
If we have a vector space with an order ≤ we have a natural
notion of positive and negative vectors: x ≥ 0 is positive.
What properties do the positive vectors have? Say P ⊂ V are the
positive vectors, we include 0.
Then for any positive v ∈ P and positive real r, rv ∈ P. For u, v ∈ P
we have u + v ∈ P and if v ∈ P and −v ∈ P then v = 0.
We define a cone C in a vector space V to be a set with exactly
these conditions.
Any cone defines a order by u ≤ v if v− u ∈ C.
Unfortunately for us, many of the structures that we want to look at
are cones but are not part of any obvious vector space: e.g. the
measures on a space.
We could artificially embed them in a vector space, for example,
by introducing signed measures.
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Abstract cones d’après Selinger

Definition of Cones

A cone is a commutative monoid (V,+, 0) with an action of R≥0. Multi-
plication by reals distributes over addition and the following cancellation
law holds:

∀u, v,w ∈ V, v + u = w + u⇒ v = w.

The following strictness property also holds:

v + w = 0⇒ v = w = 0.

Note that every cone comes with a natural order.

An order on a cone
If u, v ∈ V, a cone, one says u ≤ v if and only if there is an element
w ∈ V such that u + w = v.
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Normed cones

Definition of a normed cone
A normed cone C is a cone with a function
|| · || : C −→ R≥0 satisfying the usual conditions:
||v|| = 0 if and only if v = 0
∀r ∈ R≥0, v ∈ C, ||r · v|| = r||v||
||u + v|| ≤ ||u||+ ||v||
u ≤ v⇒ ||u|| ≤ ||v||.

Normally one uses norms to talk about convergence of Cauchy
sequences. But without negation how can we talk about Cuchy
sequences?
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Completeness

However, order-theoretic concepts can be used instead.

Complete normed cones
An ω-complete normed cone is a normed cone such that if {ai | i ∈ I}
is an increasing sequence with {||ai||} bounded then the lub

∨
i∈I ai

exists and
∨

i∈I ||ai|| = ||
∨

i∈I ai||.

Convergence in the sense of norm and in the order theory sense
match.

Selinger’s lemma
Suppose that ui is an ω-chain with a l.u.b. in an ω-complete normed
cone and u is an upper bound of the ui. Suppose furthermore that
limi−→∞ ‖u− ui‖ = 0. Then u =

∨
i ui.

Here we are writing u− ui informally
We really mean wi where ui + wi = u.
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Maps between cones

Continuous maps
An ω-continuous linear map between two cones is one that preserves
least upper bounds of countable chains.

Bounded maps
A bounded linear map of normed cones f : C −→ D is one such that for
all u in C, ||f (u)|| ≤ K||u|| for some real number K. Any linear
continuous map of complete normed cones is bounded.

Norm of a bounded map
The norm of a bounded linear map f : C −→ D is defined as
||f || = sup{||f (u)|| : u ∈ C, ||u|| ≤ 1}.
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A category of normed cones

The ambient category
The ω-complete normed cones, along with ω-continuous linear maps,
form a category which we shall denote ωCC.

The subcategory of interest
we define the subcategory ωCC1: the norms of the maps are all
bounded by 1. Isomorphisms in this category are always isometries.
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Dual cones

Dual cone
Given an ω-complete normed cone C, its dual C∗ is the set of all
ω-continuous linear maps from C to R+. We define the norm on C∗ to
be the operator norm.

Basic facts
C∗ is an ω-complete normed cone as well, and the cone order
corresponds to the point wise order.

Panangaden (McGill University) Overview and Cones LI 2012 Week 4 26 / 37



The duality functor

In ωCC, the dual operation becomes a contravariant functor.
If f : C −→ D is a map of cones, we define f ∗ : D∗ −→ C∗ as follows:
given a map L in D∗, we define a map f ∗L in C∗ as f ∗L(u) = L(f (u)).
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How does this compare with Banach spaces?

