
The One Way to Quantum Computation
Vincent Danos

Elham Kashefi

Prakash Panangaden

CNRS Paris

IQC Waterloo

McGill University

ICALP 13 July 2006 Venice – p.1/54



The “One-Way” Quantum Computer

A new model of quantum computation based on
measurements as the driving force of the
computation. [Raussendorff and Briegel PRL 2001]

The usual (circuit) model is based on reversible
transformations (unitaries) with measurements only
at the end.

In Quantum Mechanics measurements are
irreversible;

hence the name “One-way quantum computer.”
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Outline of the Talk

Manifesto and slogans.

Brief overview of quantum mechanics.

Brief overview of quantum computation.

Entanglement and Teleportation.

Measurement-based computation.

Measurement Calculus.

Standardization.

Conclusions.
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Manifesto and slogans

Given all the exceedingly clever quantum algorithms
that people have invented it is time to study the
structure of quantum computation.

This means understanding:

How computations compose

The type structure of computations

Ideas from the semantics/concurrency/type theory
community will prove useful.
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Intuitions about quantum mechanics

The notion of state is subtle.

Systems can be in superpositions of states. Thus the
state space must have a notion of addition: a vector
space; in fact also an inner product to measure how
different states are.

The results of measurements are probabilistic: we
cannot model physical observables as functions.

Measurements disturb the system, they have to be
operators of some kind and they may fail to commute
with each other.
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Probability in quantum mechanics

The probabilistic behaviour of quantum mechanics is
inherent.

It is not possible to explain the probabilities as an
abstraction of some hidden deterministic behaviour.

More precisely: there is no theory that is

local,

causal,

based on a deterministic state.

next example illustrates this.
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Mermin’s example I

A simple version of Bell’s inequality that can be
understood easily.

1 2 3 123

R

G

R

G

Two detectors each with 3 settings and 2 indicators (Red
and Green). The detectors are set independently and
uniformly at random.
The detectors are not connected to each other or to the
source.

Source of correlated particles in the middle.
ICALP 13 July 2006 Venice – p.7/54



Mermin’s Example II

1 2 3 123

R

G

R

G

Whatever the setting on a detector, the red or the green
lights flash with equal probability, but never both at the
same time.
When the settings are the same the two detectors
always agree.

When the settings are different the detectors agree 1

4
of

the time!
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Why is this strange?: 1

How could the detectors always agree when the
settings are the same, even though the actual colour
seems to be chosen at random?

There must be some “hidden” property of the
particles that determines which colour is chosen for
each setting; the two correlated particles must be
identical with respect to this property, whether or not
the switches are set the same way.

Let us write GGR mean that for the three settings,
1, 2, 3, the detectors flash green, green and red
respectively for a type GGR particle.
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Why is this strange?: 2

Suppose that the settings are different and we have
an RRG particle:

then for two of the possible settings (1, 2 and 2, 1) the
same colour flashes and for the other four settings
the colours are different. Thus 1

3
of the time the

colours must match.

This applies for any of the combinations:
RRG,RGR,GRR,GGR,GRG,RGG.

For particles of type RRR and GGG the colours
always match whatever the settings.
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The inescapable conclusion

Thus whatever the distribution of particle types the
probability that the lights match when the settings are
different is at least 1

3
!.

This just ain’t what we see in nature!
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assumptions about detectors

What happens at one detector cannot alter what
happens at the other: local

a detector cannot predict the future sequence of
particles and alter its behaviour: causal.

no ordinary probabilistic automaton or MDP can
reproduce the observed behaviour without breaking
locality or causality.
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Bell’s inequality

The inequality,

Prob(lights agree|settings different) ≥ 1

3
,

is a simple special case of Bell’s inequality.
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Bell’s inequality

Quantum mechanics predicts that this inequality is
violated.

Bell’s inequality has been experimentally tested
and it is plainly violated

the experiments agree with the predictions of
quantum mechanics.
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The Point of this discussion

The probabilistic nature of quantum mechanics does not
arise as an abstraction of things that could be known.
State is not enough to predict the outcomes of
measurements; state is enough to predict evolution to
new states.

If you want to know where the 1

4
comes from and a description of the

“real” experiment, see me later.
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Postulates of quantum mechanics

States form a Hilbert Space H

The evolution of an isolated system is governed by a
unitary transformation. This is determinate evolution.