This dual is stronger than the dual in usual Banach spaces, where we
only require the maps to be bounded. For instance, it turns out that the
dual to L+

∞(X) (to be defined later) is isomorphic to L+
1 (X), which is not

the case with the Banach space L∞(X).
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Cones that we use I

If µ is a measure on X, then one has the well-known Banach
spaces L1 and L∞.
These can be restricted to cones by considering the µ-almost
everywhere positive functions.
We will denote these cones by L+

1 (X,Σ, µ) and L+
∞(X,Σ).

These are complete normed cones.
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Cones that we use II

Let (X,Σ, p) be a measure space with finite measure p. We denote
byM�p(X), the cone of all measures on (X,Σ, p) that are
absolutely continuous with respect to p

If q is such a measure, we define its norm to be q(X).
M�p(X) is also an ω-complete normed cone.
The conesM�p(X) and L+

1 (X,Σ, p) are isometrically isomorphic
in ωCC.
We writeMp

UB(X) for the cone of all measures on (X,Σ) that are
uniformly less than a multiple of the measure p: q ∈Mp

UB means
that for some real constant K > 0 we have q ≤ Kp.
The conesMp

UB(X) and L+
∞(X,Σ, p) are isomorphic.
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Duality for cones

A Reisz-like theorem
The dual of the cone L+

∞(X,Σ, p) is isometrically isomorphic to
M�p(X).

Corollary
SinceM�p(X) is isometrically isomorphic to L+

1 (X), an immediate
corollary is that L+,∗

∞ (X) is isometrically isomorphic to L+
1 (X), which is

of course false in general in the context of Banach spaces.
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Duality for cones II

Another Reisz-like theorem
The dual of the cone L+

1 (X,Σ, p) is isometrically isomorphic toMp
UB(X).

Corollary
Mp

UB(X) is isometrically isomorphic to L+
∞(X), hence immediate

corollary is that L+,∗
1 (X) is isometrically isomorphic to L+

∞(X).
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The pairing

Pairing function

There is a map from the product of the cones L+
∞(X, p) and L+

1 (X, p) to
R+ defined as follows:

∀f ∈ L+
∞(X, p), g ∈ L+

1 (X, p) 〈f , g〉 =

∫
fgdp.

This map is bilinear and is continuous and ω-continuous in both
arguments; we refer to it as the pairing.
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Duality expressed via pairing

This pairing allows one to express the dualities in a very convenient
way. For example, the isomorphism between L+

∞(X, p) and L+
1 (X, p)

sends f ∈ L+
∞(X, p) to λg.〈f , g〉 = λg.

∫
fgdp.
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Summary of cones

We fix a probability triple (X,Σ, p) and focus on six spaces of cones
that are based on them. They break into two natural groups of three
isomorphic spaces. The first three spaces are:
A1 M�p(X) - the cone of all measures on (X,Σ, p) that are absolutely

continuous with respect to p,
A2 L+

1 (X, p) - the cone of integrable almost-everywhere positive
functions,

A3 L+,∗
∞ (X, p) - the dual cone of the the cone of almost-everywhere

positive bounded measurable functions.
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Summary of cones II

The next group of three isomorphic spaces are:
B1 Mp

UB(X) - the cone of all measures that are uniformly less than a
multiple of the measure p,

B2 L+
∞(X, p) - the cone of almost-everywhere positive functions in the

normed vector space L∞(X, p),
B3 L+,∗

1 (X, p) - the dual of the cone of almost-everywhere positive
functions in the normed vector space L1(X, p).
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Summary of dualities and isos

The spaces defined in A1, A2 and A3 are dual to the spaces defined in
B1, B2 and B3 respectively. The situation may be depicted in the
diagram

M�p(X)

��

∼ // L+
1 (X, p)oo

��

∼ // L+,∗
∞ (X, p)oo

��
Mp

UB

OO

∼ // L+
∞(X, p)oo ∼ //

OO

L+,∗
1 (X, p)

OO

oo

(1)

where the vertical arrows represent dualities and the horizontal arrows
represent isomorphisms.
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