Measurements are described by Hermitian
operators. Why operators?

Because measurement outcomes are indeterminate.
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The Effect of a Measurement

For a measurement described by M the possible
outcomes are the eigenvalues of M .

If M is an observable with eigenvalues λi and
eigenvectors φi and ψ =

∑

i ciφi is any state then,
Pr(λi|ψ) = |ci|2

If M is measured and λi is obtained the system gets
knocked into a eigenstate of M with eigenvalue λi.

If we measure M immediately again then we will
certainly get the value λi again.
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Unitary Evolution

If a system in state ψ is subjected to interactions and
evolves it does so by a unitary operator U ; ψ 7→ Uψ.

This is in stark contrast to what happens during a
measurement.

Typically quantum computation is presented in terms
of circuits that implement various unitaries.
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Combining Systems

When two systems are put together their individual
Hilbert spaces, H1 and H2 are combined to give
H1 ⊗H2.

There is no à priori reason why this should happen;
this is what we see in nature.

The “size” (dimensionality) of the combined state
space grows exponentially.

This is what gives quantum computation its power.
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Notation for Quantum Computation

The basic unit is a two-dimensional state space
called a qubit. The basis states are typically written
|0〉 =

(

1
0

)

and |1〉 =
(

0
1

)

. Note that |0〉 is not the zero
of the vector space!

Tensor product is denoted by juxtaposition:
|0〉 ⊗ |0〉 = |00〉.
We can measure in the computational basis by using
the Hermitian operator |0〉〈0| + |1〉〈1|.
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Universality

A quantum computation is the implementation of a
transformation on a collection of qubits based on
some given set of primitive transformations.

The primitive building blocks are called “gates” and
the combinations are called “circuits.”

A few basic gates are enough to approximate all the
possible unitary operations: universality.

The basic gates are certain one-qubit operations plus
a particular two-qubit operation: CNOT.
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Some example gates

The Pauli matrices:

σx or just X =

(

0 1

1 0

)

σy or just Y =

(

0 −i
i 0

)

σz or just Z =

(

1 0

0 −1

)
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The Hadamard matrix

The Hadamard matrix:

H =
1√
2

(

1 1

1 −1

)

We have

H|0〉 =
1√
2
[|0〉 + |1〉

and

H|1〉 =
1√
2
[|0〉 − |1〉
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The CNOT gate

� �� �� �� �

|1>

|0>|0>

|1>|1>

|1>

|0>

|1>

It acts as follows

|xy〉 7→ |x(x⊕ y)〉.

The x bit controls whether a not is applied to the second
bit.
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Entanglement

Consider two qubit states, a basis is given by:
|00〉, |01〉, |10〉, |11〉.

Some states, e.g. |00〉 + |01〉 = |0〉 ⊗ (|0〉 + |1〉) are
tensor products while others, e.g. |01〉 + |10〉 are not.
These are called “entangled” states.

There are many notions of entanglement and
proposed measures of how entangled two states are.
For two qubits the state |01〉 + |10〉 is maximally
entangled, as is, e.g. |00〉 + |11〉. They are called Bell
states or Bell pairs.

These states can be prepared in the laboratory.
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CNOT entangles

When CNOT is applied to H|0〉 = 1
√

2
[|0〉 + |1〉 we get

1
√

2
[|00〉 + |11〉].

Controlled versions of other one-qubit gates are possible.

Thus CZ stands for controlled Z. This is also an entan-

gler.
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Measuring a Bell Pair

Suppose that we prepare the state |01〉 + |10〉 and
separate the two qubits but preserve the
entanglement. We have two experimenters sharing
an entangled pair.

Suppose that one of them performs a measurement
to determine the state. He will get the outcome |0〉 or
|1〉 with equal probability.

The other observer will detect the same outcomes
and by themselves these outcomes will seem
random. However, the two sets of outcomes will be
perfectly correlated.
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Teleportation

Suppose that two agents A and B share a Bell pair.
Then there is a way for A to communicate a one-qubit
state |ψ〉 to B by sending just two classical bits.

Let A’s portion of the entangled pair be |a〉; A
measures the state |ψ〉 ⊗ |a〉 in the Bell basis
|01〉 ± |10〉 and |00〉 ± |11〉.
She sends to B the outcome of the measurement (2
bits).

B applies a unitary transformation to his state and it
ends up being |ψ〉.
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The algebra behind teleportation∗

Let |ψ〉 = α|0〉 + β|1〉,
the shared state is 1

√

2
[|00〉 + |11〉].

The Bell basis states are (|00〉 + |11〉), (|00〉 − |11〉),
(|10〉 + |01〉) and (|10〉 − |01〉).
After combining |ψ〉 with her state the combined
system is in

1√
2
[α|0〉(|00〉 + |11〉) + β|1〉(|00〉 + |11〉)],
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The algebra behind teleportation cont.∗

which equals

1

2
√

2
[(|00〉 + |11〉)(α|0〉 + β|1〉) + (|00〉 − |11〉)(α|0〉 − β|1〉)

+(|10〉 + |01〉)(β|0〉 + α|1〉) + (|10〉 − |01〉)(β|0〉 − α|1〉)

If A gets the first basis state she tells this to B and he

knows that he now has |ψ〉. If A gets the second result, B

has to fix up his state to get |ψ〉, and so on. This “fixing

up” amounts to applying Pauli operations.
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The Point of Teleportation

The result of a measurement tells you what unitary to
apply

in order to get a determinate result.

It did not matter that the measurement outcome is
indeterminate, the whole procedure is determinate.

This is a computation - of the identity function (!) -
that is guided by measurement outcomes.

Can we compute more interesting functions?
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Computing by Measurements

Teleporting is compositional. If |ψ〉 is entangled with
something else then the teleported version will have
the same entanglement.

One can modify the teleportation protocol to
implement an arbitrary one-qubit unitary and some
selected two-qubit unitaries: this is enough to get
universality [Gottesman and Chuang 1999].

Teleportation looks like it involves two-qubit
measurements but it can be reduced to one-qubit
measurements.
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The Measurement-based Slogan

Measurements, followed by unitary corrections which may

depend on the measurement outcomes can implement

determinate quantum computations.
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The One Way Quantum Computer

Use measurements to guide the computation; use
Pauli corrections to eliminate the indeterminacy.

One-qubit measurements and one-qubit corrections
suffice [Raussendorf and Briegel 2001]

provided one has the “right” entanglement to start
with.

One standard type of entangled state suffices and
further entanglement is not necessary.
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Basic Ideas

There is a “cluster” of qubits arranged in a grid; each
adjacent pair is entangled: cluster states.

A measurement is applied to each qubit: this may be
along the axes or at some angle to it.

The angle along which a measurement is made may
depend on the result of a previous measurement.

Once a qubit is measured it is never used again.
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The CNOT Pattern

target X X X Y X X O

X Y Y Y Y Y O

Y

control

Each square is a qubit; X means measure the observable

σx. Later it was realized that one can do this with fewer

qubits.

ICALP 13 July 2006 Venice – p.36/54



The Need for Structure

Understanding the previous pattern is painful if you
are not a physicist: too low level.

Very hard to prove general results based on example
patterns. The physicists’ intuitions are so good that
they rarely make wrong statements but their “proofs”
tend to be demonstrations by example.

No systematic understanding of how patterns can be
composed.
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Benefits of Formalization

We give a precise textual syntax for patterns. We do
not worry about the geometrical layout but refer to
qubits by name.

The language comes with a natural compositional
structure: inductive definition of possible patterns.

We give a precise operational semantics and
denotational semantics for the patterns.

We develop a calculus of patterns and using
rewriting theory arguments show that all patterns can
be put in a normal form.
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The Syntax of Patterns

Type: (V, I,O), I ∩O need not be empty.

Eij entangle i and j; this is a controlled-Z.

Mα
i measure qubit i in a basis rotated by angle α.

Xi, Zi apply σx or σz to qubit i.

Programs are just sequences of commands read
from right to left.
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Dependency Propagation

Both corrections and measurements may depend on
measurement outcomes: signals.

Signal expressions are 0, 1, si, si + sj . Here si is the
result of the measurement on qubit i.

We write t[Mα
i ]s for measurement [Mα

i ] modified by
signals s and t.

Xs
i , Z

s
i : dependent corrections.
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Restrictions on Patterns

(D0) no command depends on an outcome not yet
measured;

(D1) no command acts on a qubit already measured;

(D2) no command acts on a qubit not yet prepared, unless
it is an input qubit;

(D3) a qubit i is measured if and only if i is not an output.
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The Execution of Patterns

Entangle according to the E commands, then measure
the qubits as indicated by the M commands and finally
apply the corrections.
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An Example Pattern

H = ({1, 2}, {1}, {2}, Xs1

2
M0

1E12).

If the input is α|0〉 + β|1〉 then after E we get

1√
2
[α(|00〉 + |01〉) + β(|10〉 − |11〉).

After the measurement there are two possible outcomes:

1

2
[(α+ β)|0〉 + (α− β)|1〉] or

1

2
[(α− β)|0〉 + (α+ β)|1〉].

The correction only kicks in for the second branch and it
makes the two outcomes identical.

This pattern implements Hadamard.
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Semantics

Operational semantics is given as a probabilistic
transition system.

The denotational semantics associates to each
pattern a certain type of operator (a completely
positive map, for those who know and care).

The proof that the two semantics agree is easy.
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Composing Patterns 1

Two patterns P1 and P2 may be composed if
V1 ∩ V2 = O1 = I2.
The composite pattern P2P1 is defined as:
— V := V1 ∪ V2, I = I1, O = O2,

— commands are concatenated.
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Composing Patterns 2

Two patterns P1 and P2 may be tensored if V1 ∩ V2 = ∅.
The tensor pattern P1 ⊗ P2 is defined as:
— V = V1 ∪ V2, I = I1 ∪ I2, and O = O1 ∪O2,

— commands are concatenated.
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Some Benefits

Composing patterns makes it easy to put together
known patterns.

We use the semantics to show that our pattern
language is universal.

We came up with a striking new implementation of
controlled unitary; only 14 qubits instead of 40+

known before.

We came up with a new - very simple - set of
generators for unitaries as part of our proof of
universality. [DKP Phys. Rev. A. Dec 2005]
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A Huge Problem

Composing patterns ruins the nice EMC form of the
patterns.

This form is very important if we want to avoid generating

new entanglements on the fly.
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Rewriting Rules

Using the algebra of the Pauli operators and qubits we
showed how to define a rewrite system for patterns.
These rules allow one to flip the order of certain
commands. Example

EijX
s
i = Xs

i Z
s
jEij

which we orient as a rewrite rule

EijX
s
i ⇒ Xs

i Z
s
jEij .

Operators on disjoint qubits commute.
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Standardization

The rewriting process terminates and results in a
pattern which is in the EMC form.

Thus we can freely combine patterns and run it
through the standardization engine to ensure that it is
in EMC form.
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Distributed computation in the 1W model

One can group collections of qubits into locations to
give a distributed model [DDKP 05].

One can analyze classical distributed computation
problems in the quantum setting, e.g. leader election
[DP 06]

One can discuss epistemic concepts in a quantum
setting and analyze knowledge flow in e.g.
teleportation [DP05]
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Using entanglement for Leader Election

Suppose that two agents want to choose one of
themselves as a leader and they share a Bell pair or,
if there are three agents, they share
W3 = |001〉 + |010〉 + |100〉.

They can each measure in the basis |0〉, |1〉; the one
who gets |1〉 is the leader.

Each agent has the same chance of getting elected,
the process is guaranteed to terminate in one step.
Exactly what is classically impossible!
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Conclusions

The one-way model is based on primitive
fundamental concepts and has some attractions from
the point of view of physical implementation.

We have benefited from the formalization of
measurement-based computation: EMC form,
composing patterns, succinct representations.

In fact there are several measurement calculi and
translations between them which show how the
models are related.

The one-way quantum computer plays a central role
in relating these models.
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What is to be done

We need to show how higher-level models (e.g.
Selinger’s Quantum Programming Language) can be
translated into the 1WQC.

Understand quantum analogues of process algebras
and equivalences. Good test: is teleportation
“equivalent” to sending a qubit?

Understand resource inequalities: Igor Devetak,
Aram Harrow and Andreas Winter have written a
very interesting paper that should stimulate process
algebraists.
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